Natural history of cow's milk allergy. An eight-year follow-up study in 115 atopic children

A. CANTANI, M. MICERA

Allergy and Clinical Immunology Division, Department of Pediatrics, “La Sapienza” University – Rome (Italy)

Abstract. – Background. Cow’s milk allergy (CMA) is a disease of infancy and usually appears in the first few months of life. The evaluation of infants for possible CMA is one of the more common problems shared by pediatricians. The role of foods in determining and/or aggravating the clinical features of atopic dermatitis (AD) has been stressed in the last decades.

Objective. The aim of the present study was to investigate, in children with food related AD, the development of tolerance to the offending food(s), clinical or laboratory data to predict the development of food tolerance, and whether there are clinical or laboratory data to predict the onset of respiratory allergy.

Materials and Methods. In this prospective study we report on 115 babies, first examined at a median age of 6 months, and followed-up for 8 years. We have investigated several factors as predictive of the outcome, as follows: early onset; widespread or not-typical (reverse pattern) skin lesions, family history positive for atopy; persisting FA, high levels of total and specific IgE antibodies, association with CMA and asthma.

Results. All these parameters were significantly predictive of a long-term morbidity of AD children with CMA. The median age for tolerance to cow’s milk was 7 years + 11 months, to egg 6 years + 6 months, and to wheat 7 years + 2 months. However a great number of both tolerant and intolerant children developed multiple sensitizations. Only 66 children (57%) acquired food tolerance, but there was the onset of asthma in 54% of cases.

Conclusion. The natural history of CMA is not well-known, since not many related studies have been done in children. The several predictive factors, all in a negative sense, may be the norm in atopic children. We suggest possible areas of intervention in children at risk due to parental atopy. Preventive measures may induce a dramatic improvement in children with food allergy, but we stress that the long-term prognosis is challenging, since asthma prevalence may increase up to 54% during a long follow-up. Therefore, the natural history of IgE-mediated AD in atopic children sensitized to several allergens may be less optimistic than generally reported.

Key Words: Cow’s milk allergy, Food allergy, Food tolerance, Natural history, Atopic dermatitis, Asthma, Children, Prognosis, Atopic march, Prevention.

Abbreviation list

AD = Atopic dermatitis
BM = Breast milk
CM = Cow's milk
CMA = Cow's milk allergy
FA = Food allergy
FH = Family history
GM = Geometric mean
MA = Median age
SCORAD = Severity scoring of atopic dermatitis
SD = Standard deviation
SPTs = Skin prick tests.

Introduction

The natural history of cow’s milk allergy (CMA) in children is not well-known, since several widely discussed genetic and environmental factors can influence the development of atopic disease^1-5, also due to conflicting reports including different selection criteria, study design and data presentation, variations in patient selection. Differences may depend on whether the study group consists of in-
fants at risk or unselected children, their age when studied, or the study is prospective or retrospective6-36. We have explored the natural evolution of CMA, associated or not with atopic dermatitis (A D) in 88 children, a median age of 36 months, and a very high incidence of positive family history (F H). They were affected with food allergy (FA), as demonstrated by skin prick tests (SPTs) and/or RAST positive against the offending food(s) and positive responses to the elimination diets and challenge tests3. In this prospective study all children have been followed-up to evaluate the achievement of tolerance to the causative agent(s). At the final follow-up only 25/88 children (28\%) tolerated the offending food, but 34/88 (38\%) exhibited other sensitizations, including 10/15 children with CMA and 4/15 with egg allergy. Both tolerant and not tolerant children have developed additional sensitizations with significant statistical differences between the children who lost FA and those with persisting FA. Moreover, 15 children with CMA achieved the tolerance at an age significantly higher compared to children with allergy to other foods and 10/15 (67\%) have exhibited more sensitizations, primarily asthma during the follow-up.

