
to the interindividual variability of body mass
index (BMI, kg/m2) studies have been con-
ducted in twins8, adoptees9, and family mem-
bers10. The most convincing evidence that
obesity is largely a genetic disease comes
from studies of monozygotic twins reared
apart. These studies are based on the assump-
tion that when genetically identical individu-
als are separated at a young age and assigned
randomly to different families, their shared
environment is no larger than in the general
population. Under these conditions the de-
gree of correlation of the BMI between indi-
viduals represents an estimate of the heri-
tability of obesity (heritability being defined
as the proportion of between person pheno-
typic variance that is attributable to between
person genotypic variance). Studies in popu-
lations of twins from Europe11, Asia12 and the
US12-13 indicate that as much as 60-70% of the
intraindividual variability in BMI is deter-
mined by a common genetic background. In
Pima Indians, a population with one of the
highest reported prevalence rates of obesity,
family studies confirmed this estimate10. 

Therefore, our studies concerning the
mechanisms of weight gain in humans have
been based on 2 main assumptions:

a) the variability in BMI among individuals
from the same population who have uni-
form access to food and similar require-
ments for physical activity is largely de-
termined by genes (Figure 1);

b) because obesity is the result of a chronic
energy imbalance between energy in-
take and expenditure, it is likely that
genes control both aspects of the energy
balance equation, i.e., energy intake and
energy expenditure (Figure 2). 

Introduction

Throughout evolution, animals and hu-
mans have developed redundant mechanisms
that promote the accumulation of fat tissue
during periods of “feast” to survive periods
of “famine”. However, in the current “obesi-
genic” environment of readily available high
fat foods and little need for physical activity,
what once was an asset has become a
liability1. As a consequence, obesity has
reached epidemic proportions in both indus-
trialized countries and in urbanized popula-
tions around the world2. 

In the United States in the late 1990’s one
out of 2 adult Americans were overweight or
obese3,4. More alarming, the prevalence of obe-
sity is drastically increasing among children5.
The World Health Organization has identified
obesity as one of the major emerging chronic
diseases2. Obesity increases the risk for a num-
ber of non-communicable diseases (i.e., type 2
diabetes, hypertension, dyslipidemias) and re-
duces life expectancy6. In the United States
alone, the annual cost of obesity to the public
health system is estimated to be close to $100
billion. This represents between 5 and 10% of
the US health care budget7. 

Heritability of Obesity

Numerous observations have shown that
obesity aggregates in families. However, fam-
ily members share genes as well as common
dietary habits, cultural background and many
other aspects of lifestyle. To assess the rela-
tive contributions of genes and environment
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Figure 1. Studies in twins,
adoptees and family members in-
dicate that approximately 70% of
the interindividual variability in
BMI is attributable to genetic fac-
tors.

Estimated Heritability of Obesity

Figure 2. Obesity is the results of
a chronic imbalance between en-
ergy intake and energy expendi-
ture.  Obesity susceptibility genes
and their interaction with the
‘obesogenic’ environment are
likely to control both sides of the
energy balance equation, i.e., en-
ergy intake and energy expendi-
ture.

Etiology Overweight and Obesity
The Energy Balance Equation



Metabolic Risk Factors
of Weight Gain

The introduction of indirect calorimetry
and the technological advancement of
methodologies that measure respiratory gases
to estimate energy expenditure have allowed
an extensive understanding of the regulation
of energy metabolism in humans. We have
used indirect calorimetry to estimate resting
(respiratory chamber) and total (doubly la-
beled water) energy expenditure and identify
heritable metabolic risk factors of weight gain
in Pima Indians, a population with a very
high propensity for obesity and type 2 dia-
betes14.

Metabolic rate
Resting metabolic rate (RMR), the

amount of energy that the human body re-
quires at rest, is largely determined by the
size and composition of the metabolically ac-
tive tissues in the body. RMR is a familial
trait in Pimas15 as well as other populations16.
Because obesity is associated with high ab-
solute metabolic rate, both in resting condi-
tions and over 24-hours17, it cannot be caused
by a low absolute metabolic rate, as is often
proposed. Many investigators have suggested
that in the absence of a clear defect in energy
expenditure in obese subjects, obesity can on-
ly be the result of excessive energy intake.
However, the scatter around the regression
line between metabolic rate and body size in-

dicates that, at any given body size, individu-
als can have a “high”, “normal”, or “low” rel-
ative metabolic rate. This concept is ex-
pressed graphically in Figure 3. From our
own studies in adult non-diabetic Pima
Indians, we found that a low relative meta-
bolic rate (resting and 24-hour) adjusted for
differences in fat-free mass, fat-mass, age and
sex was a risk factor for body weight gain18.
After 4 years of follow-up, the risk of gaining
10 kg was approximately 8 times greater in
subjects with the lowest RMR (lower tertile)
than those with the highest RMR (higher ter-
tile) (Figure 4). 

