Osteoblastoma is a rare benign tumor of bone that accounts for approximately 1% of primary skeletal neoplasms, with around 90% of cases diagnosed in the second and third decades of life. Cervical spine is an unusual localization of osteoblastoma. The main clinical manifestation in case of cervical spine location is a progressive and resistant pain, possibly accompanied by stiffness, scoliosis or other ailments, including severe neurological deficits. Owing to a non-specific clinical presentation of osteoblastoma, the delay in diagnosis is common. Osteoblastomas may have an aggressive behavior, tend to enlarge and damage the bone and adjacent structures. The treatment of choice is, therefore, a wide and complete surgical excision of the lesion in order to achieve full recovery and prevent recurrence or, in some cases, malignant transformation. In the case of persistent neck pain, not readily relieved by aspirin and possibly accompanied by stiffness, scoliosis or neurological deficits, especially in young subjects, osteoblastoma of cervical spine may be one of the diagnostic options to be considered, in order to avoid delay in diagnosis. We report the case of a 41-year-old male affected by cervical spine osteoblastoma causing a lasting neck pain.

Key Words: Osteoblastoma, Bone neoplasms, Neck pain.

Introduction

Osteoblastoma, a rare benign tumor of bone composed of a hypervasculizer connective tissue stroma where there is active production of osteoid and primitive woven bone, was first and independently described in 1956 by Jaffe and Lichtenstein. It accounts for approximately 1% of primary skeletal neoplasms, with around 90% of cases diagnosed in the second and third decades of life, although the range of age of the tumor manifestation is wide (6-75 years). There is a male predominance 2:1. Osteoblastoma is typically located in the vertebrae or in the long bones of the limbs, though it may settle in any skeletal segment. Spinal osteoblastoma most often originates in the posterior vertebral elements, although its extension into the vertebral body is also common. Osteoblastomas have not a specific clinical presentation. Sometimes osteoblastomas may be asymptomatic and are incidentally diagnosed. The presentation of such tumors varies with the location and size and the main symptom is a progressive pain. Patients with vertebral column osteoblastoma may complain of stiffness, scoliosis, swelling, radiating pain, gait problems, tingling weakness and other neurologic symptoms, including paresthesias, paraparesis and even paraplegia. In radiological exams, osteoblastoma appears as a round or ovoid, often massive osteolytic area, with sharp demarcation. The osteolytic area may show ossified and calcified parts under itself, and may be surrounded by a reactive osteosclerosis.

Macroscopically, it appears as a reddish-brown, very bloody granular tissue for the presence of osteoid. Osteoblastoma is a benign entity but it sometimes displays an aggressive behavior. However, the different location, the slow growth of osteoblastoma and the radiographic and histological features usually address the diagnosis in a correct way. The treatment of choice of this condition is surgical, involving a complete excision of the lesion. Of all vertebral osteoblastomas, 9-39% occur in the cervical spine. We report the case of a 41-year-old male with an osteoblastoma of cervical spine, causing a long-standing, unusual neck pain.

Case Report

Mr. D., a 41-year-old male, had complained of occasional neck pain episodes for many years. However, since October 2007 he had manifested a different kind of neck pain which was persistent, not readily relieved with aspirin or nonsteroidal anti-inflammatory medication, and...
which radiated to the right shoulder and arm and was associated with torticollis and numbness of the upper limbs. He denied any trauma or recent strenuous activity. The symptoms manifested a progressive course overtime, with no worsening at night. His motor exam was moderately limited owing to the pain. Pulses, reflexes and laboratory findings were within the normal range. The patient was, therefore, subjected to various investigations, including CT scan (Figure 1) and MRI of cervical spine, which showed a large area of osteolysis goitered edges involving C4 metamer on its right portion and characterized by the presence of tissue that made the bone swell. The somatic cortex on its front and back side was broken, and the expansion also affected the ipsilateral conjugation foramen with radicular compression. It was later carried out an angiographic study of the vertebral, deep and ascending cervical arteries, bilaterally, that revealed the presence of pathological circle by the lesion. In August 2008, an experienced team proceeded with an intervention of incomplete excision of the osteolytic lesion with partial C4 corpectomy and stabilization with plaque, through microsurgical technique. In histological examination fragments of cartilage and connective tissue were found, mixed to minute fragments of benign bone formation and morphologically compatible with osteoblastoma. There was no evidence of nuclear atypia, hyperchromasia, high mitotic rate or infiltration into adjacent tissues while margins of the host bone-tumor interface were sharp and well circumscribed. Thus, it was removed the suspicion of osteosarcoma. In December 2008, cervical spine MRI showed results of osteolytic lesion ressection at the level of C4 vertebral body. Cervical spine CT scan revealed a lytic area in the right pedicle of C4, as the position of the plaque was right and unmodified. It was then carried out a surgical ressection of C4 osteoblastoma using a posterior approach and consisting of hemilaminectomy. The histological examination showed bone fragments without significant structural changes and isolated tiny fragments consisting of connective and bone tissue, with marked artefactual crush changes (residual neoplastic focus?). The postoperative course was regular. There were found no other suspicious lesions neither in the CT scan performed three months later (Figure 2) nor in subsequent investigations. Nevertheless, two years after the second surgery, the patient was still complaining of serious functional limitation of the cervical spine, upper limbs numbness and other changes of prehensile function. The quality of life was also made poor by the onset of adaptation disorders, with anxiety and chronic depression. CT scan revealed that no signs of progressive disease were evident in a 24-month interval from the second surgery. The failure to achieve a definitive cure would be attributable to the aggressive behavior of the lesion and the diagnostic delay.