We can therefore affirm that CMA can be viewed as an unfavorable prognostic factor, and as a clue of a marked atopic predisposition. The persisting intolerance to the offending food was significantly associated with symptoms such as angioedema and A D singularly or variously associated3. The data are at variance with the common reports quoting that FA, in the majority of cases, improves or clears at a (very) young age14,17,18,31,33-35. It is interesting to note that some foods, e.g. fish and nuts appear to induce more severe (as angioedema) and persisting clinical manifestations. This is not surprising since no child sensitive to these two foods lost food hypersensitivity3. A s previously documented3,4, other foods more often causing allergy are cow’s milk (CM), egg, and wheat, which are among the most common foods consumed by children17, thus explaining why the A D outcome is not so optimistic as generally affirmed2-4.

In another prospective study7, A D was due to FA in 82\% of children sensitized to CM and egg in 69\% of cases, while 43\% of children still had A D at the last follow-up. Tolerance toward CM and egg was reached at age 4 years. In addition 54\% of patients had bronchial asthma and/or allergic rhinitis (A R) during the follow-up.

The studies on A D natural history have selected numerous factors as predictive of the outcome, which partly confirm the above alluded to results, as follows: early34,35 or late A D onset after the 6th month of life2,19; widespread or not-typical (reverse pattern) skin lesions7,14,15,18,19,32-35; FH positive for atopy3,14,15,18,34,35, male3,15 or female19,34,35 sex, persisting FA7, high levels of total and specific IgE3 directed against relevant foods37, association with CM A36 a relationship between development of tolerance and symptoms and between tolerance and start of additional allergies, all with statistical significant differences3,7. Positive SPTs and/or IgE antibodies to inhalant allergens at the first examination appeared to have a predictive value for the development of respiratory allergy ($p = 0.0007$)7,22,23.

In the present study we report that the natural history of IgE mediated FA is less favorable than previously observed14,17,18,31,33-35.

\section*{Patients and Methods}

\subsection*{Patients}

To ascertain the natural history of CMA, we have prospectively studied and followed-up for 8 years 115 children, 66 males, 49 females, aged 4-12 months (median 6.5 months) attending the Division of A llergy and Immunoology of the Department of Pediatrics of the Roma University “La Sapienza” because of suspected CMA and A D. In these children, at the first visit a 4-week diagnostic elimination diet was prescribed for diagnostic purposes. CM and dairy products were avoided if A D appeared when CM was the only feeding. If A D occurred when egg and wheat were also given, these foods were avoided. Further foods were eliminated following anamnestic data. Soy-milk (SOM 1, Milupa), home-made, lamb-meat based-diet, and other nutritionally adequate food equivalents were employed. A n open challenge test (OFC) was done when skin lesions cleared-up. If no immediate reaction ensued, food was fed in a normal way, and the skin accurately checked.
by parents. At each visit the severity of skin lesions was evaluated. On the basis of OFCs results, a therapeutic elimination diet, excluding the offending foods, was given independently of IgE and/or SPTs responses. All patients were checked every year or more frequently if necessary.

We assessed whether the babies were “at risk” of atopic disease because of a positive FH of atopy since one or both parents and/or siblings suffered from asthma, or AD, or AR.

For each child a detailed clinical history was recorded with particular reference to the additional parameters: type of alimentation at birth, including the duration of breastfeeding (if it was the case), median age (MA) at the onset of clinical manifestations (AD), and at first CM feeding, presence of skin lesions and/or respiratory allergy. The diagnosis of atopic diseases in the children was done according the following criteria: clinical history, physical examination and positive SPTs and/or RAST to the most common inhalant and/or food allergens. The diagnosis of atopic diseases in the children was done according the following criteria: clinical history, physical examination and positive SPTs and/or RAST to the most common inhalant and/or food allergens. Informed consent was obtained from parents of each child.

