
4362

 

Introduction

Tamoxifen, an antagonist of the estrogen re-
ceptor (ER), is a therapeutic agent currently used 
for the breast cancer patients with ER-positive tu-
mors1,2. The use of this endocrine therapeutic drug 
has significantly improved disease free survival 
and overall survival of the patients1,3. But acqui-
red tamoxifen resistance is still the main reason 
for endocrine therapy failure and subsequent can-
cer recurrence and cancer-related death1,4. Actual-
ly, the mechanism of tamoxifen resistance is quite 
complex and is far from been fully understood.

Extracellular vesicles, such as exosomes and 
microvesicles can transport coding and non-co-
ding RNAs, proteins and lipids, thereby acting a 
potential mode of intercellular communication5. 
Some recent papers reported that exosomes are 
involved in the regulation of chemosensitivity of 
the recipient cells. In human hepatocellular can-
cer, exosomes mediated transfer of long non-co-
ding RNA (lncRNA) ROR can increase chemore-
sistance6,7. In breast cancer, exosomal transfer of 
miR-221/222 can enhance tamoxifen resistance in 
recipient ER-positive breast cancer cells8.

LncRNAs are evolutionarily conserved non-pro-
tein-coding RNAs greater than 200 nucleotides9. 
Dysregulated lncRNAs RNAs is also a mechanism 
of tamoxifen resistance development in breast can-
cer. One recent study found HOTAIR overexpression 
can activate the ER transcriptional program even 
under hormone-deprived conditions and promote 
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tamoxifen-resistance10. Urothelial carcinoma-asso-
ciated 1 (UCA1) is an lncRNA with three exons that 
encode a 1.4 kb isoform and a 2.2 kb isoform11. The 
oncogenic role of UCA1 in breast cancer is identi-
fied via multiple mechanisms, such as suppression 
of p2711 and acting as miR-143 sponge12. In addition, 
the association between aberrant UCA1 expression 
and acquired drug resistance has also been reported 
in bladder cancer cells13, in gastric cancer14, and in 
colorectal cancer15. 

In this study, we firstly compared the loading 
of UCA1 in exosomes released from tamoxifen 
sensitive and tamoxifen resistant breast cancer 
cells and further investigated the role of exosomal 
transfer of UCA1 in the development of tamoxi-
fen resistance in ER-positive breast cancer cells. 

Materials and Methods 

Cell Culture
The ER positive and tamoxifen sensitive human 

breast cancer cell line MCF-7 cells were obtained 
from ATCC (Manassas, VA, USA). The MCF-7 
derived tamoxifen-resistant LCC2 cells were obtai-
ned from the Cell Bank of the Chinese Academy 
of Sciences (Shanghai, China). All of the cancer 
cells were grown in Roswell Park Memorial Insti-
tute-1640 (RPM-640) medium supplemented with 
10% fetal bovine serum (FBS), 2 mM glutami-
ne, 100 units of penicillin/ml and 100 μg of strep-
tomycin/ml and were cultured in an incubator with 
humidified atmosphere and 5% CO2 at 37 °C.

Isolation of Exosomes
In brief, 1×106 MCF-7 or LCC2 cells were cul-

tured in vesicle-depleted medium for 3 days. Cell 
culture was then collected for exosomes isolation by 
sequential centrifugations according to the method 
introduced in one previous study16. The exosomes 
collected from the culture medium of MCF-7 cel-
ls were termed as exos/MCF-7, while that from the 
culture medium of LCC2 cells were named as exos/
LCC2. The exosomes from LCC2 cells with knock-
down of UCA1 were also isolated. The exosomes 
were used immediately, or were resuspended in 50-
100 μL of PBS and stored at -80°C. 

Nanoparticle tracking analysis (NTA) was per-
formed using a Nanosight LM10-HS (NanoSight, 
Amesbury, UK) to determine size and quantity of 
EVs isolated as described in one previous study17. 
Five recordings of 30 sec each were captured, 
analyzed and the data from at least 5,000 indivi-
dual particle tracks were analyzed per sample.

Cell Treatment
To investigate the effect of exosomes on ta-

moxifen sensitivity in MCF-7 cells, MCF-7 cells 
were cultured in exosomes depleted medium and 
incubated with exos/LCC2 (0, 1 and 10 μg/ml) for 
24 h before tamoxifen treatment.

Two UCA1 siRNAs were chemically synthe-
sized by Ribobio (Guangzhou, China) with the 
following sequence: si-UCA1-1: 5’-GTTAATC-
CAGGAGACAAAGA-3’, si-UCA1-2: 5’-TCTT-
TGTCTCCTGGATTAAC-3’. LCC2 cells were 
transfected with 100 nM UCA1 siRNAs using 
Hiperfect transfection reagent (QIAGEN GmbH, 
Hilden, Germany) according to the manufactu-
rer’s instruction. 

