Abstract. We report a rare case of double-level adjacent segment disease (ASD), occurring ten years later an anterior cervical discectomy (ACD) without fusion, treated by cervical arthroplasty, highlighting the outcome at long-term follow-up and focusing on heterotopic ossification.

In 1995 a 25-year-old man satisfactorily underwent ACD at C4/C5. At that time MRI also showed signs of degenerative disc disease (DDD) at C3/C4 and C5/C6. Ten years later, a new MRI scan showed a large C3/C4 and a smaller C5/C6 soft disc hernia together with spondylotic changes at the level above and below the site of the first surgery. At C4/C5 imaging revealed a kyphotic stable “pseudoarthrosis” with anterior bridging osteophyte. The patient underwent double-level arthroplasty with ProDisc-C. Clinical and radiological outcome was satisfactory. 3 and 5 years after surgery, X-rays and CT scan documented the progressive development of heterotopic ossification, with gradual reduction of range of motion. A late onset heterotopic ossification can neutralize the theoretical advantages of cervical arthroplasty, which should be considered an effective surgical option only in selected cases. ACDF and restoration of normal lordosis can be a viable alternative in cervical revision surgery, as motion preservation can not be always maintained for a long time.

Key Words: Adjacent segment disease, Anterior cervical discectomy, ACDF, Arthroplasty, Disc prosthesis, Heterotopic ossification, Prodisc, Pseudoarthrosis.

Introduction

Cervical arthroplasty is a novel technique gaining increasing popularity as alternative to other anterior surgical approaches, like anterior cervical discectomy (ACD) and anterior cervical discectomy and fusion (ACDF), used to treat cervical degenerative disc disease (DDD). Such increasing popularity stems from the hope to avoid some of the complications usually encountered with ACD or ACDF.

However, given the scant emerging data on heterotopic ossification (HO) at medium- and long-term follow-up, the role of HO in the setting of total disc replacement will be reviewed.

Several studies have reported the onset or progression of both radiological and clinical adjacent segment disease (ASD), i.e. spondylosis or disc herniations involving the motion segment above or below the site of a previous ACDF1-19. The latter technique, although still regarded as a gold-standard procedure with a reported excellent clinical and radiological outcome, is known to induce biomechanical changes causing alterations of intradiscal pressure20-22, increased strain15 and raised motion of adjacent functional spinal units (FSU)18, with consequent development of degenerative changes, as also shown by a prospective study comparing arthrodesis and arthroplasty17.

Experience with cervical total disc replacement (TDR) in patients previously treated with ACDF and harbouring de novo myeloradiculopathic symptoms secondary to ASD is available in the literature22-28. Conversely, a review of the literature did not reveal evidence on the role of arthroplasty in cases of documented ASD following ACDF without fusion at the index surgery.

To our knowledge this is the first paper describing the use of cervical arthroplasty in a case of double-level ASD, respectively at C3/C4 and C5/C6, diagnosed ten years later an ACD alone performed at C4/C5.

Corresponding Author: Giuseppe MV Barbagallo, MD; e-mail: giuseppebarbagal@hotmail.com
Case Report

A 35 year old man presented because of recurrent neck pain and paresthesiae in both upper limbs and hands. Sensory disturbances rapidly extended to the lower limbs.

His past medical history was only remarkable for an anterior cervical discectomy that he had undergone at the age of 25, because of a C4/C5 soft disc hernia causing focal spinal cord compression and myelopathy. At that time, Magnetic Resonance Imaging (MRI) showed not only the C4/C5 disc hernia, with high signal intensity changes within the spinal cord on T2-weighted images, but also signs of accelerated disc degeneration both at C3/C4 and, to a lesser extent, at C5/C6 (Figure 1). However, symptomatology was thought to be related only to cord compression at C4/C5 and, consequently, that level was treated with ACD. Post-operatively, the patient sustained a significant clinical improvement and the subsequent follow-up was uneventful.

Ten years later, he returned back complaining of neck pain, recurrent paresthesiae and numbness in both upper limbs along with clumsiness in the hands. A rapid progression of sensory disturbances to the lower limbs associated with severe walking disturbances prompted his admission for further treatment.