Skin Prick Test

Appropriate emergency equipment and medications were available on site. Skin testing was done at baseline by the prick method by a doctor trained in allergy with the co-operation of a qualified nurse. The skin was marked with a ballpoint pen for the allergens to be tested. The babies were then tested with: histamine hydrochloride (1 mg/ml) as a positive control and isotonic saline as a negative control. We continued with a battery of food allergens, including whole CM protein, casein, lactalbumin, egg, fish, wheat, soy, Dermatophagoides pteronyssinus, Alternaria alternata, Lolium perenne, Olea europea and Parietaria officinalis (SARM, Roma, Italy). The diagnostic extract of each individual allergen was placed on the volar surface of the forearm as drops through which the skin was superficially pricked with a straight pin for one second. A new pin was used for each prick test and then discarded, and the drop of the extract was then wiped off about one minute after the prick.

SPTs were read at 20 minutes and considered positive as follows:

+ when the wheal was the half of the histamine wheal;
++ when the wheal was equal to the histamine wheal;
+++ when the wheal was two-fold the histamine wheal;
++++ when the wheal was more than two-fold the histamine wheal.

We took for positive only children with a +++ or ++++ reaction, that is a wheal ≥ 3 mm with an area = 7 mm² (cut-off). So we considered as positive only the children with a mean wheal diameter of 3 mm or larger than the negative (saline) control. A positive (histamine) control was performed to ensure the absence of any antihistamine drug interference.

Total IgE

The determination of total serum IgE levels was done by paper radioimmunosorbent test (PRIST, Pharmacia Diagnostics A B, Sweden), and results were given in International Units (IU)/ml, usually expressed in geometric mean (GM) with one or two standard deviations (SD).

Specific IgE antibodies and determination of specific IgE levels were measured by radioallergosorbent test (Phadezym RAST, Pharmacia Diagnostics, Sweden). RAST results are expressed in “RAST Units” (PRU = Phadebas Rast Unit) as follows:

1st class = IgE levels < 0.35 IU/ml,
2nd class = IgE levels > 0.35 IU/ml and less than 0.7 IU/ml,
3rd class = IgE levels between 0.7 IU/ml and 17 IU/ml,
4th class = IgE levels higher than 17 IU/ml.

Only RAST results > 0.35 IU/ml were considered positive.

The diagnosis of AD was made according to Hanifin and Rajka criteria. The severity score of AD was recorded according to the SCORAD index.

For the diagnosis of asthma, 3 episodes of wheezing without fever were required. For the diagnosis of rhinitis, nasal discharge and/or blockage occurring continuously for at least 4 weeks plus the typical pale aspect of allergic mucosa on rhinoscopy, without any sign of infective rhinitis in other relatives was required.
For the diagnosis of FA, skin, gastrointestinal, and respiratory symptoms which occurred after OFC with the offending food.

Challenge Test

At the end of the 4-6 wk period, OFCs were performed in the hospital under observation in a unit staffed to undertake emergency equipment. CM or egg were administered as follows: a drop of CM (or of emulsified raw egg, or a bit of bread) was put upon the inner border of the lower lip, and a further 5 ml of CM (or 1 ml of emulsified raw egg, or 5 g of bread) were given after 5 minutes. One-hundred ml of CM or half-boiled egg, or 100 g of bread were given after 30 minutes. The reactions were defined as immediate if the first symptoms occurred within two hours of ingesting the food antigen, and delayed if the first symptoms occurred after two hours. If any symptoms secondary to the challenge test were observed, the challenge test in the hospital was terminated. After the last administration of the tested food the children were watched for at least four hours and then discharged.

Data were statistically analyzed using the Student t and the X^2 tests. The Fisher exact test was employed when possible.

Study Trial

The following parameters were studied at the 3-years, 5-years and at the last follow-up: age; AD severity score; development of food tolerance; duration of symptoms; respiratory allergy (asthma and/or rhinitis).

Results

The clinical characteristics of the 115 children at the first examination at a median age of 6 months are outlined in Table I, mean severity score of AD was 19 (8-81), and a typical disposition of skin lesion was present in 83 babies (72%).

Association With AD

AD was associated with CMA in 97/115 children (84.3%).

Family history FH of atopy was positive in 69 children (60%) and negative in 46 (40%) (p = 0.0024).

