The association of pancreatic cystosis and IPMN in cystic fibrosis: case report and literature review

D. PAGLIARI1, A. SAVIANO1, M.L. SERRICCHIO1, A.A. DAL LAGO1, M.G. BRIZI2, R. MANFREDI2, G. COSTAMAGNA3, F. ATTILI3

1Department of Internal Medicine and Gastroenterology, Pancreatic Unit, Fondazione Policlinico Universitario “A. Gemelli”, Catholic University of the Sacred Heart, School of Medicine, Rome, Italy
2Department of Radiology, Fondazione Policlinico Universitario “A. Gemelli”, Catholic University of the Sacred Heart, School of Medicine, Rome, Italy
3Digestive Endoscopy Unit, Fondazione Policlinico Universitario “A. Gemelli”, Catholic University of the Sacred Heart, School of Medicine, Rome, Italy

Abstract. – Pancreatic cystosis is a rare presentation of cystic fibrosis involving pancreatic gland. To date, only very few cases of pancreatic cystosis have been described in literature. Pancreatic cystosis may begin during the second decade of life and is the rarest presentation of cystic fibrosis. This disease is characterized by the presence of multiloculated cysts without ductal system communication of different sizes in all the pancreatic tissue. Herein, we report a case of a young woman affected by cystic fibrosis that was admitted to our Pancreatic Centre to evaluate a picture of diffuse multiloculated pancreatic cysts. After magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS) assessment, we perform the diagnosis of the concomitant presence of the rare condition of pancreatic cystosis with Branch Duct-Intraductal Papillary Mucinous Neoplasm (BD-IPMN). To our knowledge, this is the first reported case of a cystic fibrosis patient with the combination of pancreatic cystosis and IPMN.

Key Words: Pancreatic cystosis, Cystic fibrosis, Intraductal papillary mucinous neoplasm (IPMN), Pancreatic mucinous neoplasm, Magnetic resonance cholangio-pancreatography (MRCP).

Introduction

Pancreatic cystosis is a rare presentation of cystic fibrosis involving pancreatic gland1. It may usually begin during the second decade of life, but this condition may affect infants, children, and young adults with a history of cystic fibrosis. To date, only very few cases of pancreatic cystosis have been described in literature. Cystic fibrosis is an autosomal recessive disorder that is associated with systemic manifestations involving lungs and pancreas2. In particular, pancreatic gland in cystic fibrosis may be affected by different involvements, such as fibro-fatty replacement, atrophy, and pancreatic cystosis. In case of pancreatic cysts, several differential diagnoses are possible, such as pancreatic pseudocysts, intraductal papillary mucinous neoplasm of the pancreas (IPMN), serous and mucinous cystadenomas, von Hippel Lindau disease, polycystic kidney disease with pancreatic involvement, and hemorrhage cysts like lymphangioma. Commonly, in asymptomatic patients pancreatic cysts are an occasional finding of an abdominal ultrasound performed for general screening. Then, more specific diagnostic techniques are needed, such as magnetic resonance imaging (MRI), magnetic resonance cholangio-pancreatography (MRCP), and endoscopic ultrasound (EUS).

Clinical Presentation

A 46 years-old woman with a diagnosis of cystic fibrosis has been admitted to our Pancreatic Centre to evaluate the nature of different cysts located in the pancreas. The patient, with a positive family history for cystic fibrosis (mother and brother), was screened for 185 genetic mutations of CFTR gene. This genetic analysis revealed the presence of two CFTR gene mutations in heterozygosis as ∆F508 and 2789+5G>A. These latter are both described in literature as associated to a clinical phenotype of cystic fibrosis3,4. She received the first diagnosis of the pancreatic cysts by her General Practitioner with an occasional ab-
Abdominal ultrasound performed for general screening. The abdominal ultrasound reported multiple cystic lesions of different sizes in the head of the pancreas without other abnormalities of the pancreatic tissue. The patient was completely asymptomatic without episodes of acute pancreatitis, fever, malabsorption, and hyperglycemia history. She only reported constipation from her childhood. Her general blood exams revealed no anemia, no alterations of amylase, lipase, bilirubin, transaminase, coagulation tests, and oncologic markers (CEA, CA19.9). Oral glucose tolerance test (OGTT) was normal.

Imaging Findings

To better evaluate the pancreatic cysts, the patient did undergo EUS and MRI. These exams confirmed the presence of a major multiloculated cyst of 24×10 mm in the pancreatic head without signals of degeneration, and several little cysts in the pancreatic head/uncinate process. Six months later, the patient performed a EUS that showed a mild increase in the size (34×20 mm) of the major multiloculated cyst (Figure 1). Another follow-up after 6 months with abdominal MRI showed a further increase in the size of the major cyst (40×25 mm), with a multiloculated morphology and lined by true epithelium, and the presence of secondary cysts in the pancreatic head and body, the major of 15 mm in the head. Then, MRCP study revealed no communication between the major cyst and main pancreatic duct, while the secondary cysts resulted in communication with the ductal pancreatic system (Figure 2). After this MRI/MRCP, the patient received the diagnosis of Branch Duct-Intraductal Papillary Mucinous Neoplasm of the pancreas (BD-IPMN). Finally, EUS with fine needle aspiration (FNA-EUS) was performed and the analysis of the cystic fluid revealed a viscous content but amylase and