Neurologic examination demonstrated hypoaesthesia in the right C6 dermatome, absence of motor deficits, tetrahyperreflexia, clumsiness of both hands, bilateral positive Hoffmann sign, a left-sided upgoing plantar reflex and continuous ankle clonus. No sphincteric alterations were registered. His myelopathy was graded 3 according to the Nurick classification. The patient also completed the Neck Disability Index (NDI) and Short Form-36 (Physical Component Score – PCS, and Mental Component Score – MCS) questionnaires, whose values, respectively, were NDI: 26%, PCS: 35.6 and MCS 72.3.

X-rays showed signs of degenerative disc disease at C3/C4 and C5/C6, a reduced disc space height at C4/C5 together with segmental kyphosis, increased interspinous distance and osteophyte bridging over the anterior surfaces of C4 and C5 vertebral bodies. On flexion and extension views no angular motion was detected at the site of previous ACD (C4/C5) (Figure 2). A cervical MRI scan demonstrated changes at C3/C4 and C5/C6 consistent with ASD, i.e. a large soft disc herniation at C3/C4 and a smaller, median soft disc hernia associated with spondylotic changes at C5/C6. At both levels significant spinal cord compression was present, with persistent intramedullary T2-weighted high signal changes at the level of previous surgery (Figure 3). Computedized tomography (CT) sagittal reconstructions confirmed x-rays findings at C4/C5.

A standard right-sided, microsurgical cervical approach was performed; identification of the vertebral body midline was performed by using our experience with the Anatomical Midline Marking Technique.30

Figure 1. Preoperative (1995), T2-weighted, sagittal magnetic resonance image showing both a large disc herniation at C4/C5 causing spinal cord compression and signs of degenerative disc disease at C3/C4 and, to a lesser extent, at C5/C6.

Figure 2. Preoperative (2005) cervical x-rays with flexion (left), neutral (middle) and extension (right) views showing a reduced disc height at C4/C5, along with a kyphotic angulation, with increased interspinous process distance, and absence of angular movement at the same level.
Heterotopic ossification after cervical arthroplasty for adjacent segment disease

Due to the large disc hernia causing severe spinal cord compression at C3/C4, we decided to treat this level first in order to prevent possible neurological worsening secondary to further spinal cord compression during surgical maneuveres at C5/C6. After opening the posterior longitudinal ligament and decompressing neural structures, two 5 mm high ProDisc-C were implanted at C3/C4 and C5/C6, respectively. At C3/C4 we used the prosthesis with the widest footprint we could implant without drilling the uncinate processes, given the absence of uncoarthrosis and foraminal stenosis. This prevented the use of a deeper device, which would have been associated also with increased width, according to the ProDisc-C sizes.

Postoperatively, a rapid improvement of both neck pain and myelopathic signs was registered; ankle clonus was no longer present on the left side since the second postoperative day. No anti-inflammatory drugs were used after surgery.

Clinical follow-up showed a significant improvement of myelopathy (Nurick grade 1) and a better Neck Disability Index (NDI) and Short-Form 36 (SF-36) scores, 2%, Physical Component Score (PCS) 70 and Mental Component Score (MCS) 82.5 respectively.

Analysis of ROM at treated levels was calculated by using two lines parallel to the Prodisc-C keels’ and by measuring the intervening angle in flexion and extension on lateral x-rays. Lordosis was assigned a negative value and kyphosis a positive one; the difference between the two values gave the final ROM. The OsiriX Medical Imaging Software was used to measure prostheses’ motion three times per level and a mean value was obtained. Radiological outcome confirmed a mean total range of motion of 7.3° at C3/C4 and of 10.3° at C5/C6, and a lordotic angle of both FSUs, as well as a satisfactory sagittal alignment of the entire cervical spine despite the remaining kyphosis at C4/C5. The difference of C2-C7 Cobb’s angles measured at full flexion and full extension gives an overall cervical spine ROM of 26.7°, with a Cobb’s angle of 23° in neutral position (Figure 4).