QRT-PCR
Total RNA in cell samples was extracted using 

the TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA) according to manufacturer’s instructions. 
cDNA was reversely transcribed using the Pri-
meScript® RT reagent kit (TaKaRa, Dalian, Lia-
oning, China). The UCA1 expression level was 
quantified using the following primers: forward: 
5’-TTTGCCAGCCTCAGCTTAAT-3’; reverse: 
5’-TTGTCCCCATTTTCCATCAT-3’ and SYBR® 
Premix DimerEraser kit (TaKaRa, Dalian, Lia-
oning, China) in an ABI Prism 7500 (Applied 
Biosystems, Foster City, CA, USA). GAPDH was 
used as the endogenous control gene. The results 
of QRT-PCR analysis were calculated using the 
2-ΔΔCT method.

CCK-8 Assay of Cell Viability 
MCF-7 cells were seeded in a 96-well plate 

(3000 cells per well) and were cultured in exo-
somes depleted medium supplemented with 0, 1 
and 10 μg/ml exos/LCC2 with or without UCA1 
knockdown for 24 h and then were further cultu-
red with varying concentrations of tamoxifen (0.1, 
0.5, 1, 5, 10, 20 50 μmol/L) for 3 days. Then, cell 
viability was measured using WST-8 assay using 
Cell Counting Kit-8 (CCK-8, Dojindo, Tokyo, Ja-
pan) according to manufacturer’s instruction. 

Immunofluorescent Staining 
LCC2 cells were grown on coverslips (174950, 

Thermanox, Thermo Fisher, Waltham, MA, USA) 
and were cultured in exosomes depleted medium 
supplemented with 0, 1 and 10 μg/ml exo/LCC2 
for 24 h and then were treated with 5 μM Tamoxi-
fen for 72 h. Then, the cells were fixed, perme-
abilized in 0.1% Triton X-100 and blocked with 
1% bovine serum albumin (BSA). Then, the co-



C.-G. Xu, M.-F. Yang, Y.-Q. Ren, C.-H. Wu, L.-Q. Wang

4364

 

verslips were incubated with antibodies against 
cleaved caspase-3 at Asp175 (1: 500, #P42574, 
Cell Signaling, Danvers, MA, USA) at 4°C over-
night. After washing, the coverslips were incuba-
ted in a secondary Alexa Fluor-555-labeled goat 
anti-rabbit IgG (#4413, Cell Signaling, Danvers, 
MA, USA) for 30 min at room temperature in 
darkness. Coverslips were mounted with moun-
ting media (ab104139, Abcam, Cambridge, MA, 
USA), which contains DAPI to stain the nuclei. 
The number of positively stained cells was scored 
by counting of three sets of at least 100 cells un-
der the microscope. 

Flow Cytometric Analysis 
Cell apoptosis was assessed using the Annexin 

V-FITC Apoptosis Detection Kit (JingMei Biote-
ch, Beijing, China), according to the manufactu-
rer’s instructions. In brief, 100 μL cell suspension 
containing 1×105 cells were prepared. Then, 5 μL 
Annexin V-FITC and 10 μL propidium iodide (PI) 
(20 μg/mL) were added and incubated in the dark 
for 15 min at room temperature. Then, the ratio of 
apoptotic cells was analyzed using a FACSCaliber 
flow cytometry (BD Biosciences, Franklin Lakes, 
NJ, USA). Each test was performed with at least 
three repeats.

Western Blot Analysis
Cell samples were lysed using a lysis buffer 

(P0013, Beyotime, Shanghai, China). Then, the 
protein concentration was quantified using a BCA 
protein assay kit (Beyotime, Shanghai, China). 
Then, a conventional western blot was performed. 

Primary antibodies used included anti-CD63 (sc-
5275, Santa Cruz Biotechnology, Santa Cruz, CA, 
USA) and anti-β-actin (1: 2000, ab8227, Abcam, 
Cambridge, UK). After that, the membranes were 
incubated with the corresponding HRP conjuga-
ted secondary antibodies. The blot signals were 
visualized using the ECL Western blotting sub-
strate (Promega, Madison, WI, USA). 

Statistical Analysis 
Data were presented in the form of means ± 

standard deviation (SD) based on at least three 
repeats of three independent experiments. Com-
parison between groups was performed using the 
unpaired t-test. A two-sided p-value of <0.05 was 
considered statistically significant.