Figure 1. *(a)* Endoscopic ultrasound (EUS) showing a 34 mm multiloculated cyst of the pancreatic head constituted by several different cameras separated by thin septa. A hypoechoic tissue is present near the more posterior cyst *(arrow* in a). *(b)* After contrast-enhanced endoscopic ultrasound (CE-EUS), the hypoechoic tissue near the posterior cysts is not enhanced *(arrow* in b), and this finding confirms that it is a viscous content plug rather than a solid component.
The association of pancreatic cystosis and IPMN in cystic fibrosis: case report and literature review

CEA levels were undetectable due to the excessive viscosity of the pancreatic fluid. All these imaging findings combined with the clinical contest and patient’s history suggested the diagnosis of pancreatic cystosis. Pancreatic cystosis is a rare condition associated with cystic fibrosis (regarding the multiloculated major cyst in pancreatic head/uncinate process), combined with the BD-IPMN (regarding the secondary cysts in pancreatic head and body).

Discussion

Pancreatic cystosis is a rare presentation of cystic fibrosis involving pancreatic gland. To date, only very few cases of pancreatic cystosis have been described in literature\(^1\).\(^2\).\(^3\). This condition may affect infants, children, and young adults with a history of cystic fibrosis. Cystic fibrosis is an autosomal recessive disorder that is usually associated with a systemic manifestation involving lungs and pancreas\(^6\). According to literature data, pancreatic gland in cystic fibrosis may be affected by 4 types of different involvements: (1) complete fibro-fatty replacement of the pancreatic gland (the most common, with an incidence of 42%); (2) atrophy without fibro-fatty replacement (with an incidence of 24%); (3) partial fibro-fatty replacement (most common in the pancreatic tail and associated with micro- or macro-cysts, with a prevalence of 16%); (4) pancreatic cystosis\(^7\). Pancreatic cystosis may begin during the second decade of life and it is the rarest presentation of cystic fibrosis. This disease is characterized by the presence

Figure 2. (a) Axial T2-weighted HASTE FS sequence shows a multilocular cystic lesion in the pancreatic head (arrow in a); axial T1-weighted FSPGR 3D LAVA post-contrast image (b) shows thin septations into the cyst without mural nodule; thick slab (c) and MIP multisection thin slab (d) FSE T2w MRCP confirm the major multiseptated cystic mass without any communication with the ductal pancreatic system (arrow in c, d) and show several little cysts in the pancreatic head and body in apparent communication with the main pancreatic duct (arrowheads in c-d).
<table>
<thead>
<tr>
<th></th>
<th>Pancreatic cystosis</th>
<th>IPMN</th>
<th>Mucinous cystadenoma</th>
<th>Pancreatic pseudocyst</th>
<th>Pancreatic involvement in polycystic kidney disease and Pancreatic Mucinous Pancreatic Von Hippel-Lindau cystosis IPMN cystadenoma pseudocyst disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Child, young adult</td>
<td>Middle and older age</td>
<td>Middle age</td>
<td>All the age</td>
<td>Both in children and adults</td>
</tr>
<tr>
<td>Sex</td>
<td>No differences between sex</td>
<td>No differences between sex</td>
<td>Women</td>
<td>No differences between sex</td>
<td>No differences between sex</td>
</tr>
<tr>
<td>MRI</td>
<td>Hyperintensity in T2; Hypointensity in T1</td>
<td>Hyperintensity in T2; Hypointensity in T1</td>
<td>Hyperintensity in T2; Hypointensity in T1</td>
<td>Reveals pancreatic necrosis, fluid collections surrounded by a thin or thick wall, hyperintensity on T1-weighted</td>
<td>Hyperintensity in T2; Hypointensity in T1</td>
</tr>
<tr>
<td>EUS</td>
<td>Multiloculated cysts without communication with ductal system</td>
<td>Unilocular/Multilocular cysts without communication with ductal system</td>
<td>Solitary uniloculated cyst without communication with ductal system</td>
<td>Uniloculated cyst without definite wall</td>
<td>Unilocular/Multilocular cysts diffused in all the pancreas</td>
</tr>
<tr>
<td>Number and size of cysts</td>
<td>Very numerous</td>
<td>Solitary/Multifocal cysts</td>
<td>Solitary cyst</td>
<td>Solitary cyst</td>
<td>Very numerous</td>
</tr>
<tr>
<td>Family history</td>
<td>Yes</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Associated diseases</td>
<td>Cystic fibrosis</td>
<td>Genetic associated neoplasms</td>
<td>Genetic associated neoplasms</td>
<td>Inflammatory process or trauma</td>
<td>Kidney diseases</td>
</tr>
<tr>
<td>Communication with main pancreatic duct</td>
<td>Absent</td>
<td>Present</td>
<td>Absent/Present (in case of Wirsung rupture)</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Main pancreatic duct</td>
<td>Dilated</td>
<td>Normal in BD-IPMN</td>
<td>Normal</td>
<td>Normal</td>
<td>Multilocular cavities</td>
</tr>
<tr>
<td>Other features</td>
<td>Epithelium-lined, thin, smooth and linear walls, absence of internal septa, mural nodules or signals of degeneration, and no enhanced</td>
<td>Possible presence of signals of degeneration (mural nodules, internal septa, enhanced walls)</td>
<td>Possible presence of signals of degeneration (mural nodules, internal septa, enhanced walls)</td>
<td>Completely fluid. Presence of necrotic or inflammatory stratified tissue in case of WON</td>
<td>Possible association with liver polycystic disease and cerebral aneurysms</td>
</tr>
<tr>
<td>Follow-up</td>
<td>Imaging</td>
<td>Imaging or surgical intervention</td>
<td>Surgical intervention</td>
<td>Imaging in case of asymptomatic patients/ EUS-guided or surgical-drainage in case of symptoms</td>
<td>Imaging if no symptoms, kidney/liver transplant in case of organ failure</td>
</tr>
</tbody>
</table>

