
Abstract. – OBJECTIVE: Obesity is a chron-
ic metabolic disorder and may associate with
cardiovascular geometrical, structural and
functional changes. The aim of this study is to
assess the relationship between body mass in-
dex (BMI), body surface area (BSA) and arterial-
ventricular elasticity (Ea and Ees respectively)
and cardiovascular coupling and myocardial
wall stress and fiber stress in obese children.

PATIENTS AND METHODS: Sixty non-obese
healthy children with BMI <85th percentile aged
6-17 years and 65 age and sex-matched chil-
dren with BMI of ≥95th percentile, were includ-
ed in the study. Beside cardiac systolic and di-
astolic functions, left verntricular (LV) systolic
and diastolic dimensions and volumes (LVDs,
LVDd, LVVs, LVVd respectively), LV mass
(LVM), LV end-systolic pressure (LVESP),
meridional end-systolic wall stress (ESWm),
myocardial fiber stress (MFS), Midwall Short-
ening Fraction (SFmid), heart rate corrected
circumferential fiber shortening (VCFc), pre-
dicted mid wall fiber shortening for a mea-
sured fiber stress (mid wall VCFc), right ven-
tricular (RV) and LV work index (RVWI, LVWI),
LV relative wall thickness (LVRWT), arterial
elastance (Ea), LV end-systolic elastance (Ees)
and end-systolic pressure volume relationship
(ESPVR) were calculated.

RESULTS: LVDs and LVDd, LV mass (LVM),
ESWSm, MFS, SF mid, Midwall VCFc and LVWI
found to be significantly (p<0.001) higher, while
Ea, Ees, ejection fraction (EF), fractional short-
ening (FS), VCFc-ESWS, RVWI, ESWSm/LVVs,
LV end-systolic pressure (Pes)/LVVs
and  LVM/LVVd values were significantly
(p<0.001) lower among obese group. By in-
creasing age and BMI the Ea and Ees,
ESWSm/LVVS and RVWI decrease; while LVDd,
LVVd and stroke volume (SV) values increase.
There was a reverse-relation between BMI per-
centiles and EF and FS.
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Introduction

Obesity is associated with cardiovascular geo-
metrical, structural and functional changes1-5.
There are great number of investigations about
biochemical changes in obese children6-14, but
few about arterial and ventricular systolic elas-
tance, myocardial structure, myocardial fiber
stress and wall stress. The aim of this study is to
assess the relationship between body mass index
(BMI), body surface area (BSA) and arterial-
ventricular elasticity and cardiovascular coupling
and myocardial wall stress and fiber stress in
obese children. 

Patients and Methods

This investigation designed as a cross-section-
al study using mixed linear and multiple regres-
sion models. After of Ethics Committee approval
of the institution and obtaining the written con-
sent of the parents, 138 children of 6-16 years
old consecutively recruited from the outpatient
clinic of our department. BMI calculated as ex-
plained by Kuczmarski et al15 and body mass in-
dex (BMI) percentiles were calculated based on
children’s age and sex according to the World
Health Organization (WHO) recommendations.
Although the whole protocol applied to entire
group, 13 subjects with BMI between >85th-<95th

percentile accepted as overweight individuals
and were excluded from final calculations. One
hundred and twenty five children divided into
two groups, 60 non-obese individuals with BMI
<85th percentile and 65 age and sex-matched
children with BMI of ≥95th percentile.