 
Results 

UCA1 is Significantly Increased in 
Exosomes from Tamoxifen Resistant Cells 
than that from Tamoxifen Sensitive Cells 

Exosome has been recently demonstrated as an 
important modulator of cell-cell signaling. In this 
study, we firstly isolated exosomes from tamoxifen 
sensitive MCF-7 cells and tamoxifen resistant LCC2 
cells. Nanoparticle tracking analysis showed that the 
size distribution of the exosomes is mainly from 50-
100 nM in diameter (Figure 1A). Following Western 
blot analysis detected very strong signals of CD63 
and no β-actin in exosome samples (Figure 1B). 
However, β-actin was detectable in cell samples (Fi-
gure 1B). These results suggest that exosomes were 

Figure 1. LncRNA UCA1 is significantly upregulated in the tamoxifen-resistant breast cancer cells. A, NTA (analysis of the 
number and diameters of the Exosomes isolated from the culture medium of MCF-7 cells (left) and LCC2 cells (right). B, We-
stern blot analysis of CD63 and β-actin in cell and exosome samples. C, QRT-PCR analysis of UCA1 expression in tamoxifen 
sensitive MCF-7 cells and tamoxifen resistant LCC2 cells and in exosomes released from the cells. **p<0.01. 
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cells with or without pretreatment of exos/LCC2. 
The results also showed that exos/LCC2 signifi-
cantly decreased tamoxifen-induced activation 
of caspase-3 in MCF-7 cells in a dose-dependent 
manner (Figure 3B). The following flow cytome-
tric analysis showed that exos/LCC2 suppressed 
tamoxifen-induced cell apoptosis in MCF-7 cells 
(Figure 3C-D). 

UCA1 Knockdown Impaired the 
Exosomes Mediated Transfer of 
Tamoxifen resistance 

To further investigate the regulative effect of 
UCA1 on tamoxifen resistance, MCF-7 cells were 
pretreated with exosomes isolated from LCC2 
cells with or without knockdown of UCA1 before 
tamoxifen treatment. The CCK-8 assay showed 
that the exos/LCC2 with impaired UCA1 loading 
had significantly suppressed capability to promo-
te cell viability of MCF-7 cells (Figure 4A). The 
following flow cytometric analysis also confir-
med that UCA1 knockdown substantially weake-
ned the exos/LCC2’s capability to reduce tamoxi-
fen-induced cell apoptosis in MCF-7 cells (Figure 
4B).

Discussion 

Exosome mediated transfer of non-coding 
RNAs, including miRNAs and lncRNAs have 
been gradually demonstrated as an important 
mechanism of acquired drug resistance in some 
cancer cells. For example, in ovarian cancer, exo-

isolated successfully. By performing qRT-PCR, we 
found that UCA1 expression increased more than 
20 folds in LCC2 cells than in MCF-7 cells, while 
the UCA1 level in exosomes from LCC2 cell cultu-
re was about 27 folds higher than that from MCF-7 
cells (Figure 1C).

UCA1 Knockdown Significantly Inhibits 
UCA1 Loading in Exosomes

To inhibit UCA1 expression, we designed two 
siRNAs. LCC2 cells were firstly transfected with 
100 nM si-UCA1-1 or si-UCA1-2. QRT-PCR 
analysis showed both si-UCA1-1 and si-UCA1-2 
significantly reduced UCA1 level in LCC2 cells, 
while si-UCA1-2 had a better inhibiting effect 
than si-UCA1-1 (Figure 2A). QRT-PCR based on 
exosomes samples also confirmed that si-UCA1-1 
and si-UCA1-2 significantly inhibited UCA1 loa-
ding in exosomes, while si-UCA1-2 had a stron-
ger inhibitive effect than si-UCA1-1 (Figure 2B).

MCF-7 Cells Pretreated with Exosomes 
from LCC2 Cells have Increased 
Tamoxifen Resistance

Then, we investigated how exosomes isolated 
from LCC2 cells modulate tamoxifen sensitivity 
in MCF-7 cells. MCF-7 cells were pretreated with 
different concentration of exos/LCC2. By perfor-
ming a CCK-8 assay of cell viability, we found 
that exos/LCC2 significantly increased the viabi-
lity of MCF-7 cells after tamoxifen treatment in 
a dose-dependent manner (Figure 3A). Then, we 
performed immunofluorescent staining to exami-
ne the expression of cleaved caspase-3 in MCF-7 

Figure 2. UCA1 knockdown significantly inhibits UCA1 loading in exosomes. A-B. QRT-PCR analysis of UCA1 expression 
in LCC2 cells (A) and LCC2 exosomes (B) after transfection of 100 nM si-UCA1-1 or si-UCA1-2. **p<0.01.
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somal transfer of miR-433 between resident cells 
can promote resistance to paclitaxel through the 
induction of cellular senescence18. Exosome me-
diated transferring of P-glycoprotein from pacli-
taxel-resistant A2780 cells to paclitaxel-sensitive 
A2780 cells led to a redistribution of and resistan-
ce to paclitaxel and adriamycin in recipient cells19. 
One recent work founds that exosomes released 
from tamoxifen-resistant MCF-7 cells could en-
ter into wild-type MCF-7 cells and release miR-
221/222. The elevated miR-221/222 in the reci-
pient cells can effectively reduce the target genes 
expression of P27 and ERalpha, leading to enhan-
ced tamoxifen resistance8.

