A randomized clinical trial with two doses of an enteral diabetes-specific supplements in elderly patients with diabetes mellitus type 2

D.A. DE LUIS, O. IZAOLA, B. DE LA FUENTE, M.C. TERROBA, L. CUELLAR, G. CABEZAS

Institute of Endocrinology and Nutrition, Medicine School and Unit of Investigation Hospital Rio Hortega, University of Valladolid, Valladolid, Spain

Abstract. – OBJECTIVES: The aim of our study was to investigate whether two different daily doses of a high monounsaturated fatty acid (MUFA) specific diabetes enteral formula could improve nutritional variables as well as metabolic parameters.

PATIENTS AND METHODS: We conducted a randomized, open-label, multicenter, parallel group study. 27 patients with diabetes mellitus type 2 with recent weight loss were randomized to one of two study groups: group 1 (two cans per day) and group 2 (three cans per day) for a ten week period.

RESULTS: A significant decrease of HbA1c was detected in both groups. The decrease 0.98% (confidence interval 95% 0.19-1.88) was higher in group 2 than group 1 0.60% (confidence interval 95% 0.14-1.04). A significant increase of weight, body mass index, fat mass, albumin, prealbumin and transferrin was observed in both groups without statistical differences in this improvement between both groups. The increase of weight 4.59kg (confidence interval 95% 1.71-9.49) was higher in group 2 than group 1 1.46% (confidence interval 95% 0.39-2.54). Gastrointestinal tolerance (diarrhea episodes) with both formulas was good, without statistical differences (7.60% vs 7.14%: ns).

CONCLUSIONS: A high monounsaturated fatty acid diabetes-specific supplement improved HbA1c and nutritional status. These improvements were higher with three supplements than with two per day.

Key Words: Enteral nutrition, Diabetes mellitus, Specific formulas.

Introduction

A tight glycemic control has a positive impact on long-term clinical outcomes in subjects with diabetes by delaying and slowing the progression of diabetes-associated complications1-2. The primary goal of diet composition in diabetic patients is to achieve and near-normal fasting and postprandial glucose levels, thereby, preventing complications. Some diabetic patients will require nutritional support, secondary to undernutrition. And, an increasing number of patients received home enteral tube feeding, including those with Standard enteral formulas high in carbohydrate, low in fat and low in fiber. These formulas are derived from rapidly absorbed carbohydrate5-6 and produce hyperglycaemia in subjects with diabetes mellitus, due to a rapid nutrient assimilation. These last years have appeared new formulas to diabetic patients; these formulas contain nutrients, monounsaturated fatty acids7, fiber8 and fructose9. A systematic review of studies using these diabetes-specific formulas compared with standard formulas has consistently demonstrated significantly lower postprandial blood glucose and glucose under the curve (AUC)10. However, there are no specific guidelines for patients with diabetes who are at risk for malnutrition, requiring nutritional support. Over the last decade, there has been increasing advice for the recommendation to optimize the nutrient profile for enteral nutrition in diabetic patients in order to moderate the amount of carbohydrate provided as well as the liberalization of the dose of monounsaturated fatty acid (MUFA) supplied11. In a previous study12, a high monounsaturated fatty acid diabetes-specific enteral supplement improved glucose, HbA1c and albumin levels. However, a diabetes-specific supplement with lower fat percentage than the previous formula improved weight and protein levels without significative metabolic effects. As malnutrition is observed in several diabetic patients in the elderly13, it is important evaluated if a high dose of MUFA diabetes specific formula could improve metabolic parameters, again, and weight.

The aim of our study was to investigate whether two different daily doses of a high MUFA specific diabetes enteral formula could improve nutritional variables as well as metabolic parameters in elderly patients with type 2 diabetes mellitus.
Patients and Methods

Subjects and Research Design

We conducted a randomized, open-label, multicenter, parallel group study. 27 elderly (> 65 years) patients with type 2 diabetes mellitus with recent weight loss (> 5% during previous 3 months) were randomized (1:1) to one of two study groups: group 1 (two cans per day of a high MUFA diabetes specific supplement and group 2 (three cans per day of this specific formula). Exclusion criteria included: ongoing infections, major gastrointestinal diseases, severe impaired hepatic function (total bilirubin concentration > 3.5 mg/dl) and/or renal function (serum creatinine concentration > 3 mg/dl), steroids treatment, medication could modulate weight, mineral or vitamin supplementation during the study period, and administration of hypolipidemic drugs or oral hypoglycemic agents.