Sex

There were 66 males (57%) and 49 females (43%) (p = 0.015).

Age(s) (Figure 1)

The MA at AD onset (median age = 3.5 months, 5 days-150 days) was before 4 months of life in 66 babies (57%) between 4 and 6 months of life in 39 (34%) and after 6 months of life in 10 (9%) (Table I) (p = 0.0001).

Figure 2 shows the age of the first CM formula feeding. In 37 children (32%) CM formulas were given since birth, in 51 (44.5%) within the third month of life, and in 27 (23.5%) before the sixth month of life (p = 0.0034). As a consequence, 78 (68%) infants were fed breast milk (BM) at birth (p <= 0.0000), and received BM for about 3 months.

SPTs and RAST

All children had positive SPTs. SPT positivity score was > 2+ in 92 children (80%) (p

<table>
<thead>
<tr>
<th>Table I. Clinical characteristics of the 115 children with food-related atopic dermatitis (Follow-up 8 yrs) at the first examination.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>p = 0.015</td>
</tr>
<tr>
<td>MA at AD onset in 115 children</td>
</tr>
<tr>
<td>Before the 4th mo of life</td>
</tr>
<tr>
<td>Between the 4th and 6th mo</td>
</tr>
<tr>
<td>After the 6th mo</td>
</tr>
<tr>
<td>p = 0.0001</td>
</tr>
<tr>
<td>Disposition of skin lesion</td>
</tr>
<tr>
<td>Typical</td>
</tr>
<tr>
<td>Not typical (reverse pattern)</td>
</tr>
<tr>
<td>Age at the first feeding of a CM formula</td>
</tr>
<tr>
<td>At birth</td>
</tr>
<tr>
<td>Before 3 months</td>
</tr>
<tr>
<td>Before 6 months</td>
</tr>
<tr>
<td>p = 0.0034</td>
</tr>
</tbody>
</table>
In detail, SPTs were positive to CM in 98 infants (85.7%), to egg in 109 (95%) and to wheat in 11 (9.5%). Seven babies with no CMA and 6 with no egg allergy had positive SPTs to CM and egg, respectively. Moreover, 36 children (31%) were positive to inhalant allergens, and 24 (21%) had multiple sensitizations to food and inhalant allergens.

RAST results for CM/other foods were of second class in 11/115 (10%), third class in 21 (18%), fourth class in 69 (60%) and 14 (12%) had a negative/first class RAST at the first testing ($p = 0.0001$).

Total Serum IgE Levels
Total serum IgE levels were: GM 255 IU/ml, range 61-1110 IU/ml (2 SD).

Challenge Tests
Due to previous severe anaphylactic reactions the OFCs to egg was not done in 7 children and to CM in 3. Altogether, OFCs with CM were positive in 106/115 children (92.2%), with egg in 35 (30.4%) and with wheat in 8 (7%). Multiple sensitization was present in 43/115 (37.4%) children: to CM, egg and wheat in 27 cases, CM and wheat in 8, CM and egg in 8. The immediate allergic manifestations exhibited by the infants after the first ingestion of the offending foods and confirmed with the OFCs are outlined in Table II. In all children the allergic symptoms were immediate and appeared a few minutes after the ingestion of a small amount of the offending food.

Follow-up
At the last follow-up, the children were 8 years + 6 months - 13 years + 2 months old (median age 9 years + 4 months).

Clinically, skin lesions cleared up in 66 (57%) children, whereas persisted in 49 (43%). As regards RAST changes, 16 (24%) of improved children were RAST-negative, 24 (36%) had a 2nd class RAST, 16 (24%) a 3rd class RAST, and 10 (15%) a 4th class RAST. Among the intolerant children, 8 (16%) had a 2nd class RAST, 9 (18%) a 3rd class RAST, and 31 (63%) a 4th class RAST, RAST was not repeated only in a not tolerant child.

Table II. Allergic manifestations triggered by OFCs in the 115 infants.