Brachial systolic and diastolic blood pressures
(Ps, Pd respectively) were recorded using bilater-
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al triplicate measurements on a rested subject us-
ing a validated oscillometric device in supine po-
sition. M-mode, two-dimensional echocardiogra-
phy, and cardiac Doppler studies were performed
by single pediatric cardiologist blind to the
groups and the individuals. The following para-
meters were monitored: systolic and diastolic
septal thickness, left ventricular (LV) end-dias-
tolic diameter (LVDd, cm), LV end-systolic di-
ameter (LVDs, cm), LV end-systolic volume
(LVVs, ml), LV end-diastolic volume (LVVd,
ml), LV end-systolic pressure (Pes), LV mass
(LVM, g) according to the formula of Devereux
and Reichek16, LV outflow tract (LVOT, cm),
time velocity integral for aortic valve (VTIAo,
cm), LV ejection time (LVET, sec), LV pre-ejec-
tion period; the time interval from Q wave of
ECG to the onset point of aortic Doppler flow
(PEP), QT offset; the time interval from Q wave
of ECG to the offset point of aortic Doppler
flow, stroke volume (SV, mL), ejection fraction
(EF, %), fractional shortening (FS, %), peak ear-
ly diastolic flow velocity peak (Peak E, cm/s),
peak late diastolic flow velocity peak (Peak A,
cm/s), ratio between heights of early and late di-
astolic flow velocity peaks (E/A ratio), decelera-
tion time (DT, ms), cardiac output (CO, L/min),
meridional end-systolic wall stress (ESWm,
g/cm2), midwall shortening fraction (SFmid),
heart rate corrected circumferential fiber shorten-
ing (VCFc, circ/s), predicted midwall fiber short-
ening for a measured fiber stress (VCFc-mid-
wall, circ/s), myocardial fiber stress (MFS,
g/cm2), right ventricular (RV) and LV work in-
dices (RVWI, LVWI respectively), LV relative
wall thickness (LVRWT, mm).

LV end-systolic elastance (Ees) was calculated
by a modified single-beat method developed by
Chen et al17, employing Ps, and Pd, SV, EF, and
an estimated normalized ventricular elastance at
arterial end-diastole 

[Pd−(ENd(est)×Ps×0.9)]
Ees(sb) =  –––––––––––––––––––––

(ENd(est)×SV) 

where:

ENd(est)=0.0275−0.165×EF+0.3656×(Pd/Pes)+0.515

×ENd(avg) 

where:

ENd(avg)  is given by a seven-term polynomial
function: ENd(avg)=−i=0ai×tiNd 

where:
ai  are (0.35695, −7.2266, 74.249, −307.39,

684.54, −856.92, 571.95, −159.1) for  i=0 to 7,
respectively. 

Our study methodology was based on the
equation developed by Chen et al17. The equation
of arterial elastance (Ea = ESP/SV) was used to
calculate Ea, where ESP designates end-systolic
pressure and computed as (ESP=0.9×Ps)18. End-
systolic pressure volume relationship (ESPVR)
was calculated using the formula (ESPVR =
ESP/(SV/(1.125-(1.25*(PEP/LVET ofset))-SV),
where the PEP stands for pre-ejection period.
Ea/Ees was accepted as ventriculo arterial cou-
pling (VAC). Entire methods explained in detail
elsewhere19.

Following formulas were used to calculate
ESWSm, SFmid, MFS and VCFc-midwall.

[1.35 (Pes) (LVES) 
ESWSm (g/cm2) = ––––––––––––––––––––

[(4) (hes) (1+hes/LVES)]

where the 1,35 is the conversion factor from
mmHg to g/cm2 and Pes calculated as 0,9 x sys-
tolic blood pressure.

[(LVED + hd/2 + sd/2) – LVES – mw-
st]
Sfmid =  ––––––––––––––––––––––––––––––––

(LVED+ hd/2+sd/2)

where sd stands for end-diastolic septal thickness
and hd designates LV end-diastolic posterior wall
thickness, the mwst calculated as (mwst =
((LVED + (hd + sd)/2)3 - LVED3 + LVES3)0,333 –
LVES)

[(1.35)(Pes)( bm)]
MFS (g/cm2) =  ––––––––––––––––––

(2hes)

bm, the midwall minor semiaxis at end-systole
computed as  bm = hes/ln(LVES/2 + hes) –
ln(LVES/2), where hes stands for left ventricular
end-systolic wall thickness.

VCFc-midwall = 0.0007x(MFS) + 0.65

Statistical Analysis
The statistical analyses were carried out by

Statistical Package for Social Sciences (SPSS
Inc., Chicago, IL, USA). Variables were ex-
pressed as mean±SD. Comparisons of variables
were performed using unpaired Student t-test.
Bivariate associations of the variables were as-
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sessed using Pearson’s correlation coefficients.
To find the parameters that explain the signifi-
cance of the variance of the dependent variables,
stepwise multivariate linear regression analyses
was used and p value <0.05 was considered indi-
cate statistical significance.

Results

Demographic distribution of the subjects was
shown in Table I. About 71% of the obese indi-
viduals showed ≥99th percentile with mean of
99th percentile for whole obese group. About
27% (16/60) of non-obese children showed BMI
less than 25th percentile.

