Abstract. – OBJECTIVE: The aim of this study was to test the inhibitory effect of supernatants of broth cultures of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001, both individually and in combination, against Gram-negative strains (uropathogens, enteropathogens and a reference strain). Moreover, in vitro protection of B. longum BB536 and L. rhamnosus HN001, both individually and in combination, against pathogen adhesion to HT-29 cell line, was investigated.

MATERIALS AND METHODS: The inhibitory activity was performed by the agar diffusion test and in vitro antagonistic activity against pathogen adhesion to human epithelial intestinal HT-29 cells was performed using standardized culture techniques.

RESULTS: The study showed that B. longum BB536 and L. rhamnosus HN001, individually and in combination have inhibitory activity against the majority of the Gram negative strains tested. Furthermore, the results showed that both probiotic strains have a good capacity to inhibit pathogenic adhesion to HT-29 cells. Moreover, the ability of B. longum BB536 and L. rhamnosus HN001 to inhibit pathogenic adhesion increased when they were used in combination.

DISCUSSION: The combination of B. longum BB536 and L. rhamnosus HN001 showed inhibitory activity against Gram-negatives and an improved ability to reduce their adhesion properties and to compete with them.

CONCLUSIONS: The simultaneous presence of the two-probiotic strains could promote competitive mechanisms able to reduce the adhesion properties of pathogen strains and have an important ecological role within the highly competitive environment of the human gut.

Key Words: B. longum BB536, L. rhamnosus HN001, Pathogens, Inhibitory activity, Intestinal adhesion antagonism, Antagonistic activity of B. longum BB536, L. rhamnosus HN001 alone and in combination against Gram-negatives.

Introduction

The potential antagonistic or symbiotic effects that exist among probiotic strains used in combination have not been well investigated. A relevant feature of a probiotic strain is the ability to inhibit the adhesion and the intestinal colonization of enteropathogenic strains1-3. Probiotic strains can antagonize enteropathogenic strains in the intestine with several mechanisms: competing for adhesion sites or nutritional sources, modulating the immune response, decreasing the luminal pH by producing lactic acid, acetic acid and specific protein compounds such as bacteriocins1,6-13. In particular, inhibition of adhesion of pathogens to intestinal epithelial cells by probiotic bacteria is a property closely correlated with the strain12,14. It has been shown that probiotic strains, belonging to the Lactobacillus and Bifidobacterium genus, can play a protective role against enteropathogenic infections4,17.

The literature provides data about some microbiological characteristics and effects on human health of the Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001, currently present in combination in a food supplement marketed in Italy17-23.

The aim of this study was to test the ability of B. longum BB536 and L. rhamnosus HN001, alone or in combination, to inhibit in vitro Gram-negative pathogens and to counteract their adhesion to HT-29 cells.

Materials and Methods

Bacterial Strains and Culture Conditions

The probiotic strains tested in this study were individual lyophilised powders of Bifi-
In Vitro Antagonism of B. longum BB536 and L. Rhamnosus HN001 Against Adhesion to the HT-29 Cell Line by Gram-Negative Isolates

The in vitro antagonism of *Bifidobacterium longum* BB536 and *Lactobacillus rhamnosus* HN001, both individually and in combination, against the adhesion of *Escherichia coli* EC3960, *Escherichia coli* EC4219, *Salmonella enteritidis* SEN6 and *Salmonella typhi* STN12 to the human intestinal cell lines HT-29 was performed modifying the method described by Serafini et al. When *B. longum* BB536 and *L. rhamnosus* HN001 were tested in combination, a 1:1 ratio was used to highlight the characteristics of the individual strains. For the tests, HT-29 cells, provided by the American Type Culture Collection (ATCC), were prepared as described by Inturri et al. Each probiotic strain, their combination, and the pathogens, grown on solid media under their typical growth conditions, were washed twice (8000 rpm for 8 min) with PBS buffer (Sigma-Aldrich, St. Louis, MO, USA) and resuspended in RPMI medium (total bacterial count about 1.0 × 10⁸ CFU/mL). The bacterial suspension was added to the HT-29 cells at a ratio of 10:1 and the plates were incubated for 2 h at 37°C. After incubation, the HT-29 monolayer was washed to remove unadhered bacteria and then was treated with a 0.25% trypsin-EDTA solution. The bacterial count was performed after plating on suitable agar media, and using routine growth conditions. The results were expressed as a relative percentage of adhesion (CFU adhered bacteria/CFU added bacteria × 100). To determine inhibition of pathogen adhesion, the individual probiotic strain or their combination was incubated for 1 h on HT-29 cells; after the addition of the pathogen strain (about 1.0 × 10⁸ CFU/mL) the incubation was continued for 1 h. The same procedure for pathogen inhibition was performed to assess pathogen displacement, except that the individual probiotic strain or the combination was added after 1 h of pathogen incubation. To determine competition for adhesion on HT-29 cells, the individual probiotic strain or the combination was incubated together with the pathogen for 2 h. The adhesion ratio was calculated as a percentage of adherence (CFU of adhered bacteria/CFU of adhered bacteria × 100). The data represent the mean of three independent experiments with duplicate samples.

