Abstract. – Peptides of the tachykinin (TK) family were first discovered in the gastrointestinal tissue about 75 years ago and supposed to be involved in gastrointestinal (GI) motility. This hypothesis has been repeatedly proven, although the role of TKs on motility is modulatory rather than pivotal. Furthermore, beyond the well-known excitatory role, it has been acknowledged that TKs can also inhibit GI motility. TKs act at 3 receptors termed as TK NK₁ (NK₁r), NK₂ (NK₂r), and NK₃ (NK₃r) receptors. The view gained through intense preclinical research suggested that motor effects induced by the stimulation of NK₁r were prominently mediated by a direct action on smooth muscle, those produced by the stimulation of NK₂r were due to both muscular and neuronal effects, whereas the motor effects induced by NK₃r were exclusively mediated by neuronal effects. Recent functional and anatomical findings in humans are challenging this concept since NK₁r have been found in several kinds of myenteric neurons and selective NK₁ receptor agonists can, in particular conditions, produce GI motor effects likely related to a neuronal site of action. Furthermore, the evidence for a myotrophic role of NK₁r is scarce, and very few studies, if any, have documented a functional role for NK₁r. The findings that an acute or a long-lasting blockade of NK₁r does not alter normal GI functions and that these receptors can modulate visceral sensitivity are good starting points for testing this class of drugs in GI diseases characterised by altered GI motility.

Key Words: Clinical studies, Aprepitant, Nepadutant, Talnetant.

Introduction

Substance P (SP), the most famous component of the tachykinin (TK) peptide family, was first extracted from the horse brain and intestine by von Euler and Gaddum in 1931. The same authors observed that this extract had myotropic activity on isolated intestinal segments and postulated that SP (P means powder, the physical form of the extract) was released in the intestine and was the mediator responsible for its movements. This hypothesis was verified 50 years later when it became evident that TKs were, together with acetylcholine, the main excitatory transmitters to the gastrointestinal (GI) smooth muscle. During the course of these 50 years the TK family enlarged. Erspamer discovered, characterized and sequenced from non-mammalian species peptides with SP-like biological activity which were named tachykinins, i.e., fast relaxants of vascular smooth muscle, which were later shown to have sequence homology to SP. In the early 1980s, three independent groups discovered novel mammalian TKs which were named neurokinin A (NKA) and B (NKB), and soon after elongated forms of NKA were described (neuropeptide-Kappa and -Gamma). At the eve of the new millennium, novel mammalian TKs were identified: hemokinin-1 (HK-1) and its elongated forms endokin A and B (Table I).

TKs must share the common amidated C-terminal motif Phe-X-Gly-Leu-Met-NH₂ (where X has to be a non-polar amino acid) to exert biological functions through TK receptors which have been termed NK₁ (NK₁r), NK₂ (NK₂r), and NK₃ receptors (NK₃r) (Table I). N-terminal SP metabolites, such as SP₁⁻⁵, also exert biological effects, although these effects are not mediated by TK receptors but could involve a site regulating the expression of delta opioid receptors.

TKs are encoded by 3 genes termed TAC1 (SP, NKA, neuropeptide-gamma and -kappa), TAC3 (NKB), and TAC4 (HK-1, endokin A, B, C, and D) and each of these genes produces multiple mRNA isoforms. Thus, both the beta- and gamma-TAC1 mRNAs produce both SP and NKA, whereas both alpha- and delta-TAC1 only encode SP.

Corresponding Author: Alessandro Lecci, BS; e-mail: alecci@menarini.it
TK receptors belong to class 1 (rhodopsin-like) seven transmembrane G-protein-coupled receptors. All tachykinin receptors can activate classical transduction mechanisms linked to phospholipase C activation, and all natural TKs having the common C-terminal sequence act as full agonists on these pathways, whereas their intrinsic activity can vary when measured on other G-protein mediated pathways (e.g., increase of cyclic adenosine monophosphate). TKs can also exert biological effects through non G-protein mediated mechanisms (e.g., sustained activation of mitogen-activated kinases) but the agonist or dose response is unknown for this transduction pathway. Interestingly, endokinin C and D, which have been termed as TK-related peptides because both of them have a Leu residue replacing the common C-terminal Met of TKs exert an antagonist effect through NK receptors.