Nevertheless, these results in Pimas need
to be interpreted with caution. First, in our
studies the variability of baseline energy ex-
penditure accounted for only 15% of the
variability of weight gain. Secondly, theoreti-
cal estimates suggest that only 30-40% of the
increase in body energy stores in people who
gained weight can be attributed to the base-
line deficit in energy expenditure18. Finally,
relatively low energy expenditure does not
seem to be a predictor of weight gain in other
adult populations19-20.

Respiratory quotient
The respiratory quotient is an index of the

ratio of carbohydrate to fat oxidation. It
ranges from a value of about 0.80 after an
overnight fast when fat is the main oxidative
substrate to values close to 1.00 after a large
carbohydrate meal when glucose is the major
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Figure 3. Relationship between
24-h energy expenditure and fat-
free mass derived from a large
population. This figure represents
values for different subjects. In
terms of the absolute 24-h energy
expenditure, lean person A has a
low value while obese person B
has a high value. In terms of rela-
tive 24-h energy expenditure,
both A and B fall on the regres-
sion line and are normal. Subjects
C and D are of similar body size,
but C has a relatively low meta-
bolic rate and subject D has a rel-
atively high metabolic rate.
Subject C is at the greatest risk of
developing obesity, but upon
gaining weight, the low relative
metabolic rate becomes normal-
ized (arrow).
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substrate21. In addition to the effect of diet
composition, the respiratory quotient is also
influenced by recent energy balance (nega-
tive balance increasing fat oxidation), sex (fe-
males tend to have reduced fat oxidation),
adiposity (higher fat mass leads to higher fat
oxidation), and family membership, suggest-
ing genetic determinants22. Toubro et al, con-
firmed that substrate oxidation rates, mea-
sured by respiratory quotient, after adjust-
ment for energy balance, sex, and age, ex-
hibits familial aggregation23.

In a Prospective study in Pima Indians, a
high 24-hour respiratory quotient predicted
weight gain22. Those in the 90th percentile for
respiratory quotient (“low fat oxidizers”) had
a 2.5 times greater risk of gaining 5 kg or
more body weight than those in the 10th per-
centile (“high fat oxidizers”). This effect was
independent of a relatively low or high 24-
hour metabolic rate. However, respiratory
quotient at baseline explained only 5-6% of
the variability of subsequent weight gain.
Similar results were found in Caucasian vol-
unteers participating in the Baltimore
Longitudinal Study on Aging24. In support of
these observations, others have demonstrated
that post-obese volunteers have high respira-
tory quotients, i.e., low rates of fat oxida-
tion25-26, and those who are able to maintain
weight loss have lower respiratory quotients
compared to those experiencing weight re-
lapse27.

Physical acivity
Spontaneous physical activity (SPA), a

component of 24-hour energy expenditure
which accounts for 8-15% of total daily ex-
penditure28, has shown the highest degree of
familiality among the metabolic risk factors
identified in Pima Indians29. Consistent with
the cross-sectional observation of a decrease
in SPA in obese subjects, our prospective
studies showed that even in the confined en-
vironment of a respiratory chamber, low lev-
els of SPA are associated with subsequent
weight gain in males, but not in females29. A
recent study found that resistance to weight
gain might be due to the ability of increasing
SPA in response to overfeeding30. Of course,
prospective studies in which free-living physi-
cal activity is measured (doubly labeled water
technique) are needed to objectively assess
what most scientists believe, i.e., that a low
level of physical activity is a major predispos-
ing factor for weight gain in individuals and
in populations. 