Further clinical and radiological controls were performed at 6 and 12 months, 3 and 5 years. Despite stable neurology, a progressive heterotopic ossification at the treated vertebral levels was documented.

Discussion

Since the publications by Smith and Robinson and by Cloward, ACDF has been used to treat either cervical soft disc hernia or spondylosis. Over the years several technical refinements have been used in order to further improve results, and currently large experience with excellent clinical and radiological outcome is available. Another technique, the anterior cervical discectomy (ACD) alone, has been reported to achieve similar clinical outcome without needing intervertebral bone grafts or spacers to get solid fusion. Indeed, Savolainen et al hypothesized that “for a good clinical outcome, a solid bony fusion is perhaps unnecessary; a fibrous fusion may be enough”. However, ACD is known to be associated with a higher risk either of residual increased neck and shoulder pain or of developing a postoperative kyphotic deformity of the cervical spine; and this, in turn, can lead to the development of degenerative changes at adjacent levels.

It has been shown that ACDF induces biomechanical changes leading to modifications of intradiscal pressure and to increased stress and motion of vertebral segments adjacent to the

Figure 3. Magnetic Resonance imaging performed ten years later, in 2005. T2-weighted sagittal image showing a large disc herniation at C3/C4 causing spinal cord compression and a smaller disc herniation indenting the spinal cord at C5/C6. High signal changes are seen within the spinal cord at C4/C5.
fused ones15,18. Eventually, the modified biomechanical behaviour of the cervical spine is responsible for the onset or progression of DDD at the functional spinal units (FSU) above or below the fusion, either radiographically or clinically. Several studies have analysed these issues both retrospectively and prospectively1–19. Conversely, experimental51,52 and clinical18,27 studies suggest that arthroplasty allows for lower intradiscal pressures at adjacent levels compared with fusion.

Our case suggests a progression of degenerative disc disease already present at C3/C4 and C5/C6, i.e. ASD, in a case previously treated by ACD without fusion. It should be highlighted that either cervical X-rays or CT scan obtained before the second operation showed segmental kyphosis at C4/C5, with increased interspinous processes distance and an anterior osteophytic spur bridging C4 to C5. Indeed, flexion/extension X-rays confirmed the absence of motion at C4/C5 and the presence of pseudoarthrosis. The latter may result from the development of fibrous tissue in the intervertebral space after ACD46,49,50. This phenomenon should be also considered as an intermediate step in the “natural” fusion process that is observed also in cases of ACD without fusion, especially when the height of the intervertebral gap is reduced49.

We think that the time interval between the first operation and the onset of recurrent symptoms is in agreement with the current literature1–19 favoring the hypothesis of ASD at C3/C4 and C5/C6 rather than of spontaneous aging of the cervical spine at two disc levels, just the ones above and below the previously operated disc space, respectively. Moreover, it has been shown that the symptomatic ASD’s rate is higher when on preoperative MR there are already signs of DDD at the disc levels adjacent to the treated (by ACDF) ones53, and in cases of multilevel ASD following fusion procedures the degenerative changes were found more frequently at the upper level rather than at the lower one1; this is consistent with the present case’s findings, in which spinal cord compression was more severe at C3/C4.

We submit that although ACD alone is reported to achieve similar satisfactory clinical outcome to ACDF, without the complications attributed to fusion, the former technique neither prevents postoperative segmental kyphotic deformities of the cervical spine, as shown in our case at C4/C5 (Figure 4b), nor can avoid the progression of adjacent segments disease, a frequently reported complication of ACDF. In the present case, despite the satisfactory clinical outcome after the first operation, DDD at C3/C4 and C5/C6 progressively worsened over years to further spinal cord compression leading to recurrent myelopathy requiring surgery for the second time. TDR with Prodisc-C, a semiconstrained artificial disc,
allowed for complete neural decompression, motion preservation at C3/C4 and C5/C6, with a mean total ROM of 7.3° and 10.3°, respectively, as well as maintenance of satisfactory cervical spine lordosis. Kyphotic deformities at the treated levels, a reported complication associated with the use of the Bryan disc, were not encountered. We measured three times the FSU angle at C3/C4 and C5/C6, either before or after arthroplasty, and a mean value was obtained confirming increased segmental lordotic angle after TDR (Figure 4c). Laminectomy or laminoplasty, simple, safe and effective techniques used in the treatment of cervical myelopathy, were not chosen in the present case because the mainly anterior spinal cord compression, the preoperative sagittal alignment (with segmental kyphosis) and the patient’s age were considered as contraindication for a posterior approach.