Of cardiac parameters Ps, Pd, LVOT, VTIAo,
LVDd, LVDs, LVM, CO, ESWSm, MFS,
SFmid, VCFc-midwall and LVWI found to be
significantly (p <0.001) higher, while Ea, Ees
(sb), EF, FS, RVWI, ESWSm/LVVs,
LVEPs/LVVs and LVM/ LVVd values were sig-
nificantly (p<0.001) lower among obese group.
The difference was found statistically significant.
VCFc was also lower among obese group but the
difference was not statistically significant.
LVET, ESPVR, HR, LVRWT and Mitral-E/A
mean values exhibited not statistically significant
difference between obese and non-obese children
(Table II). 

The linear regression studies of the relation-
ship between BMI and cardiac parameters re-
vealed that the Ea, Ees(sb), LVOT, VTIAo, Ps and
Pd, LVDd, LVVd, LVM, CO, SV, ESWSm,
MFS, VCFc/ESWS ratio, Midwall/VCFc ratio,

Cardiac index, RVWI and ESWSm/LVVS,
LVEPs/LVVs and LVM/LVVd values change
significantly by increasing age and BMI per-
centiles. 

The parameters which explain (R2) the age
and BMI percentiles as independent variables the
most were as follows: LVOT (55,4%), LVDd
(53.3%), LVVd (49.7%), SV (43.0%), Ees(sb)

(41.6%), ESWSm/ LVVS (36.6%), Ea (35.4%)
and RV Work index (37.7%). By increasing age
and BMI the arterial and ventricular elasticity
(Ea and Ees(sb)), ESWSm/LVVS and RVWI de-
crease; while LVOT, LVDd, LVVd and SV val-
ues increase. The parameters which explain (R2)
the age and BMI percentiles as independent vari-
ables the least were as follows: CO (31.9%), Pd
(28.1%), Ps (26.3), LVRWT (21.6%) and FS
(19.2%). Independent from the age, there was a
reverse-relation between BMI percentiles and EF
and FS. By increasing BMI percentiles, EF (r=-
.256) and FS (r=-.272) values decrease, but only
6% and 7% of changes in EF and FS respectively
were explained independent from BMI per-
centiles. Independent from BMI percentiles,
there was a positive relation between age and
LVET and negative relation with ESPVR (Table
III). VAC ratio did not change with BMI and
BSA significantly. Although relative wall thick-
ness showed not significant difference between
the groups, a significant correlation at 0.05 level
was found with age and BMI. There was no sig-
nificant difference in PEP/ET and PEP/QT offset
values among the groups, while Pes/LVVs and
LVM/LVVd values showed significant differ-
ences.
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Age groups Non-obese Obese Total
(months) n (%) n (%) n (%)

72 –< 84 7 (70.0) 3 (30.0) 10 (8.0)
84 – < 108 15 (65.2) 8 (34.8) 23 (18.4)
108 – < 144 10 (35.7) 18 (64.3) 28 (22.4)
144 – < 180 14 (36.8) 24 (63.2) 38 (30.4)
180 – 204 14 (53.8) 12 (46.2) 26 (20.8)
Total 60 (48.0) 65 (52.0) 125 (100.0)

Demographic properties p-valuea

BMI PER - mean (SD) 47.69 (24.93) 99.05 (1.14) < .001
Height (cm) -  mean (SD) 142.28 (20.69) 153.08 (14.00) .001
Weight (kg) - mean (SD) 37.54 (15.09) 66.27 (18.10) < .001
Age (years) - mean (SD) 11.02 (3.68) 11.72 (2.85) .241

Table I. Demographic properties distribution of the age groups.

