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lular vesicles such as exosomes and apoptotic
bodies in sizes, compositions, and numbers2. Fig-
ure 1 illustrates the typical structure of a MP,
showing its bio-active substance and receptors.
Apparently, the generation and release of mi-
croparticles are tightly regulated and the regula-
tory mechanism has been extensively studied re-
cently.

For a long time, MPs were considered as cel-
lular by-products without any biological func-
tions. Recent functional assays and multicolor
flow cytometric analysis of MPs have re-opened
the door of extensive investigation and character-
ization of MPs. Researches in recent years have
shown that MPs possess a broad spectrum of bio-
logical activities and may play an important role
in multiple cellular processes including intercel-
lular communication, immunity, apoptosis and
homeostasis5,6. Given the great variation in the
phenotype of MPs in different diseases such as
vascular diseases, cancer, diabetes mellitus, and
inflammation7,8, analyses of changes in pheno-
types and levels of MPs may provide a potential-
ly useful tool in the diagnosis of these diseases.
Here we summarize the basic properties and reg-
ulatory mechanisms underlying the generation
and release of MPs. The relationship of MPs with
some common diseases is specifically discussed.

Mechanisms Governing the
Release of MPs

Although microparticles formation represents
a physiological phenomenon, the exact mecha-
nism governing the release of microparticles has
not been clearly defined. Nevertheless, the re-
lease of MPs is thought to be a well regulated
process rather than a random phenomenon. Cells
can release MPs in response to various environ-
mental stimuli and the type of MPs may change
depending on a given stimulus which initiates
their generation9,10.

The compositions of the two leaflets of the
membrane bilayer in a cell are different. Phos-
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Abstract. – Membrane microparticles (MPs)
are plasma membrane-derived vesicles shed by
various types of activated or apoptotic cells in-
cluding platelets, monocytes, endothelial cells,
red blood cells, and granulocytes. MPs are being
increasingly recognized as important regulators
of cell-to-cell interactions. Recent evidences
suggest they may play important functions not
only in homeostasis but also in the pathogene-
sis of a number of diseases such as vascular
diseases, cancer, infectious diseases and dia-
betes mellitus. Accordingly, inhibiting the pro-
duction of MPs may serve as a novel therapeutic
strategy for these diseases. Here we review re-
cent advances on the mechanism underlying the
generation of MPs and the role of MPs in vascu-
lar diseases, cancer, diabetes, inflammation, and
pathogen infection.
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Introduction

Cells in human blood generate a variety of
membrane microparticles (MPs). First identified
in 1967, MPs are cell plasma membrane-derived
small vesicles which are 0.1-1 mm in diameter1.
When stimulated by various environmental fac-
tors including serine proteases, inflammatory cy-
tokines, growth factors and stress inducers1, near-
ly all kinds of mammalian cells can generate
MPs. Generation of MPs has been demonstrated
in platelets, monocytes, endothelial cells, red
blood cells and granulocytes2,3. MPs may serve
as a disseminated storage pool of circulating bio-
effectors and are present in both healthy individ-
uals and patients with several diseases, playing
important roles in physiological homeostasis and
the development of myocardial infarction, stroke
and endothelial dysfunction2,4,. MPs may vary in
sizes and membrane markers depending on their
cellular origins and are different from other cel-
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Figure 1. Structure of MPs, including the receptors/biological materials it may contain. They are a disseminated storage pool of
bioactive effectors. They harbor membrane and carry cytoplasmic proteins as well as bioactive lipids implicated in a variety of
fundamental processes. This representation does not include all known hijacked components. GPI, glycosylphosphatidylinositol.

phatidylcholine and sphingomyelin are mainly
located in the external leaflet, while amino phos-
pholipid and phosphatidylethanolamine are pre-
sent in the inner one11. This distribution is con-
trolled by three proteins, namely a flippase (gov-
erning their inward translocation), a floppase
(governing their outward translocation) and a
lipid scramblase12. When the cell is stimulated,
the concentration of cellular calcium may in-
crease and, thus, enhance the activities of flop-
pase and scramblase activities and decrease the
activity of flippase. As a result, the cell mem-
brane asymmetry collapses and the surface expo-
sure to phosphatidylserine (PS) occurs13,14. Mem-
brane budding is ultimately resolved into the re-
lease of MPs. However, phosphatidylserine expo-
sure is not always followed by release of MPs,
which may be regulated by the level of intracel-
lular calcium. It has been demonstrated that cy-
toskeleton reorganization plays an important role
in the release of MPs15. Disruption of certain cy-
toskeleton proteins is required for membrane mi-
croparticles release. In addition, MPs may be re-
leased by cells that lose membrane integrity or
injured by mechanical forces16. Several protein
kinases may be involved in the release of MPs.