The study was a prospective randomized trial carried out from November 2008 to January 2010. This study was conducted according to the guidelines laid down in the Declaration of Helsinki and approved by the HURH Ethics Committee. Written informed consent was obtained from all patients and signed. Baseline studies on all patients consisted of complete history taking and physical examination. General assessment of nutritional status included measurements of body weight, height, body mass index (BMI) (kg/m²) and bioimpedance. Patients received subcutaneous insulin doses with the goal of maintaining blood glucose levels between 80 and 160 mg/dl.

Nutritional Intervention

At basal time, diabetic patients were randomized to consume two cans or three cans per day of a specially designed high monounsaturated fatty acid (MUFA) diabetes-specific supplement with 31% of calories provided by fats for a ten week period. Table I shows the composition of this specific supplement (Abbott, Abbott Park, North Chicago, IL, USA). A dietitian instructed patients on how to record food and beverage intake. Three day diet diaries completed at baseline (week 0), and weeks 10 were used to assess the patient’s dietary intakes. Two weekdays and one weekend day were studied to account for potential day of the week effects on dietary intake. Mean total energy and macronutrient intakes were calculated using a specific computerized dietary analysis packages. Total dietary intake was calculated by adding oral supplement consumption to spontaneous food intake, asking to record the number of cans of supplements or parts therefore.

Procedures

At the initial and after ten weeks of nutritional intervention, assessment body weight was measured to an accuracy of 0.1 kg and BMI computed as body weight/(height²). Bipolar body electrical bioimpedance was used to determine body composition¹⁴ (EFG Akern, Florence, Italy). Precautions taken to insure valid BIA measurements were; no alcohol within 24 hours of taking the test, no exercise or food for four hours before taking the test.

At the initial and after ten weeks of nutritional intervention, fasting blood samples were drawn for measurement of albumin (3.5-4.5 g/dl), prealbumin (18-28 mg/dl), transferrin (250-350 mg/dl) (Hitachi, ATM, Mannheim, Germany), and lymphocytes (1.2-3.5.10³/uL) (Beckman Coulter, Inc, Los Angeles, CA, USA). Glycated haemoglobin was measured as HbA₁c by HPLC (Menarini, Florence, Italy). Serum total cholesterol and triglyceride concentrations were determined by enzymatic colorimetric assay (Hitachi 917, Roche Diagnostics, Mannheim, Germany). Plasma glucose levels were determined by using an automated glucose oxidase method (Hitachi 917, Roche Diagnostics, Mannheim, Germany).

Gastrointestinal problems related to enteral feeding were recorded (diarrhea). Hypoglycemic events (glucose levels < 50 mg/dl and clinical symptoms) were recorded, too.

Statistical Analysis

A power calculation based on weight improvement was performed. Thirteen patients in each group were necessary to detect an improvement of 1.5 kg, with an error type I < 0.05 and a statistical
power of 80%. Statistical tests were two-tailed and conducted at the 0.05 significance level, and p-values were rounded to four decimal places. Quantitative variables with normal distribution were analyzed with two tailed paired or unpaired Student’s t-test. Non-parametric variables were analyzed with Wilcoxon test. To minimize the potential for introducing bias, all randomized patients were included in the comparisons, irrespective of whether or not and for how long they complied with their allocated regimen (intention-to-treat analysis) (SPSS Inc. 15.0, Chicago, IL, USA).

Results

Overall, 27 subjects were enrolled and completed the study. The mean age was 77.2±10.9 years (16 females/11 males). Patients in both treatment groups were comparable with regards to demographic and baseline characteristics. There were 13 patients in the group 1 and 14 patients group 2. There were no significant differences with regard to gender, mean age, body weight and basal glycaemic control (Table II).