aIndependent Student’s t-testi



Non-obese (n=60) Obese (n=65)
Difference t-testa

Cardiac parameters Mean SD Mean SD mean p-value

Cardiac indexb 3.51 0.86 3.06 0.77 0.45 0.003

CO 4.15 1.3 5.1 1.53 -0.95 < .001

Ea 2 0.47 1.62 0.41 0.38 < .001

Ees(sb) 2.82 0.74 2.15 0.75 0.67 < .001

EF 0.77 0.06 0.731 0.078 0.039 0.005

ESPVR 18.29 8.76 18.31 12.17 -0.02 0.994

ESWSm 167.4 54.71 217.82 66.11 -50.42 < .001

ESWSm/LVVS 7.93 1.84 6.78 1.31 1.15 < .001

FS 0.39 0.06 0.36 0.059 0.03 0.004

HR 82.88 12.16 82.26 12.36 0.62 0.778

LVWI 39.09 9.06 44.01 9.34 -4.92 0.003

LVDd 4.03 0.5 4.53 0.5 -0.5 < .001

LVET 289.3 34.71 280.43 34.05 8.87 0.152

LVM 56.8 12.82 64.22 16.05 -7.42 0.005

LVOT 1.68 0.23 1.89 0.22 -0.21 < .001

LV Vd 72.74 21.27 95.57 24.54 -22.83 < .001

MFS 226.74 57.88 283.86 68.94 -57.12 < .001

Mitral-E/A 1.88 0.33 1.83 0.33 0.05 0.412

Pd 63.51 9.02 72.45 8.18 -8.94 < .001

Ps 108.78 11.85 119.32 9.93 -10.54 < .001

RWT 0.24 0.07 0.243 0.063 -0.003 0.613

RVWI 4.64 1.07 2.98 0.63 1.66 < .001

SFmid 0.16 0.08 0.186 0.041 -0.026 0.045

SV 52.07 14.76 70.26 17.9 -18.19 < .001

VCFc 0.01 0 0.006 0.001 0.004 0.255

VCFc-midwall 0.81 0.04 0.849 0.048 -0.039 < .001

VTIAo 22.77 2.68 24.75 3.03 -1.98 < .001

Discussion

Obesity accompanies with cardiac and vascu-
lar structural and functional changes3,4. We found
that the arterial and LV elasticity decrease and
stiffness increase by increasing BMI in obese
children. We previously reported that the same
cardiac parameters exhibit the same tendency by
increasing the age of the healthy children and
adolescences19. 

Contractility and loading (preload and after-
load) dependent indices, reflecting ventricular
global performance, can be estimated by measur-

ing chamber mechanics like SF and FS. The ven-
tricular contractility and myocardial performance
may also affected by chamber geometry which
need to be identified by measuring ESWSm,
VCFc-midwall and MFS. ESWSm accepted as
afterload (no more shortening point). ESWSm,
which is dependent on both chamber shape and
mass/volume ratio, demonstrates the forces op-
posing predominantly meridional and circumfer-
ential planes. This is an index of total forces per
unit of myocardium, thus may cause an under es-
timation in true afterload. MFS as representative
of myofiber afterload, is more accurate index of
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Table II. Cardiac parameters among  non-obese and obese children

aStudent’s t-test (for independent samples). bCardiac output index: cardiac output/BSA, BP: blood pressure, CO: cardiac out-
put, E/A: the early diastolic flow velocity peak to late diastolic flow velocity peak ratio, Ea: arterial elastance, Ees(sb): left
ventricular elastance at end-systole derived by single-beat technique, EF: ejection fraction, ESPVR: end-systolic pressure vol-
ume relationship, ESWSm: meridional end-systolic wall stress, FS: fractional shortening, HR: heart rate, LV: left ventricle,
LVDd: left ventricular end-diastolic diameter, LVET: left ventricular ejection time, LVM: left ventricular mass, LVOT: left
ventricular outflow tract, LVVd: left ventricular end-diastolic volume, LVVs: left ventricular end-systolic volume, LVWI: left
ventricular work index, MFS: Fiber stress, Pd: diastolic blood pressure, Ps: systolic blood pressure, SFmid: midwall shortening
fraction, RVWI: right ventricular work index, RWT: relative wll thickness, SV: stroke volume, VCFc: heart rate corrected
midwall circumferential fiber shortening, VCFc-midwall: predicted midwall fiber shortening for a measured fiber stress,
VTIAo: time velocity integral for aortic valve, WT: wall thickness.



afterload in hypertrophied or dilated LV20.
SFmid as systolic ejection index of deeper layers
of myocardium provides more physiologically
appropriate measurements of LV in wall thick-
ness and conditions like LV concentric hypertro-
phy and provides information to assess the my-
ocardial performance20. In this study SFmid was
higher but not significant among obese subjects.