For example, the myosin light chain kinase is in-
volved in the complement-mediated microparti-
cles release in platelets17. Due to the variations in
the lateral composition of cell membrane, the
MPs originated from the same cell may have dif-
ferent compositions. Proteomics analyses have
revealed that the spectrum of proteins found in
MPs released in vitro from cultured cells is influ-
enced partly by types of the stimuli used to trig-
ger cell vesiculation18.

Physiological Role of MPs
MPs possess all types of receptors and bioac-

tive substances on their surface include cy-
tokines, signal proteins and nucleic acid, includ-
ing mRNA and microRNA(miRNA), which play
an important role in intercellular communication
and substrate exchange19. MPs released from
apoptotic cells may be different in lipid and pro-
tein composition from membrane vesicles shed
following cell activation and might have different
patho-physiological effects19.

Recent studies indicate that microparticles may
function as veritable vectors and are involved in
the intercellular exchange of biological signals
and information19. MPs can activate cell receptors
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Figure 2. The functions attributed to membrane microparticles. Although many aspects of microparticle function are still un-
clear, a picture develops in which microparticles play an important role in inflammation, coagulation, and vascular function.
Theoretically, microparticles may have various physiological functions, namely transport of membrane components from the
parent cell to other cells and direct activation of inflammation, coagulation or vascular function.

MPs and Vascular Disease
MPs are present in both healthy people and pa-

tients with various disease conditions, but they may
differ in levels and phenotypes (Table I)25. In pa-
tients with vascular diseases, the proportions of en-
dothelial cell-derived MPs are found to be in-
creased. Therefore, the endothelial cell MPs can be
considered as diagnostic markers of endothelial
cell dysfunction and its associated vascular dis-
eases25. It has been documented that MPs induce
endothelial dysfunction by impairing endothelial
NO signal transduction pathway in patients with
myocardial infarction26. Since NO signal pathway
plays an important role in angiogenesis, MPs may
also impair angiogenesis through inhibition of NO
signal transduction. In contrast, MPs originated
from human platelets are capable of promoting an-
giogenesis, most likely through increasing the ex-
pression of proangiogenic factors27.

As a major blood coagulation initiator, TF (tis-
sue factor) upregulates the expression of proan-
giogenic vascular endothelial growth factor and,

through bioactive molecules on their surfaces,
thereby, modulating cellular response and proper-
ties20,21. There is evidence that MPs can alter gene
expression in target cells through transferring mR-
NA and miRNA22. MPs can also modulate target
cell functions through directly transferring biolog-
ically active substances. It has been demonstrated
that chemokine receptor CCR5 and CXCR4 can
be transferred by MPs19,23. The transfer of these re-
ceptors has been demonstrated to facilitate HIV
infection and spreading. Indeed, microparticles
can transfer part of their components and contents
to selected target cells, thus, mediate cell activa-
tion, phenotypic modification and reprogramming
of cell function19. In addition, MPs can play a sig-
nificant role in vascular function and inflammation
by modulating nitric oxide (NO) and prostacyclin
production, and stimulating cytokine release and
inducing tissue factor (TF) gene expression in en-
dothelial cells as well as regulating monocyte
chemotaxis and adherence to the endothelium24

(Figure 2).
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thus, plays an important role in the regulation of
angiogenesis28. MPs can present tissue factor on
their surface to promote the growth of vascular
vessels. MPs from endothelial cells and platelets
contain matrix metallo-proteinases, which have
been demonstrated to be angiogenic in vitro29.

MPs may also play an important role in blood
coagulation. MPs from platelets, endothelial
cells, monocytes and lymphocytes possess phos-
phatidylserine on their surface, which serve as a
catalytic surface to promote the assembly of en-
zyme complex of coagulation cascade. TF is a
major cellular initiator of coagulation and has
been shown to be mainly localized at the surface
of MPs. The TF-rich MPs can bind to activated
platelets and lead to their membrane fusion. This
in turn promotes further accumulation of TFs. In
addition, in vitro studies have showed that inter-
actions between endothelial MPs and monocytic
cells can induce TF-dependent procoagulation30.
Both experimental and clinical data suggest an
involvement of endothelial MPs in the initia-
tion/dissemination of procoagulant responses30,31.