Besides the oncogenic effect, UCA1 also 
exerts a regulative effect on drug resistance in 
multiple types of cancer. For example, UCA1 
can induce acquired resistance to EGFR-TKIs 
in EGFR-mutant non-small cell lung cancer by 
activating the AKT/mTOR pathway20. It can also 
increase chemoresistance of bladder cancer cel-
ls via activating the Wnt signaling pathway in a 
Wnt6-dependent manner21. Knockdown of UCA1 
in Adriamycin-resistant SGC7901/ADR cells can 
significantly decrease the resistance14. In this stu-
dy, we firstly compared the expression of UCA1 
between exosomes from MCF-7 cells and LCC2 

cells. The results confirmed that UCA1 is signifi-
cantly increased not only in LCC2 cells, but also 
in exosomes released from LCC2 cells. Actual-
ly, the increase in exosomes is more evident than 
in cells. Therefore, we decided to investigate the 
whether the exosomes can modulate tamoxifen 
sensitivity of the cancer cells. The results showed 
that MCF-7 cells pretreated with exos/LCC2 had 
significantly increased cell viability, decreased 
expression of cleaved caspase-3 and lower ratio 
of apoptosis after tamoxifen treatment. Then, we 
further investigated whether this phenomenon is 
a direct result of UCA1 loading in the exosomes. 
By performing CCK-8 assay and flow cytome-
tric analysis, we confirmed that the exos/LCC2 
with impaired UCA1 loading had significantly 
suppressed capability to promote tamoxifen re-
sistance in MCF-7 cells. Therefore, we infer that 
exosomes mediated transfer of UCA1 might be an 
important mechanism of acquitted tamoxifen re-
sistance in breast cancer cells.

Previous researches showed that dysregula-
ted lncRNAs could modulate drug sensitivity 
in breast cancer via multiple mechanisms. For 
example, the lncRNA ATB can competitively 
bind with miR-200c and lead to upregulation of 
miR-200c target gene ZEB1 and ZNF-217, re-

Figure 3. MCF-7 cells pretreated with exosomes from LCC2 cells have increased tamoxifen resistance. A, CCK-8 assay of 
cell viability of MCF-7 cells pretreated with 0, 1 or 10 μg/ml exos/LCC2 for 24 h and then treated with varying concentrations 
of tamoxifen (0.1, 0.5, 1, 5, 10, 20 and 50 μmol/L) for 3 days. B. Typical images of the cleaved Caspase-3 labeled by Alexa 
Fluor-555-labeled antibody (red color) and the nuclei stained with DAPI (blue color). C-D. Representative images (C) and 
quantitation (D) of flow cytometric analysis of apoptotic MCF-7 cells pretreated with 0, 1 or 10 μg/ml exos/LCC2 for 24 h and 
then treated with 5 μM of tamoxifen for 3 days. *p<0.05.
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sulting in enhanced epithelial-to-mesenchymal 
transition and subsequent trastuzumab resistan-
ce22. GAS5 can decrease trastuzumab-resistan-
ce via acting as a molecular sponge for miR-21 
and decreasing the expression of phosphatase and 
tensin homologs (PTEN)23. The major limitation 
of this study is the lack of investigation of the 
downstream regulation of UCA1 in ER-positive 
breast cancer cells. Some recent studies suggest 
that UCA1 upregulation can lead activation of 
the AKT/mTOR pathway in multiple cancers20,24. 
mTOR inhibition can effectively restore the su-
sceptibility of ER-positive breast cancer cells to 
tamoxifen25. Inhibition of the AKT/mTOR signa-
ling can effectively reduce tamoxifen resistance 
in breast cancer cells26,27. Therefore, we hypothe-
sized that mTOR signaling might be an impor-
tant downstream signaling pathway of UCA1 in 
tamoxifen resistance. Actually, some non-coding 
RNAs, such as miRNAs with regulative effect on 
mTOR signaling pathway can modulate tamoxi-
fen sensitivity of breast cancer cells. For example, 
miR-21 inhibition can sensitize breast cancer cells 
to tamoxifen by enhancing autophagic cell death 
through inhibition of the PI3K-AKT-mTOR pa-
thway28. Enforced miR-451a expression can also 
increase the sensitivity of breast cancer cells to ta-
moxifen by reducing the activation of p-AKT and 
p-mTOR29. However, further studies are required 
to validate our hypothesis. 

Conclusions 

UCA1 is significantly loaded in exosomes 
from tamoxifen resistant LCC2 cells. Exoso-

mes mediated transfer of UCA1 can significant-
ly increase tamoxifen resistance in ER-positive 
MCF-7 cells.
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