In the GI tract TKs and their receptors are localized on many cell types, including neurons and nerve fibres and exhibit a remarkable degree of plasticity in response to environmental changes or diseases. As a matter of fact, there is evidence that TKs play a role in several aspects of GI function such as immune-inflammatory processes, tissue integrity, intestinal barrier function, carcinogenesis, blood supply, secretion,afferent signaling and motor regulation. Although all these aspects can influence each other, this article is focussed on the role of TKs and their receptors on GI motor regulation exerted at the peripheral level with particular emphasis on evidence collected in humans. In this respect, it is worth noting that TKs can also modulate GI motility by acting at sites located in the central nervous system, as it occurs for the anti-emetic action produced by blood-brain barrier-penetrating NK receptors.

Expression of TKs and Their Receptors in the GI Tract

In the GI tract the most abundant TK-encoding mRNAs are beta- and gamma-TAC1. TAC4 transcripts have also been detected, although these are likely to be related to immune, rather than motor function. A few papers have described the expression of NKB and none that of TAC3, in spite of the robust evidence (especially

<table>
<thead>
<tr>
<th>Peptides</th>
<th>Amino acid sequence</th>
<th>Receptor preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance P</td>
<td>Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH₂</td>
<td>NK₁ > NK₂ > NK₃</td>
</tr>
<tr>
<td>Neurokinin A</td>
<td>His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH₂</td>
<td>NK₁ > NK₂ > NK₃</td>
</tr>
<tr>
<td>Neuropeptide-gamma</td>
<td>Asp-Ala-Gly-His-Gly-Ile-Ser-His-Lys-Arg-His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH₂</td>
<td>NK₁ > NK₂ > NK₃</td>
</tr>
<tr>
<td>Neurokinin B</td>
<td>Asp-Met-Asp-Phe-Phe-Phe-Val-Gly-Leu-Met-NH₂</td>
<td>NK₁ > NK₂ > NK₃</td>
</tr>
<tr>
<td>Hemokinin-1</td>
<td>Thr-Gly-Lys-Ala-Ser-Gln-Phe-Phe-Gly-Leu-Met-NH₂</td>
<td>NK₁ > NK₂ > NK₃</td>
</tr>
<tr>
<td>Endokinin C</td>
<td>Lys-Vla-Leu-Tyr-Glu-Glu-His-Thr-Phe-Gln-Gly-Leu-Leu-NH₂</td>
<td>Antagonist at NK₁</td>
</tr>
<tr>
<td>Endokinin D</td>
<td>Val-Gly-Ala-Tyr-Leu-Glu-His-Thr-Phe-Gln-Gly-Leu-Leu-NH₂</td>
<td>Antagonist at NK₁</td>
</tr>
<tr>
<td>Hemokinin-1*</td>
<td>Arg-Ser-Arg-Thr-Arg-Gln-Phe-Tyr-Gly-Leu-Met-NH₂</td>
<td>NK₁ > NK₂ > NK₃</td>
</tr>
</tbody>
</table>

* Rat and mouse sequence.
in animals) for the expression of NK₃r in the gut. This pattern of TK gene expression implies that SP and NKA are the most abundant TKs in the GI tract and are always colocalized. Thus, SP and NKA are expressed on nerve fibres from both extrinsic neurons and intrinsic neurons as well as in somata and varicosities of intrinsic neurons. A scheme of TK expression in the GI tract has been outlined on the basis of morphological evidence obtained in laboratory animals. According to this scheme, TKs are expressed in: (i) intrinsic primary afferent neurons (IPANs) which contain both choline acetyltransferase and calbindin and project to both circular muscle (CM) and mucosa; (ii) secretomotor neurons having the same chemical coding as above; (iii) ascending myenteric interneurons which contain both choline acetyltransferase and calretinin; (iv) ascending (excitatory) motor neurons to the CM with long projections colocalizing choline acetyltransferase, neurofilament protein and enkephalin; (v) ascending (excitatory) motor neurons to the CM with short projections colocalizing choline acetyltransferase, gamma-aminobutyric acid and enkephalin; (vi) ascending (excitatory) motor neurons to the longitudinal muscle (LM) which contain both choline acetyltransferase and calretinin; (vii) nerve fibres of capsaicin-sensitive extrinsic primary afferent neurons which have their cell bodies in dorsal root ganglia and send collaterals to the sympathetic prevertebral ganglia. Capsaicin-sensitive neurons have the peculiarity to release TKs at both peripheral and central varicosities, so that they can influence motility through mechanisms involving spinal reflexes or through an axon reflex involving a local release of TKs upon stimulation.