To assure adherence to study supplementation program, we dispensed enough formula to our patients to provide 2 units per day in group 1 and 3 units per day in group 2. The volumetric consumption rates of the formula were higher in group 2 than group 1 (group 1: 1.8±0.72 units/day vs. group 1: 2.7±0.92 units/day). Final total calorie, carbohydrate, fat and protein consumption, based on both formula and dietary intake with 3 days food records, were higher in group 2 than group 1, (calories: group 1 1600.1±323.7 cal/day vs. group 2 1879.3±163.1 cal/day: p < 0.05), (proteins: group 1 83.3±11.5 g/day vs. group 2 93.1±15.1 g/day: p < 0.05), (fat: group 1 68.7±15.5 g/day vs. group 2 73.3±6.8 g/day: p < 0.05) and (carbohydrates: group 1 162.6±46.5 g/day vs. group 2 188.9±35.9 g/day: p < 0.05). Dietary fiber consumption was higher in group 2 than 1 proteins: group 1 12.3±5.3 g/day vs. group 2 14.7±2.6 g/day: p < 0.05). Formula consumption represented a 22.4% of caloric intake in group 1 and 29.5% of caloric intake in group 2.

A significant decrease of HbA1c levels was observed in group 1 and 2. The decrease 0.98% (confidence interval 95% 0.19-1.88) was higher in group 2 than group 1 0.60% (confidence interval 95% 0.14-1.04) (Table III). A significant increase of albumin, prealbumin and transferrin was observed in both groups without statistical differences in this improvement between both groups (Table III).

Patients of both groups (Table IV) had a significant improvement in weight, BMI and fat mass. The increase of weight 4.59 kg (confidence interval 95% 1.71-9.49) was higher in group 2 than group 1 1.46% (confidence interval 95% 0.39-2.54) (Table III). Gastrointestinal tolerance (diarrhea episodes) with both formulas was good, without statistical differences (7.60% vs

Table II. Patients characteristics.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group 1</th>
<th>Group 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>75.6±7.27</td>
<td>8.1±8.7</td>
<td>N = 13</td>
</tr>
<tr>
<td>Women/men</td>
<td>8/5</td>
<td>8/6</td>
<td>N = 14</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>57.1±14.9</td>
<td>55.9±7.3</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>21.8±5.5</td>
<td>20.7±4.3</td>
<td></td>
</tr>
<tr>
<td>Diabetes course (years)</td>
<td>15.1±3.2</td>
<td>14.9±4.7</td>
<td></td>
</tr>
</tbody>
</table>

No statistical differences.

group 1 83.3±11.5 g/day vs. group 2 93.1±15.1 g/day: p < 0.05), (fat: group 1 68.7±15.5 g/day vs. group 2 73.3±6.8 g/day: p < 0.05) and (carbohydrates: group 1 162.6±46.5 g/day vs. group 2 188.9±35.9 g/day: p < 0.05). Dietary fiber consumption was higher in group 2 than 1 proteins: group 1 12.3±5.3 g/day vs. group 2 14.7±2.6 g/day: p < 0.05). Formula consumption represented a 22.4% of caloric intake in group 1 and 29.5% of caloric intake in group 2.

Overall, 27 subjectswere enrolled and completed the study. The mean age was 77.2±10.9 years (16 females/11 males). Patients in both treatment groups were comparable with regards to demographic and baseline characteristics. There were 13 patients in the group 1 and 14 patients group 2. There were no significant differences with regards to gender, mean age, body weight and basal glycaemic control (Table II).

To assure adherence to study supplementation program, we dispensed enough formula to our patients to provide 2 units per day in group 1 and 3 units per day in group 2. The volumetric consumption rates of the formula were higher in group 2 than group 1 (group 1: 1.8±0.72 units/day vs. group 1: 2.7±0.92 units/day). Final total calorie, carbohydrate, fat and protein consumption, based on both formula and dietary intake with 3 days food records, were higher in group 2 than group 1, (calories: group 1 1600.1±323.7 cal/day vs. group 2 1879.3±163.1 cal/day: p < 0.05), (proteins: group 1 83.3±11.5 g/day vs. group 2 93.1±15.1 g/day: p < 0.05), (fat: group 1 68.7±15.5 g/day vs. group 2 73.3±6.8 g/day: p < 0.05) and (carbohydrates: group 1 162.6±46.5 g/day vs. group 2 188.9±35.9 g/day: p < 0.05). Dietary fiber consumption was higher in group 2 than 1 proteins: group 1 12.3±5.3 g/day vs. group 2 14.7±2.6 g/day: p < 0.05). Formula consumption represented a 22.4% of caloric intake in group 1 and 29.5% of caloric intake in group 2.

A significant decrease of HbA1c levels was observed in group 1 and 2. The decrease 0.98% (confidence interval 95% 0.19-1.88) was higher in group 2 than group 1 0.60% (confidence interval 95% 0.14-1.04) (Table III). A significant increase of albumin, prealbumin and transferrin was observed in both groups without statistical differences in this improvement between both groups (Table III).