However, despite stable mid- and long-term clinical improvement, as documented also by functional evaluation, imaging over the following years showed progression of HO (Figure 5). Several studies on different disc prostheses have documented a satisfactory short- and intermediate-term outcome, and rare complications have been reported. HO is a known phenomenon, whose causes remain unexplained and incidence highly variable. Patient-related conditions, unnatural segmental motion after prosthesis’s implantation, bone morphogenetic proteins released from normal bone in response to abnormal conditions like trauma, inflammation or disease of connective tissue attachments

Figure 5. Computed tomography sagittal reconstruction [A] and axial cuts confirming a McAfee grade 4 heterotopic ossification at C3-C4 [B] and C5-C6 [C] at five years follow-up.
to the bone are factors likely to induce HO. Suchomel et al also hypothesized that kyphotic position of the prosthesis can induce an abnormal motion pattern and chronic irritation of surrounding soft structures, with following HO formation.

HO in ADR patients has been documented at one, two, three, and four year follow-up intervals.

Several authors reported the use non-steroidal anti-inflammatory drugs (NSAID) after cervical TDR to prevent the onset of HO, with different results. The unclear benefit reported in some studies is partially counterbalanced by others. We did not give steroids to our patient.

Arthroplasty is a technique purportedly indicated to prevent loss of vertebral motion and fusion-induced adjacent segment disease; however, our experience with the present case suggests that unexpected, or undesirable, events (i.e. HO) can lead to the loss of expected benefits. Our patient did not have any contraindication to arthroplasty, neither he showed risk factors for HO. However, the unforeseen evolution with grade 4 HO made null our efforts to preserve motion in a young patient. We hypothesized that a hybrid construct (i.e. arthroplasty at C3-C4, C5-C6 and pseudoarthrosis at C4-C5) could result in a better option than a 3-level fusion, as also witnessed by our and others’ experience. Nonetheless, it is conceivable that even the extensive 3-level soft tissue dissection in a patient already operated may have induced or triggered the development of HO even on the anterolateral surface of the vertebral bodies, also as a possible consequence of longus colli muscles manipulation. A minimal degree of drilling for the spondylotic changes was performed and bone wax was always used to seal any open bone surface, trying to avoid HO.

Other papers reported the successful use of second-surgery arthroplasty in patients previously treated by ACDF; however, our experience suggests that the role of factors leading to HO, even at a later stage, needs further analysis.

Conclusions

Four conclusions can be drawn from our experience:

1. ASD can occur after ACD without fusion;
2. HO should always be considered by the surgeon planning to perform both TDR and standard, multilevel ACDF.
3. HO can occur even several years after the index procedure;
4. HO is an adverse event, which will need careful observation in the following years in order to better identify suitable candidates for such interesting technique.

Financial Disclosure

None of the Authors has any financial interest in the products cited in this study. No funding from grant-giving organizations or other sources has been or will be received for any aspect of this work.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

10) HUERZBAND AS, ROBBINS M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 2004; 4: 1905-194S.

13) KATSURA A, HKUDA S, SARUHASHI Y, MORI K. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur Spine J 2001; 10: 320-324.

57) **Covic D, Cases J, Carew JD, Boltes MO.** Prospective study of cervical arthroplasty in 98 patients involved in 1 of 3 separate investigational device exemption studies from a single investigational site with a minimum 2-year follow-up. J Neurosurg Spine 2010; 13: 715-721.

70) **Lafuente J, Casey ATH, Petzold A, Brew S.** The Bryan cervical disc prosthesis as an alternative to arthrodesis in the treatment of cervical