MPs and Cancer
MPs play an important role in cancer at differ-

ent levels. MPs have been considered as a bio-
marker of various cancers. For example, circulat-
ing levels of MPs are elevated in gastric cancer
patients32,33. Some studies suggest that platelet-
derived MPs may contribute to cancer metastasis
through a currently inconclusive mechanism27. In
addition, platelet MPs can promote cell adhesion
and proliferation of cancer cells. Hence, the num-

ber of platelet MPs may be used to predict
metastasis in cancer patients. In gastric cancer
patients, MPs from CD41a-positive platelets are
significantly increased in stage IV compared
with stage I or II/III32.

Tumor cell-derived MPs may harbor some
special proteins such as urokinases. Through
these proteins, MPs regulate the invasiveness and
adhesion of tumor cells. Therefore, MPs can
transfer message and promote cancer progres-
sion. Moreover, doxorubicin is found to accumu-
late in MPs originated from cancer cells, suggest-
ing that MP release may be also involved in drug
resistance of cancer cells34-36.

MPs and Diabetes Mellitus
In diabetes mellitus, a wide variety of blood or

vascular cells, including monocytes, endothelial
cells, platelets, and islets of Langerhans, release
MPs37,38. Shedding of MPs from these cells is trig-
gered by a variety of cytokines or stimuli, such as
oxLDL (oxidized Low Density Lipoproteins),
remnants lipoproteins, IL-1 , tumor necrosis fac-
tors (TNF family), oxidative stress, advanced gly-
cation end products and hyperglycemia39. Levels
of MPs from CD14+ monocytes and CD41a+ and
CD42+ platelet are elevated in patients with type 2
diabetes40,41. In addition, MPs are present in the
circulation of patients with type 1 diabetes and
type 242,43. However, the phenotype and procoagu-
lant potential of MPs may vary with the type of di-
abetes or glycemic control. In patients with types
2 diabetes, only the number of PS+ MPs is signifi-
cantly increased. In contrast, in patients with type

Inducer or
Derivation pathological issue Vascular effect Mechanisms

Platelet Thrombin-released PMPs Neovascularization in VEGF, PDGF, bFGF
(healthy donor) the ischemic myocardium
Thrombin-released PMPs Angiogenesis ERK, phosphoinositide
(healthy donor) 3-Kinase pathways
Thrombin-released PMPs Recruitment of hematopoietic Not clear

stem cells
Sepsis Endothelial and SMC Oxidative stress,

apoptosis NADPH oxidase
Endothelium Serum deprivation Angiogenesis induction (low-dose); Not clear

angiogenesis inhibition (high-dose)
Serum deprivation No effect on angiogenesis Oxidative stress

(physiological concentrations);
Angiogenesis impairment
(pathophysiologic concentrations)

VEGF, FGF, serum deprivation Proteolysis, basement MMP
membrane invasion

Tumor cells Serum deprivation Angiogenesis induction Sphingomyelin

Table I. Effect of microparticles on angiogenesis and vascular remodeling.



1 diabetes, levels of MPs are significantly elevated
for PS+ and CD41+ platelets and CD51+ endothe-
lial cells. There are also studies showing that the
procoagulant activity in MPs is correlated with
glucose imbalance in patients with type 1 diabetes.

An increase in the level of circulating MPs has
been suggested to be one of the procoagulant de-
terminants in patients with diabetes. Hypercoag-
ulable state of diabetes can be initiated or main-
tained by elevated levels of MPs from TF-posi-
tive platelets. Moreover, increases in levels of in-
sulin and glucose may increase the procoagulant
activity of TF, suggesting that in diabetes TF ex-
posed to MPs is highly pro-thrombogenic. The
recognitions of a role for MPs may not only be
important to a better understanding of the patho-
genesis of diabetes, but may also have significant
clinical implications in the prevention and treat-
ment of this disease19.

MPs and Inflammation and Immunity
It is now well established that MPs play a cru-

cial role in inflammation. As a source of
aminophospholipids and also a preferential sub-
strate for phospholipase A2, MPs are involved in
the release of lysophosphatidic acid, which, in
turn, triggers platelet aggregation and the inflam-
matory process. MPs are able to deliver arachi-
donic acid, leading to an increased expression of
endothelial cyclooxygenase type 219.