Patients of both groups (Table IV) had a significant improvement in weight, BMI and fat mass. The increase of weight 4.59 kg (confidence interval 95% 1.71-9.49) was higher in group 2 than group 1 1.46% (confidence interval 95% 0.39-2.54) (Table III). Gastrointestinal tolerance (diarrhea episodes) with both formulas was good, without statistical differences (7.60% vs
Diabetes-specific formula and diabetes mellitus type 2

Table IV. Evolution of anthropometric parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>10 weeks</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>57.1 ± 14.9</td>
<td>58.5 ± 14.6*</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.8 ± 5.5</td>
<td>22.4 ± 5.4*</td>
</tr>
<tr>
<td>Fat free mass (kg)</td>
<td>41.1 ± 12</td>
<td>41.8 ± 11.3</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>15.8 ± 9.0</td>
<td>16.8 ± 8.1*</td>
</tr>
</tbody>
</table>

BMI: body mass index. *p < 0.05, differences between time 0 and at 10 weeks in each group.

The results of the present trial have confirmed the beneficial effects on glycemic control and nutritional status of a high MUFA diabetes-specific formula. Secondly, weight gain and improvement of HbA1c are higher with three supplements per day than with two per day.

Other previous clinical trials reported favorable effects of diabetes-specific formulas on HbA1c, as our high monounsaturated-enhanced formula. The role of carbohydrates in glucose response and insulin resistance has been studied in recent years. Research in this area suggests that replacing simple carbohydrates with a fat source rich in MUFA results in a favorable insulin response and an improved glycemic response. This type of fat, as an energy source, could improve cardiovascular risk profile, too. In conclusion, the beneficial effect on glycemic control seen with this formula might be ascribed to the lower carbohydrate and higher MUFA content of the supplement.

In previous studies, no significant effect on total cholesterol or LDL/HDL cholesterol was found of those fed diabetes-specific formulas, as our data. In the majority of the studies, the specific formulas showed lower triglyceride concentrations than the standard formulas. In a meta-analysis, there were insufficient data to address the effects of diabetes-specific vs standard enteral formulas on HDL and LDL cholesterol.

The effect of these specific formulas on weight is not a main evaluated outcome in randomized trials. In one study, oral supplements provided 85% of total energy intake, and no significant differences in BMI or weight between those fed diabetes-specific versus standard formulas were found. Our design showed a significant increase in weight in both groups. The increase was higher in group with 3 cans secondary to a high caloric intake.

Some studies reported reduced insulin requirements in those receiving diabetes-specific formulas versus standard formulas. In our study, although the use of the high MUFA diabetes-specific supplement showed an improvement in dietary intake, requirements per g carbohydrate ingested was similar in both groups (1:0.41±0.03 vs group 2:0.43±0.09 UI/day: ns).

The good tolerance of these formulas, as well as its benefits for weight and metabolic parameters, makes these formulas should be preferred to supplement malnourished diabetic patients. A recent study has demonstrated significantly better 24 hours glucose profiles than fibre-containing formula. Alish et al have reported that the diabetes-specific formula reduced glycemic variability and short-acting insulin requirements.

Conclusions

A high MUFA diabetes-specific supplement improved HbA1c and nutritional status. These improvements were higher with three supplements per day than with two per day. However, a limitation of
our study us the lack of a control group, furterh
studies are needed to evaluate the role of this speci-
fic formulas.

Conflict of Interest
None.