<table>
<thead>
<tr>
<th>Symptoms triggered</th>
<th>No.</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopic dermatitis worsening</td>
<td>48</td>
<td>41.5</td>
</tr>
<tr>
<td>Gastrointestinal symptoms</td>
<td>19</td>
<td>16.5</td>
</tr>
<tr>
<td>Urticaria</td>
<td>14</td>
<td>12.5</td>
</tr>
<tr>
<td>Bronchospasm/wheezing</td>
<td>19</td>
<td>16.5</td>
</tr>
<tr>
<td>Anaphylactic shock</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Angioedema alone or associated with AD, asthma, urticaria, vomiting, or diarrhea</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Figure 1. MA of AD onset in 115 children followed-up 8 years, $p = 0.0001$.

Figure 2. Age at the first feeding of a CM formula in 115 children followed-up 8 years, $p = 0.0034$.

Figure 3. Distribution of the time of AD onset in 115 children followed-up 8 years, $p = 0.0001$.

Natural history of cow’s milk allergy. An eight-year follow-up study in 115 atopic children.
Food tolerance was present in 66 children (57%). The MA for tolerance to CM was 7 years + 11 months, to egg 6 years + 6 months, and to wheat 7 years + 2 months. Therefore the children with CMA achieved tolerance at an age significantly higher than the children with egg or wheat allergy.

We then studied the correlation between symptoms and development of tolerance in the 115 children (Table III). During the follow-up there were significant differences between the 60 tolerant children and the 55 with persisting AD including either the symptoms manifested at the first examination, or the development of other sensitizations. Persistent intolerance to the offending food was found to be significantly associated with AD and angioedema (p = 0.0001). Moreover, a significant relationship was found between loss of FA and a high presence of asthma (30%) (Table IV) (p = 0.022). Among the improved children 18 (30%) developed allergy to inhalants (8 to Lolium perenne, 10 to Der p), and 28 (51%) of intolerant children developed respiratory allergy (9 to Lolium perenne, 19 to Der p). There was no difference in the MA of these 3 groups.

The study of the correlation between sensitizing foods and development of additional allergies during the follow-up in the 115 children (Table V) revealed that 58/106 children with CMA developed several sensitizations during the follow-up (p = 0.0047).

At the follow-up after eight years (Table VI), when the children had a median age of 9 years + 4 months, it is true that six more children lost FA (57%) (p = 0.003), but 49 (43%) still had symptoms due to FA (p = 0.0025). Of these 49 children, 30 suffered from CMA and 19 from egg allergy (p = 0.0263), in addition they have developed more multiple sensitizations (p = 0.035). However a greater number of children, 62 (54%), suffered from asthma, an increase of 74% (p = 0.0345).

We then noted a significant relationship between the age of onset of AD and the outcome of skin lesions (Table VII). Among the improved children, 53 (80%) were less than 6 months old when AD first appeared, unlike 30 children (61%) with an onset of AD after 6 months (p = 0.0001).

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>60 tolerants</th>
<th>55 not tolerants</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD + FA</td>
<td>52 (60)</td>
<td>48 (55)</td>
</tr>
<tr>
<td>Asthma</td>
<td>18 (30)</td>
<td>28 (47)</td>
</tr>
<tr>
<td>Angioedema</td>
<td>2 (3)</td>
<td>4 (7)</td>
</tr>
<tr>
<td>Multiple sensitizations</td>
<td>13 (22)</td>
<td>22 (40)</td>
</tr>
<tr>
<td>(p = 0.0001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Development of asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>No (%)</td>
</tr>
<tr>
<td>Tolerants 18/60 (30)</td>
</tr>
<tr>
<td>Not tolerants 28/55 (58)</td>
</tr>
<tr>
<td>p = 0.022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foods</th>
<th>Development of other allergies</th>
</tr>
</thead>
<tbody>
<tr>
<td>No (%)</td>
<td></td>
</tr>
<tr>
<td>CM 58/106 (55)</td>
<td></td>
</tr>
<tr>
<td>Egg 11/35 (31)</td>
<td></td>
</tr>
<tr>
<td>Wheat 1/8 (12)</td>
<td></td>
</tr>
<tr>
<td>Multiple sensitizations 16/43 (37)</td>
<td></td>
</tr>
<tr>
<td>p = 0.0047</td>
<td></td>
</tr>
</tbody>
</table>
There was a significant relationship also between RAST results at the first examination and at the last follow-up. RAST classes are reported in Table VIII according to the outcome of children, with very significant differences.