Discussion

Osteoblastomas are benign and aggressive tumors. Their natural course, when not surgically excised, is to continue to enlarge and damage the bone and adjacent structures. The most common affected site is the spine. The main symptoms in patients with spinal osteoblastoma are stiffness and a resistant pain localized in the spine. Unlike other bony lesions, such as osteoid osteoma, the pain produced by osteoblastomas does not intensify at night, neither is it relieved by aspirin or nonsteroidal anti-inflammatory medication. Several cases of osteoblastoma involving the cervical spine segment are already known in literature. When osteoblastoma affects cervical spine, the major symptom is obviously neck pain; painful scoliosis, torticollis, neurological deficits, radicular pain in the arm, or pain extending toward the shoulder can be also associated to such tumors. X-rays
probably are by themselves quite sensitive in the detection of osteoblastomas, but more thorough investigations such as CT scan and MRI are able to detect smaller lesions but with early symptoms, and also add important information for diagnosis and treatment. CT scans can provide useful information regarding the size, precise localization, and any soft tissue extension of the lesion. MRI is helpful for depicting the effects of the tumor on the spinal canal and surrounding soft tissues. When doubts about the diagnosis persist, bone scintigraphy with technetium may be used, which is characterized by a greater sensitivity than the other techniques. The differential diagnoses of osteoblastoma are multiple and include different types of benign bone tumors and tumor-like lesions. Anyway, the most important differential diagnosis is osteosarcoma, which demonstrates greater cytologic atypia, permeative growth pattern or metastasis or infiltration into adjacent bone and/or soft tissue, and high mitotic rate. Sometimes it can be very difficult the distinction between osteoblastoma and osteoid osteoma. Nevertheless, osteoblastoma is larger (usually more than 1.5 cm), tends to be more aggressive and can undergo malignant transformation, whereas osteoid osteoma is smaller, benign and self-limited. Osteoblastoma tends to aggressive behavior, it sometimes attacks the nearby structures and rarely degenerates into osteosarcoma.

Moreover, the atypical histological features that sometimes osteoblastoma may show, do not correlate with the clinical aggressiveness of the lesion. The treatment of choice is, therefore, a wide and complete surgical excision of the lesion in order to achieve full recovery and prevent recurrence or, in some cases, malignant transformation. In the case of large tumor masses it is difficult to act with a complete resection, so that a stabilization with intervertebral fusion should be performed. When complete surgical excision is not possible, radiotherapy and, in some cases, chemotherapy may be used as alternative treatment options.

In conclusion, in the case of neck pain, which is persistent and possibly accompanied by stiffness, scoliosis or neurological deficits, especially in young subjects, osteoblastoma of cervical spine may be one of the diagnostic options to be considered, in order to avoid delay in the diagnosis.

References

2) LICHTENSTEIN L. Benign osteoblastoma; a category of osteoid-and bone-forming tumors other than classical osteoid osteoma, which may be mistaken for giant-cell tumor or osteogenic sarcoma. Cancer 1956; 9: 1044-1052.

23) BERRY M, MANKIN H, GEBHARDT M, ROSENBERG A, KANER T, SASANI M, OKTENOGLU T, AYDIN S, OZER AF.