We found ESWSm, MFS, VCFc-midwall be-
ing higher in obese individuals. The relationship
between ESWSm and VCFc is one of the best

echocardiographic measurements providing in-
formation on myocardial mechanics. As our find-
ings exhibit, the relationship between VCFc and
ESWSm is linear over physiologic state, inde-
pendent of HR and preload and incorporates af-
terload, making it responsive to changes in ven-
tricular inotropy21,22. Although both PEP/ET and
PEP/QT offset ratios affected by the age of the
children, we found no significant difference be-
tween the obese and non-obese individuals. BMI
percentiles did not affect these ratios. On the oth-
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BMI (percentiles) Age (months) Multiple regression

Cardiac parameters r Ba r Ba Adj. R2 p-value

Cardiac indexb -.242** -.006* -.239** -.005** .090 .001

Cardiac output .317** .013** .511** .018** .319 < .001

Ea -.379** -.005** -.508** -.006** .354 < .001

Ees (sb) -.405** -.009** -.552** -.011** .416 < .001

EF -.256** -.001** .072 .000 .060 .008

ESPVR -.031 .005 -.417** -.113** .161 < .001

ESWSm .378** .758** .228** .317* .165 < .001

ESWSm/ LVVS -.365** -.017** -.529** -.021** .366 < .001

FS -.272** -.001** .081 .000 .071 .004

HR -.036 -.008 -.151 -.046 .007 .238

LVWI .227** .066* .148 .030 .052 .014

LVDd .456** .007** .622** .008** .533 < .001

LVET -.053 -.086 .217* .198* .037 .036

LVM .262** .113** .296** .103** .127 < .001

LVOT .375** .002** .685** .004** .554 < .001

LVVd .447** .320** .598** .362** .497 < .001

Mitral-E/A -.051 -.000 -.048 -.000 -.012 .760

MFS .401** .852** .251** .373** .192 < .001

Pd .407** .118** .387** .085** .281 < .001

Ps .401** .142** .379** .104** .263 < .001

RVWI -.592** -.022** -.254** -.006** .377 < .001

RWT .043 1.790 .478** .001** .216 < .001

SFmid .127 .000 .205* .000 .037 .037

SV .452** .242** .530** .232** .430 < .001

VCFc -.157 -6.088 .040 1.682 .012 .177

VCFc/ESWS -.378** -.758** -.228** -.317* .165 < .001

VCFc-midwall .401** .001** .251** .0001** .192 < .001

VTIAo .346** .036** -.185* -.017** .156 < .001

Table III. The cardiac parameters relationship between BMI percentiles and age. 

*Correlation is significant at the 0.05 level (2-tailed), **Correlation is significant at the 0.01 level (2-tailed), r: Bivariate correla-
tion value. B: Unstandardized Coefficients. R2: The adjusted coefficient of determination. a BMI (percentiles) and age
(months) variables both were taken multiple regression analysis. BP: blood pressure, CO: cardiac output, E/A: the early dias-
tolic flow velocity peak to late diastolic flow velocity peak ratio, Ea: arterial elastance, Ees(sb): left ventricular elastance at
end-systole derived by single-beat technique, EF: ejection fraction, ESPVR: end-systolic pressure volume relationship,
ESWm: meridional end-systolic wall stress, FS: fractional shortening, HR: heart rate, LV: left ventricle, LVDd: left ventricular
end-diastolic diameter, LVET: left ventricular ejection time, LVM: left ventricular mass, LVOT: left ventricular outflow tract,
LVVd: left ventricular end-diastolic volume, LVVs: left ventricular end-systolic volume, LVWI: left ventricular work index,
MFS: myocardial fiber stress, Pd: diastolic blood pressure, Ps: systolic blood pressure, RVWI: right ventricular work index,
RVWT: Relative wall thickness, SFmid: midwall shortening fraction, SV: stroke volume, VCFc: heart rate corrected midwall
circumferential fiber shortening, VCFc-midwall: predicted midwall fiber shortening for a measured fiber stress, VTIAo: time
velocity integral for aortic valve, WT: wall thickness.
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whereas the mass/volume ratio remained stable
during growth. FS and mean VCFc at the endo-
cardial level decreased and showed an inverse re-
lation to afterload. SFmid and VCFc were lower
during the first months and did not change during
the first year of life. They concluded that LV vol-
ume and LVM increase with age, mass/volume
ratio remains almost constant while afterload in-
creases. Endocardial systolic function indexes
are higher in the first period of life.

Conclusions

Arterial and LV stiffness, LVM, wall stress in-
crease and contractility and VCFc-midwall de-
crease by increasing BMI and BSA in obese chil-
dren which all exhibit risk factor for developing
cardiovascular dysfunctions in later years.
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