References
1) UK PROSPECTIVE DIABETES STUDY (UKPDS) GROUP. Intensive
blood-glucose control with sulphonylureas or in-
sulin compared with conventional treatment and risk of
complications in patients with type 2 diabetes
2) THE DIABETES CONTROL AND COMPLICATIONS TRIAL RE-
search Group. The effect of intensive treatment of
diabetes on the development and progression of
long term complications in insulin-dependent dia-
3) Jones BM, Stratton RJ, Holden C, Russell C, Glen-
corse G, Micklewright A. Trends in Artificial Nutri-
tional formulas in the UK 2000-2003: Annual report of
the British Artificial Nutrition Survey (BANS).
4) De Luis DA, Aller R, Izaola O, Terroba MC, Cabezas G,
CueLLar LA. Experience of 6 years with HEn in an
5) Cashmere KA, Costil DL, Cataland S, Hecker AL.
Serum endocrine and glucose response elicited
from ingestion of enteral feedings. Fed Proc 1981;
40: 440A.
6) Coulston AM. Clinical experience with modified
enteral formulas for patients with diabetes. Clin Nutr
1998; 17(Suppl. 2): 46-56.
7) Garg A. High-monounsaturated-fat diets for pa-
ients with diabetes mellitus : a meta-analysis. Am
J Clin Nutr 1998; 67(Suppl. 3): 577S-582S.
8) Druetzler A, Bowen P, Cashmere K, Horwitz A.
Acute and chronic response of glucose tolerance to
a soy polysaccharide enriched liquid formula diet.
9) Kovasto VA, Yki-Jarvinen H. Fructose and insulin
sensitivity in patients with type 2 diabetes. J In-
Stratton RJ. Enteral nutritional support and use of
diabetes-specific formulas for patients with dia-
11) AMERICAN DIABETES ASSOCIATION. Nutrition recom-
endations and interventions for diabetes. Dia-
betes Care 2010; 30: s46-s95.
MC, Martin T, Cabezas G, Rojo S, Domingo M. A
randomized clinical trial with two enteral diabetes
specific supplements in patients with diabetes
mellitus type 2: metabolic effects. Eur Rev Med
AJ. Prevalence of diabetes in care home resi-
14) Lukose H, Johnson PE. Assessment of fat-free mass
using bioelectrical impedance measurements of the
M, Eriksen J, et al. Metabolic control in type 2 dia-
betes tube fed patients after brain damage during
long-term treatment with a new low carbohydrate,
high monounsaturated fatty acid containing enteral
formula versus a standard-like formula: a random-
ized, prospective controlled, double blind multi cen-
16) McCarron LJ, Innes SM, Bowrton E, Leichter J, Dawson
K, Totty E, Wall K. Effect of enteral nutritional prod-
ucts differing in carbohydrate and fat on indices of
carbohydrate and lipid metabolism in patients with
M, Ferreres J, Sanchis JC, Lopez F. Comparison of a
high-protein disease specific enteral formula with a
high-protein enteral formula in hyperglycemic
18) Wang W, Zhang YF, Zhou D, Liu Z, Hong X. Open-la-
bel, randomized multiple-center, parallel study com-
paring glycemic responses and safety profiles of
Glucoenta versus Fresubin in subjects of type 2 dia-
betes mellitus. Endocrine 2008; 33: 45-52.
M, Hipper B, Steube D. Glycemic control in patients
with type 2 diabetes mellitus with type 2 diabetes
mellitus with a specific disease enteral formula: stage II of a randomized, controlled multicenter trial.
20) Peters AL, Davidson MB. Effects of various enteral
feeding products on postprandial blood glucose
response in patients with type 1 diabetes. J Par-
21) Finney SJ, Zekveld C, Elia A. Glucose control and
mortality in critically ill patients. JAMA 2003; 31:
359-366.
22) Graham TW, Harrington TR, Isaac RM. Low carbohy-
drate with fiber enteral formula impedes development
of hyperglycaemia in patients with acute head
23) Leon Sanz M, Garcia Luna PP, Sanz Paris A, Gomez
Canedela C, Casimiro J, Pereda-Cunill JL, Martin-Palmero A, Trallero R, Martinez J, Or-
donez FJ, Garcia-Peris P, Camareiro E, Gomez-Enter-
ria P, Cabreroz L, Perez-de-la-Cruz A, Sanchez C,
Garcia-de-Lorenzo A, Rodriguez N, Usan L; Abbott
SPAIR-97-004 STUDY COOPERATIVE GROUP. Glycemic
and lipid control in hospitalized type 2 diabetic
patients: evluation of 2 enteral nutrition formulas. J
24) Cerillolo A, Lansink M, Rolwings CH, van Laere KM,
Frost GS. Administration of a new diabetes-specific
enteral formula results in an improved 24 h glu-
cosa profile in type 2 diabetic pts. Diabetes Res Clin
Pract 2009; 84: 259-266.
25) Alsh CJ, Garvey WT, Marx KC, Sacks GS, Hustead
DS, Hegazi RA, Mustad VA. A diabetes-specific en-
teral formula improves glycemic variability in pa-
ients with type 2 diabetes. Diabetes Technol Ther