Discussion

We have enrolled 115 highly atopic children (SPTs, RAST and OFC results), evaluating clinical features typical of CMA, either systemic such as anaphylaxis, or involving major shock organs including the gastrointestinal tract, skin, and respiratory tract, until the last follow-up. In this long-term, prospective study 115 infants were carefully followed-up with regular controls. As regards CMA incidence, a recent report found a mean of 2.16% in 15 studies in healthy and preterm infants, and of 14.72% in 3 studies in at risk babies. The results of this study confirm that AD is a chronic, multifactorial disease, as shown by all children suffering from FA, and by the elimination-provocation tests. Even if the children had a median age of 9 years + 4 months at the last follow-up, 58% of them were still affected with AD, moreover 54% of children developed respiratory allergy. These figures concur with the data reported by other investigators.

In several studies the reported rates of child improvement vary remarkably, ranging from 11% to 90%, however seborrhoic dermatitis was overrepresented in the latter study. Several reports have observed a favorable outcome in 40-50% of children at 13-15 years of follow-up, while in others the consensus is not unanimous. In a Swedish study, children with AD retained their eczema as adults. We have found several parameters predicting a poorer outcome (Table IX), thus confirming the results of the above alluded to studies on AD natural histo-

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. (%)</th>
<th>Outcome</th>
<th>Age of onset (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolved</td>
<td>66 (57)</td>
<td>Resolved</td>
<td>< 6: 53 (80)</td>
</tr>
<tr>
<td>Persisting</td>
<td>49 (43)</td>
<td>Persisting</td>
<td>> 6: 13 (20)</td>
</tr>
<tr>
<td>Respiratory allergy</td>
<td>62 (54)</td>
<td>P = 0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Table VI. Clinical course of 115 children with food-related AD (Follow-up 8 years).

Table VII. A ge of onset of AD and outcome in 115 children with food-related AD according to the age of onset (Follow-up 8 years).

<table>
<thead>
<tr>
<th>RAST classes</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg/1st</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerants</td>
<td>13</td>
<td>3 (5%)</td>
<td>10 (17%)</td>
</tr>
<tr>
<td>Not tolerants</td>
<td>1</td>
<td>8 (15%)</td>
<td>11 (20%)</td>
</tr>
</tbody>
</table>

Table VIII. RAST class at diagnosis and at last follow-up and according to the development of tolerance in the 115 children.

<table>
<thead>
<tr>
<th>At diagnosis:</th>
<th>Tolerants</th>
<th>Not tolerants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerants</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Not tolerants</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Last follow-up:</th>
<th>Tolerants</th>
<th>Not tolerants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerants</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Not tolerants</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

At diagnosis: Tolerants vs not tolerants, $p = 0.0001$, Last follow-up: Tolerants vs not tolerants, $p = 0.0001$, not tolerants NS.
ry. These have selected numerous factors as negatively predicting the outcome as follows: positive FH for atopy, male sex, widespread or not typical (reverse pattern) skin lesions, early AD onset, male sex, association with CMA, while in a previous study positive FH for atopy, sex, but SPT responses, and severity of skin lesions had no predictive value. Several studies have emphasized the relationship between CM formula feeding and AD development. A prospective study showed that CM formula feeding was an unfavorable factor for AD development. We emphasize that 76.5% of the children of the present study were given CM formulas before the sixth month of life. Others stress that FA plays an important role in AD. Eighty percent of the children had serum total IgE levels higher than 2 SDs for age and 88% had positive IgE to food allergens. It was reported that 80% of AD is due to IgE-mediated allergy. Sampson et al. showed that such patients generally have elevated serum levels of IgE antibodies, and that such reactions are accompanied by increased amounts of circulating histamine. Atherton et al. suggest that the role of foods may be more critical in the beginning of the condition than later on.