In Vitro Inhibitory Activity

The inhibitory activity of *Bifidobacterium longum* BB536 and *Lactobacillus rhamnosus* HN001 alone or in combination, against Gram-negative strains was performed modifying the agar diffusion test described by Jara et al. Each Gram-negative strain was spread (1.0 × 10⁷ CFU/mL) onto the surface of Muller Hinton (MH, Oxoid, Milan, Italy) agar plates. A culture of 72-96 h of each probiotic strain or their combination, grown in MRSc broth, was centrifuged (5000 rpm for 15 min) and each supernatant was filtered through a 0.22 μm filter (Millex-GP Syringe Filter Unit, Millipore, Billerica, MA, USA). Then the supernatants were deposited in 6 mm wells previously set up in plates where Gram-negatives were spread. The inhibitor effect was detected by a growth-free inhibition zone around the wells containing the supernatant tested, after 24 h of incubation. The results were expressed as the mean of three individual experiments with duplicate samples.
Results

In Vitro Inhibitory Activity

Table I shows the inhibition values of the fresh cells free supernatant (CFS) of the broth cultures of \textit{B. longum BB536} and \textit{L. rhamnosus HN001} alone and in combination against tested Gram-negatives.

The supernatants of \textit{B. longum BB536 (CFS\textsubscript{BB536})}, \textit{of L. rhamnosus HN001 (CFS\textsubscript{HN001})} and \textit{B. longum BB536/L. rhamnosus HN001 combination (CFS\textsubscript{BB536-HN001})} showed inhibitory activity against the Gram-negatives tested. In particular, good inhibitory activity (++) was observed for CFS\textsubscript{BB536} and CFS\textsubscript{BB536-HN001} against \textit{E. coli ATCC 35218, E. coli EC3960} and \textit{S. typhi STN12}. The results also showed no antagonism effect between the probiotic strains tested.

In Vitro Antagonism of \textit{B. Longum BB536} and \textit{L. Rhamnosus HN001} Against Adhesion to the HT-29 Cell Line of Gram-negative isolates

\textit{B. longum BB536} showed an inhibitory effect against adhesion of \textit{E. coli EC3960} and \textit{E. coli EC4219} to HT-29 cells. When \textit{B. longum BB536} was simultaneously incubated with these pathogenic strains showed competition only against \textit{E. coli EC3960}. \textit{B. longum BB536} did not show the ability to displace \textit{E. coli EC3960} and \textit{E. coli EC4219} already adhered to HT-29 cells (Figure 1A). Moreover, \textit{B. longum BB536} tested against \textit{S. enteritidis SEN6} and \textit{S. typhi STN12} was able to inhibit, displace and compete with both pathogens (Figure 1B).

\textit{L. rhamnosus HN001} showed an inhibitory effect against \textit{E. coli EC3960, E. coli EC4219, S. enteritidis SEN6} and \textit{S. typhi STN12} and also the ability to compete with them (Figure 2 A-B) for adhesion to HT-29. Instead, \textit{L. rhamnosus HN001} did not show the ability to displace all the tested pathogens (Figure 2 A-B).

Compared to the individual strains, the two-probiotic strains in combination showed a greater inhibitory effect against \textit{E. coli EC3960, E. coli EC4219, S. enteritidis SEN6} and \textit{S. typhi STN12} (Figure 3 A-B) and also a better ability to compete with them for adhesion to HT-29 (Figure 3 A-B).

The probiotic strains in combination were able to displace \textit{E. coli EC3960} and \textit{S. enteritidis SEN6}.

Discussion

Strains of \textit{Lactobacillus} spp. and \textit{Bifidobacterium} spp. have been shown to play a protective role against enteropathogenic infections by several mechanisms5, 14-16, 22, 29-32. Adhesion to intestinal epithelial cells is certainly an important factor for \textit{Lactobacillus} spp. and \textit{Bifidobacterium} spp. strains to prevent and/or to reduce adhesion of enteropathogenic strains27-29,33. However, antagonistic effects could exist between the probiotic strains used in combination. Some studies have shown that strains of \textit{Lactobacillus rhamnosus} and \textit{Bifidobacterium longum} can reduce cytotoxic effects, adhesion and invasion of enteropathogenic bacteria with a potential consequent reduction in the severity of some intestinal infections11,29,30,33. Serafini et al14 showed that \textit{B. bifidum PRL2010} can contrast adhesion to intestinal epithelial cells of enteropathogenic strains by mechanisms of inhibition, competition, and displacement. A previous study26 on \textit{B. longum BB536} and \textit{L. rhamnosus HN001} showed a higher survival rate under gastrointestinal conditions and ameliorated adhesion properties for each strain when they are tested in combination. The study also showed no \textit{in vitro} antagonistic effect between the two strains in combination26. The results presented in this study show the abili-

| Table I. Inhibition of tested supernatants against the Gram-negative strains. |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Strains | Supernatants of probiotic strains | |
| | CFS\textsubscript{BB536} | CFS\textsubscript{HN001} | CFS\textsubscript{BB536-HN001} |
| \textit{E. coli ATCC 35218} | ++ | + | ++ |
| \textit{E. coli EC3960} | ++ | + | ++ |
| \textit{E. coli EC4219} | + | + | + |
| \textit{S. enteritidis SEN6} | + | + | + |
| \textit{S. typhi STN12} | ++ | + | ++ |