Table 1. Differential diagnosis in pancreatic cysts considering epidemiological features, imaging, cysts features, evaluation, diagnosis and follow-up.

Abbreviations: MRI, Magnetic Resonance Imaging; EUS, Endoscopic Ultrasound; IPMN, Intraductal Papillary Mucinous Neoplasm; BD, Branch Duct; MD, Main Duct; MT, Mixed Type; WON, Walled-Off Necrosis.
of multiloculated cysts of different sizes in all the pancreatic tissue14, so that, in the most advanced cases, the recognition of the normal pancreatic tissue become highly difficult. Different combined imaging techniques are useful to better evaluate this condition. In MRI, cysts show high and bright signal intensity on T2-weighted images and low signal on T1-weighted images due to the high protein content and the low water content in pancreatic secretions and defect in bicarbonate transport. Usually, cysts are lined by true epithelium and present thin, smooth and linear walls, absence of internal septa, mural nodules or signals of degeneration, and no enhancement after intravenous injection of contrast material8,9. EUS-FNA may reveal the cystic fluid as of serous type, with amylase and protein levels similar to the serum ones10. Importantly, different from IPMN, cysts in pancreatic cystosis don’t have communication with the ductal system. The range of macroscopic cysts is from 15 to 120 mm11. They can produce inflammatory reactions, progressive fibrosis, calcification and atrophy of pancreatic tissue12. Commonly, pancreatic cystosis patients are asymptomatic or they can suffer from non-specific abdominal pain due to the mass effect or hemorrhage into the cysts of major size13-15. Large cysts may cause the displacement of the spleno-portal venous and arterious structures, such as the portal vein and superior mesenteric artery9. The enlargement of the cysts may also cause main and secondary pancreatic ducts obstructions, due to the accumulation of abnormal and viscous fluid. This condition is related to an exocrine pancreas replaced by fatty tissue that causes exocrine insufficiency9. Indeed, pancreatic cystosis may be suspected in the clinical context of patients with cystic fibrosis and multiloculated diffused pancreatic cysts. Then, MRCP may reveal the absence of communication with pancreatic ductal system, and EUS-FNA may reveal the viscous content of the cysts, that results as serous type after biochemical analysis16. Biopsy is considered unnecessary for the diagnosis of pancreatic cystosis17. Several differential diagnoses of pancreatic cysts has to be considered, such as pancreatic pseudocysts, IPMN, serous and mucinous cystadenomas, von Hippel Lindau disease, polycystic kidney disease with pancreatic involvement, and hemorrhage cysts like lymphangioma. In case of pancreatic pseudocysts18, the patient should have a history of inflammation or trauma (Table I). IPMN shows communication with pancreatic ductal system and cysts are more numerous and little in size than macrocysts of pancreatic cystosis. Mucinous cystadenomas are commonly diagnosed in middle-age woman and EUS-FNA reveals mucinous content. Polycystic and von Hippel Lindau disease may be excluded if kidney appears normal. Finally, lymphangioma shows a haemorrhagic cystic content in MRI, that results different from viscous secretion of cystic fibrosis. Thus, the clinical contest can help with the diagnosis19. The overall risk of cancer incidence in patients with cystic fibrosis is similar to general population, while the risk of gastrointestinal tract and pancreatic neoplasms appear to be increased18. To date, literature data revealed that no malignant transformation of pancreatic cystosis has been reported4,8,11,18. However, few cases of mucinous cystadenomas in cystic fibrosis patients with pancreatic cysts have been described19.

Conclusions

The management of this condition includes follow-up with MRI in symptomatic patients and abdominal ultrasound in asymptomatic patients. In general, surgical intervention should be avoided, but it should be considered in patients with abdominal discomforts, persistent gastrointestinal symptoms, increased volume of the macrocysts, in order to avoid the malignant transformation of the possible concomitant mucinous neoplasms4,8,11,18. The peculiarity of our case is the combination of pancreatic cystosis and IPMN.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

5184