In support of this unfavorable relationship between CM feeding and AD development, we report in this study 37 children (32%) that were fed CM at birth and 78 (68%) within or after the sixth month of life, as a complement or a substitute of BM feeding. Following an early exposure to CM formulas the allergic features appeared, hence significantly influencing the atopy persistence. Furthermore, previous studies have enhanced the crucial role played by FA in AD pathogenesis. In this cohort, all children have shown SPTs and at least 101/115 RAST results positive for foods, allowing to conclude for an IgE-mediated AD. This finding represents an important contributing factor in 80% of children with IgE-mediated AD, in whom IgE antibodies are usually directed against the more relevant foods, accompanied by increased levels of circulating histamine.

As many as 16 children (13.9%) reacted to 2 and 27 (23.5%) to 3 foods, thus 88 (76.5%) reacted to 1 or 2 foods, and multiple sensitizations developed in 43 children (37.4%), in accordance with previous findings. The management of CMA is based, whatever the clinical features, on a diet excluding both CM and closely related foods, following which the patients markedly improve. Therefore the elimination of offending foods represents the basal FA management, either because it can reverse the disease development, or can favor the revival of a complete tolerance possibly followed by a normal refeeding. It is not yet completely known how food tolerance could be restored as a result of an appropriate, and carefully constructed diet. For example Jarrett and Firer et al. have demonstrated that feeding a causative agent, such as CM, even in small doses, triggers an IgE-mediated response, thus altering the immune system, which could instead repress after a diet period. A controlled study has shown that the elimination of the offend-

<table>
<thead>
<tr>
<th>Table IX. Parameters predicting an unfavorable outcome.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfavorable factors</td>
</tr>
<tr>
<td>Family history of atopy, positive vs negative</td>
</tr>
<tr>
<td>Male sex</td>
</tr>
<tr>
<td>SPT results, positive vs negative</td>
</tr>
<tr>
<td>RAST results, positive vs negative</td>
</tr>
<tr>
<td>AD onset before the 4th month of life</td>
</tr>
<tr>
<td>First feeding of a CM formula before the 3rd month</td>
</tr>
<tr>
<td>Correlations between symptoms and development of tolerance</td>
</tr>
<tr>
<td>Between tolerance and development of asthma</td>
</tr>
<tr>
<td>Between tolerance and development of additional allergies</td>
</tr>
<tr>
<td>Age of onset of AD and outcome</td>
</tr>
<tr>
<td>RAST Class at diagnosis and at last follow-up at diagnosis: Tolerants vs not tolerants</td>
</tr>
<tr>
<td>Last follow-up: Tolerants vs not tolerants</td>
</tr>
</tbody>
</table>
ing food for one to two years, but also re-
stricted to 3-6 months, can ameliorate the
symptoms, even severe, related to the as-
sumption of the offending food.

The MA for tolerance to CM was 7 years +
11 months, to egg 6 years + 6 months, and to
wheat 7 years + 2 months. Therefore the chil-
dren with CMA achieved tolerance at an age
significantly higher than the children with egg
or wheat allergy. At the last follow-up, the
tolerance to CM and egg was achieved by
45% and 69% of children, respectively, how-
ever multiple sensitizations were frequent,
despite ongoing pharmacological and dietetic
management; thus stressing that AD is a mul-
tifactorial disease. However, CM is so a po-
tent allergen that a drop posed on the lower
lip may trigger anaphylaxis. The children
with hypersensitivity to 2 or more foods
achieved tolerance later to CM, egg or other
foods, as already described. Sixty-six per-
cent of the children with healing lost FA to-
tally or partially, while 43% of the children
with persisting AD were still sensitive to the
offending foods. These data are in agreement
with those of Sampson et al. The early age of
onset of AD (< 6 months) was significantly
associated with the loss of FA. According to
several authors, both the age of onset of AD
after the sixth month of life and the not
typical or widespread skin lesions had a signif-
cant value in predicting the persistence
of AD.