Relative Role of Energy Expenditure
and Energy Intake

Our studies on the regulation of energy ex-
penditure in Pima Indians have provided evi-
dence that energy expenditure and nutrient
partitioning play a role in the pathogenesis of
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Figure 4. Cumulative incidence
of a 10 kg body weight gain in
subjects with a “high” relative
metabolic rate (200 kcal/d above
that predicted for body size and
body composition) and for a sub-
ject with a “low” RMR (200
kcal/d below that predicted). The
cumulative incidence was calcu-
lated on the basis of follow-up da-
ta obtained in 126 Pima Indians
followed for an average of 3 years
using a survival analysis (propor-
tional hazard linear model).  Note
that subjects with a “low” meta-
bolic rate have approximately 8
times the risk of gaining weight as
compared to those with a “high”
metabolic rate.  The bargraph on
the left details the relative contri-
bution of several determinants of
RMR to its variability.

Variability in Resting Metabolic Rate and its Impact
on Weight Gain



human obesity. However, even if we use our
less conservative estimates of the proportion
of the interindividual variability of body
weight gain that can be attributed to familial
traits such as resting energy expenditure (10-
15%), respiratory quotient (5%), and sponta-
neous physical activity (10%), we have to
conclude that a large proportion of the genet-
ic variance of BMI is due to the effect of
genes on factors not measured in our studies,
i.e., an inherited tendency to overeat (hyper-
phagia) and/or inherited tendency to inactivi-
ty in free-living conditions (Figure 5).

In contrast to animal models of obesity, it
has been very difficult to study the molecular
mechanisms and resulting behaviors that un-
derlie excessive energy intake in humans.
Nevertheless, the identification of severe hy-
perphagia in individuals with mutations of
the leptin, leptin receptor, and MC4-receptor
genes leaves little doubt that energy intake is
as highly regulated at the molecular levels in
humans as it is in animals31. Furthermore,
based on the results that have emerged from
the recent use of new techniques such as
positron emission tomography (PET) and
functional magnetic resonance imaging
(fMRI), it seems likely that the level of com-
plexity of the neuroanatomical correlates of
eating behavior in humans could be much
higher than it is in rodents. Using PET, we

have recently shown that in response to a sin-
gle meal neuronal activity increases in the
prefrontal cortex and decreases in the hypo-
thalamus, thalamus, insular cortex, or-
bitofrontal cortex, and hippocampal forma-
tion in the brain of healthy men32. An inhibi-
tion of neuronal activity in the hypothalamic
region following a meal was confirmed in a
second study using fMRI33. Most importantly,
preliminary data suggest that brain responses
to a meal may be substantially different be-
tween lean and obese subjects34. Such tech-
niques applied to post-obese subjects as well
as subjects suffering from eating disorders
may help identify the neurological pathways
responsible for hyperphagia and obesity.

Past difficulties in measuring habitual
physical activity in humans have largely been
alleviated by the advent of the doubly labeled
water technique. Thus, in the near future it
should be possible to better understand the
interaction between the energy expended in
daily physical activities and the development
of obesity in children and adults.

A greater knowledge of the physiology of
obesity will ultimately come from the current
efforts to isolate the genes related to weight
gain and its metabolic causes. Over the past
five years, genetic linkage studies have in-
creasingly focused on complex traits such as
obesity. Genome-wide scans have been com-
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Figure 5. Based in part on re-
sults from our longitudinal stud-
ies in Pima Indians, we submit
that the contribution of genetic
factors controlling metabolic rate,
respiratory quotient, fidgeting,
daily physical activity, and hyper-
phagia to BMI variability can be
estimated.

Estimated Heritability of Obesity Theoretical Components
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pleted in Mexican Americans35, in Pima
Indians36-37, in a diverse population of whites
and blacks38, in French-Canadian families39

and in French families40. From all these stud-
ies major loci linked to obesity have been
found on chromosomes 2, 5, 10, 11 and 20.
Those areas of the genome are currently un-
der intense investigation as they may lead to
the cloning of obesity susceptibility genes.

Conclusion

Obesity is a chronic disease, which is
quickly reaching epidemic proportions, and
which increases the risk for other non-com-
municable diseases, thus reducing life ex-
pectancy. Obesity is heritable and genes con-
trolling BMI are likely to do so by affecting
both energy intake and energy expenditure.
While the exact etiology of obesity remains
unknown, our own studies suggest that a low
RMR, a high RQ, and a low SPA explain
very little of the heritability of obesity. Thus,
our current conclusion is that an inherited hy-
perphagia (and/or an inherited tendency to
inactivity) is a major cause of obesity in hu-
mans.
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