Notes: +++: ≥ 20 mm; ++: 19-15 mm; +: 14-10 mm, -: <10 mm; CFS\textsubscript{BB536}: \textit{B. longum BB536} supernatant; CFS\textsubscript{HN001}: \textit{L. rhamnosus HN001} supernatant; CFS\textsubscript{BB536-HN001}: \textit{B. longum BB536 + L. rhamnosus HN001} supernatant.
Figure 1. Ability of \textit{B. longum} BB536 to inhibit (black bar), to displace (grey bar) or to compete (white bar) for adhesion to the HT-29 intestinal epithelial cells of: the pathogenic strains \textit{Escherichia coli} EC3960 and \textit{Escherichia coli} EC4219 (\textbf{A}) and the pathogenic strains \textit{Salmonella enteritidis} SEN6 and \textit{Salmonella typhi} STN12 (\textbf{B}). The dotted line (ratio = 1) represents the adhesion value to HT-29 cells by each strain added individually. The vertical lines indicate the standard deviation.

Figure 2. Ability of \textit{L. rhamnosus} HN001 to inhibit (black bar), to displace (grey bar) or to compete (white bar) for adhesion to the HT-29 intestinal epithelial cells of: the pathogenic strains \textit{Escherichia coli} EC3960 and \textit{Escherichia coli} EC4219 (\textbf{A}) and the pathogenic strains \textit{Salmonella enteritidis} SEN6 and \textit{Salmonella typhi} STN12 (\textbf{B}). The dotted line (ratio = 1) represents the adhesion value to HT-29 cells by each strain added individually. The vertical lines indicate the standard deviation.
Growth and adhesion to HT-29 cells inhibition of Gram-negatives

The probiotic strains tested in combination confirmed the inhibition values of the strain with higher inhibitory activity. This in vitro inhibitory activity could be due to the production of protein or non-protein inhibitory substances, such as lactic acid for Lactobacillus and acetic acid for Bifidobacterium. Our study showed that the probiotic strains B. longum BB536 and L. rhamnosus HN001 have a good ability to prevent/reduce adhesion of Gram-negative pathogens to HT-29. In particular, the ability of probiotic strains to inhibit the adhesion of pathogens could be due to their strong initial adhesion to the cells. Under the experimental conditions, there is evidence for improved antagonism effects (inhibition, competition and, at least extend, displacement) by the two-probiotic strains in combination against the adhesion of Gram-negative pathogens to HT-29 cells.

Conclusions

The good adhesive behavior shown by B. longum BB536 and L. rhamnosus HN001 alone or in combination may reflect a potential ecological role within the highly competitive environment of the human gut. However, the simultaneous presence of the probiotic strains tested in this study could promote in vivo competitive mechanisms able to reduce the adhesion ability of pathogen strains.

Many factors, such as the cellular differentiation phase of the intestinal cells used and the formation of tight junctions at the time of infection, as well as the production of various types of exopolysaccharides can influence the adhesion of probiotic strains to intestinal cells and the pathogen displacement but the molecular mechanisms should be investigated. Therefore, further studies are necessary to understand better the mechanisms involved in the antagonism of B. longum BB536 and L. rhamnosus HN001 against Gram-negative pathogens and in particular when these probiotic strains are tested in combination.

Acknowledgments section

We wish to thank the Scientific Bureau of the University of Catania for language support.
Conflict of Interest
The Authors declare that they have no conflict of interests.

Funding
This study was supported by Alfa Wassermann S.p.A. grant.

References

19. EUROPEAN FOOD SAFETY AUTHORITY (EFSA) PANEL ON DIETETIC PRODUCTS, NUTRITION AND ALLERGIES (NDA). Scientific opinion on the substantiation of health claims related to Lactobacillus rhamnosus HN001 (AGAL NM97/09514) and decreasing potentially pathogenic intestinal microorganisms (ID 908) pursuant to Article 13(1) of regulation (EC) no 1924/2006 on request from the european commission. EFSA J 2009; 7: 1244.
20. EUROPEAN FOOD SAFETY AUTHORITY (EFSA) PANEL ON DIETETIC PRODUCTS, NUTRITION AND ALLERGIES (NDA). Scientific opinion on the substantiation of health claims related to Bifidobacterium longum BB536 and improvement of bowel regularity (ID 3004), normal resistance to cedar pollen allergens (ID 3006), and decreasing potentially pathogenic gastro-intestinal microorganisms (ID 3005) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2011; 9: 2041.