Cytokines also participate in the generation of
MPs including PMPs with pro-inflammatory
properties. It is documented that the released
MPs contains interleukin-1, an important inflam-
matory factor44,45. In addition, there is evidence
showing that MPs shed by platelets can stimulate

the production of proinflammatory cytokines
such as IL-1, IL-6, IL-8 and TNF-α. These cy-
tokines in turn activate inflammatory cells to
generate more MPs, forming a positive feedback
loop46,47. MPs can also promote the expression of
cell adhesion molecules in endothelial cells; MPs
released by leukocytes have been demonstrated
to contribute to the activated phenotype of
rheumatoid arthritis synovial fibroblasts. MPs re-
leased by leukocytes may stimulate the expres-
sion of proangiogenic chemokines of CXCL1,
CXCL2, CXCL3, CXCL5, CXCL6, and CX-
CL848. Taken together, MPs from certain cells
may induce and intensify inflammatory response.
This suggests that MPs can act as agonists of in-
flammation. However, the underlying mechanism
remains unclear.

It has been previously demonstrated that neu-
trophils can release a large amount of MPs at the
site of inflammation, triggering cell apoptosis.
MP release is one of the early hallmarks of cells
undergoing apoptosis, and shedding from senes-
cent cells is correlated to the degree of apopto-
sis49. It is, therefore, reasonable to believe that
systems in charge of the elimination of cell waste
products may gain information from qualitative
or quantitative variations of MPs.

Upon activation, neutrophils release MPs at
the site of inflammation in vivo. These MPs,
termed ectosomes, bind efficiently to opsonized
bacteria and may be designed to focus antimicro-
bial activity onto opsonized surfaces50. In addi-
tion, ectosomes can specifically adhere to mono-
cytic and endothelial cells, making them more
active players in inflammation and cell signal-
ing20. It has been proposed that ectosomes are re-

Figure 3. Cellular origin of circulating microparticles in different pathological states, including cancer, diabetes, HIV infec-
tion, myocardial infarction, etc
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leased from the plasma membrane through the
same mechanisms described above for MPs and
also bear a significant proportion of PS.

MPs and Infection
MPs have been shown to be associated with

some infectious diseases such as malaria and
AIDS. Malaria infection may cause overwhelm-
ing response of the host to sepsis and influence
blood coagulation. Previous evidence shows that
malaria infection can promote the formation of
MPs from platelets, red blood cells, and
macrophages, which may induce systematic in-
flammation and cause activation of blood coagu-
lation51,52. MPs are implicated in HIV infection,
propagation and escape from the classical vac-
cine process and, thus, play important roles in the
development of AIDs. MPs originated from
CCR5-positive cells can transfer CCR5 to CCR5-
deficient peripheral blood mononuclear cells,
causing them to be susceptible to HIV infec-
tion53,54. Patients of HIV infection with a high
level of circulating MPs and a low number of cir-
culating CD4+ cells are less likely to develop
AIDS-associated complications55,56. In addition,
procoagulant activity in MPs released by granu-
locytes and platelets is increased in patients with
meningococcal sepsis57,58; endothelial MPs have
been shown to be extremely important in patients
with severe inflammatory response syndrome59.

Conclusions

Figure 3 summarizes the cellular origin of cir-
culating microparticles in different pathological
states. The data accumulated over the last few
years on the beneficial and deleterious roles
played by microparticles respectively in physio-
logical and pathological conditions (in particular
in vascular and inflammatory diseases), suggest
that MPs could be friends or foes of the human
body, depending on their cellular origins and
their generation triggers. On the basis of previous
studies in this area, we suggest that microparti-
cles may serve as a new and effective therapeutic
target in the treatment of several cardiovascular,
renal and infectious and inflammatory diseases.

The development of methodological approaches
has greatly promoted the progress of investiga-
tions on MPs. At present, flow cytometry analysis
and microplate affinity assays are the most com-
monly used methods, a lot of novel biomarkers
have been used to examine MPs. Techniques about

assays of MPs have been reviewed in a series of
publications60,61. As a product from an active
process rather than a passive or random phenome-
non in the cell, MPs may play important roles in
self-defense, stress response, tissue regeneration
and inflammation through modulating intercellular
communication, initiating cell signaling and trans-
ferring receptors and other cytoplasmic proteins.
These studies have greatly enriched our under-
standing of MPs. Nevertheless, questions regard-
ing the adverse effects of MPs, the nature and con-
tent of blood transfusion products need to be an-
swered in further investigations.
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