To our knowledge, several studies have re-
ported an association with respiratory allergy,
including this one, registering a 42.5% preva-
lence for asthma and of 48.3% for AR. There-
fore, in children with AD appropriate strate-
gies should prevent the develop-
ment of respiratory allergy. Positive SPTs
and/or IgE to inhalant allergens at the first
examination appeared to have a predictive
value for the development of respiratory al-
lergy (asthma and/or rhinitis).

In addition, if there is a significant associa-
tion of AD with CMA, or with egg allergy, the
clinical improvement and food tolerance are
attained 2-5 years later, whereas hyper-
sensitivity to other foods, such as fish, cereals
or nuts is lost even later. It is generally agreed
that the AD outcome appears to be more favorable when the children leave CM hypersensitivity, as particularly stressed by a study where only one child out of 32 was still intolerant at the last follow-up, unlike the present study, and a previous one. In keeping with our results, it is significant that 22% to
24% of tolerant children had low/negative spe-
cific IgE (SIgE) at the first visit and the last
follow-up versus 2-11% of the children with
persisting AD, which could be a predictive fac-
tor of tolerance. In our paper on the so-called
BM allergy, at the last follow-up, a greater
number of tolerant children were RAST-nega-
tive, versus those with persisting FA, com-
pared to the first control where the ratio was
speculatively reverse. In the parallel study on
the natural history of FA, the propor-
tion of negative RASTs increased by
62.2% in the tolerant and by 42.5% in the not
tolerant children. Thus, in these
studies, RAST turned negative in a significant
part of tolerant children, enabling us to con-
clude that even the variations of RAST values
can be predictive of tolerance.

In agreement with literature data, a high
genetic risk for atopy existed in our cohort.
We would like to stress that the above data
do not strengthen the diffuse opinion of FA
improving in a major part of children during
the first years of life and the not
typical or widespread skin lesions had a signif-
cant value in predicting the persistence
of AD.

Above all the influence of foods can fore-
shadow a more remarkable risk of sensitiza-
tion if they are administered more in the initi-
atation of disease than after its induction.
Some indirect support to this assumption
could be provided by the observation that
SPT reactivity to foods is particularly critical
in very young babies with AD, subsequently
fading gradually away. We rather emphasize the importance of
recommending to parents of neonates at risk
for atopy a prolonged breastfeeding and a
gradual weaning, which are frequently re-
ported to be able to prevent or delay the de-
velopment of atopic disease. Breastfeeding, if
feasible, should be preserved or resumed,
with the greatest care of prescribing a diet
free of CM and related sources to the nursing
mother. As previously alluded to, in BM ex-
ists a complete supply of nutritive and im-
mune factors, nearly unappreciated until
some time ago, whereas over the last few

Natural history of cow's milk allergy. An eight-year follow-up study in 115 atopic children
years the study of the pertinent mechanisms is unfolding an always growing corpus of experimental results. A editorial, possible areas of intervention in children at risk due to parental atopy would logically include avoidance also of cereals and egg as risk factor for an increasing incidence of A D, or a grass pollen asthma, the asthma risk is shared by the association of A D with FA within 24 months of age and the sensitivity to CM and/or egg. The avoidance of maternal smoke during and after pregnancy is advocated, as well as the reduction of exposure to relevant allergens, above all house dust mites in children at risk and cats in all children.

In conclusion, this study confirms that the natural history of IgE-mediated FA is less favorable than it is usually believed, especially in atopic children. These children may have CD137, notably involved in T-cell activation and differentiation, and expressed by blood CD137, notably involved in T-cell activation and differentiation, and expressed by blood

References

61) Ferguson DM, Horwood J. Early solid feeding and recurrent childhood eczema: A 10-year longi-