In the human GI tract the expression of TKs (SP in particular) has been detected in the following neurons classified according to morphological characteristics proposed by Brehmer. SP was found in: (i) a minority of type I stubby neurons (small cell body, one axon, short, non-branched lamellar dendrites) some of which have been hypothesized to be ascending interneurons, whereas those expressing enkephalin and projecting to the LM and CM could be cholinergic motor neurons; (ii) type II neurons (multi-axonal, non-dendritic) which project to the mucosa, express calretinin and/or somatostatin and have been proposed to be intrinsic primary afferent neurons; (iii) type III neurons (non-nitergic, one axon and several long, branched dendrites radially emerging from the cell body) where SP could colocalize with either somatostatin or calretinin; (iv) a small minority (0.5%) of type V neurons (neurofilament-positive, small smooth cell body with a single stem process from which very long dendrites and one axon emerge).

Likewise, Holzer and Holzer-Petsche proposed a scheme for the distribution of NK₁r, NK₂r and NK₃r based on animal studies. According to this scheme, smooth muscle cells (both in the CM and LM) and enterocytes express both NK₁r and NK₂r, whereas blood vessels and interstitial cells of Cajal (ICC) seem to express NK₁r only. Indeed, evidence for the expression of NK₁r in smooth muscle cells (functional evidence in cultured cells, morphological evidence in colonic human specimens) and ICC (mRNA in cultured or freshly isolated cells) has been described but their functional meaning remains to be clarified. NK₁r are particularly dense in ICC located in the deep muscular plexus and some immunoreactivity has also been observed in ICC located close to the myenteric plexus, whereas in the human antrum NK₁r have been detected in intramuscular ICC only.

NK₁r and NK₃r have been invariably localized to cell bodies and nerve fibres of the GI nerve plexuses. NK₁r were found on vasomotor neurons in the submucous plexus (SMP) where they play a physiological role in mucosal stroking- and distension-induced vasodilatation. Still in the SMP, NK₁r have been localised to IPANs (those expressing TKs, calbindin and choline acetyltransferase), whereas secretomotor neurons containing either vasoactive intestinal polypeptide (VIP) or neuropeptide Y (NPY) express both NK₁r and NK₃r. Likewise, NK₁r and NK₃r have been found on SMP neurons of the human gut, but the functional role and the neurochemical characterization of these neurons remain unknown.

In the myenteric plexus (MP) of rodents, both NK₁r and NK₃r are expressed on IPANS (calbindin-positive), ascending interneurons and motor neurons (both calretinin-positive), descending interneurons and motor neurons (both positive for nitric oxide synthase, the latter ones also containing VIP). Co-localization of NK₁r or NK₃r with NPY has also been described in the small intestine.

In rodents, NK₁r were only described in nerve terminals which in guinea-pigs were shown to belong to descending interneurons expressing nitric oxide synthase (NOS) or gastrin-releasing peptide. NK₃r were also detected in nerve fibres...
within the muscle layers and some of these fibres expressed TKs. At variance with laboratory animals, in humans specific immunolabeling of NK1r is also present on somata, and in the human colon NK1r are widely expressed on both neuronal cell bodies and fibres of the MP. The chemical coding of neurons expressing NK1r, NK2r and NK3r in the human gut is at present not known, except for the finding of some colocalization of NK2r and TKs in nerve fibres within muscle layers, as previously observed in guinea-pigs.

TK Receptors and GI Motility

Given the extensive distribution of TKs and their receptors in GI neurons and effector cells respectively, it is no wonder that TKs can affect GI motility by acting through multiple mechanisms and sites of action (even with opposite consequences) within the GI wall. In this respect preclinical models have highlighted that NK1r or NK2r agonists can elicit either (or both) excitatory and inhibitory effects on GI motility, whereas the NK2r agonists almost invariably produce excitatory motor effects. However, the indiscriminate access to receptors of exogenously administered agonists renders this approach physiologically unreliable, whereas studies with antagonists allow to appreciate the role of discrete tachykinergic pathways in well-defined physiological and pathological conditions. Overall preclinical evidence indicates that TKs produce excitatory effects by acting on smooth muscle (NK1r and NK2r), ICC (NK1r) and neurons (NK2r, NK3r, and NK3r), whereas TK-induced inhibitory effects are attributable to neuronal effects (NK1r, NK2r, and NK3r) although other mechanisms cannot be excluded.

The involvement of TK receptors in three aspects of motility will be discussed: (i) active contractions elicited by the activation of excitatory motor neurons that are part of the ascending excitatory reflex involved in peristalsis; (ii) regulation of basal smooth muscle tone which is thought to tune the threshold for both the activation of motor reflexes and visceral sensitivity; and (iii) direct activation of neuronal afferent pathways leading to an inhibition of reflex motility.

Active Contractions

As pointed out in the previous paragraph, TKs are colocalized with acetylcholine in motor neurons providing excitatory inputs to both CM and LM, and NK1r and NK2r are located on both CM and LM to mediate contractions due to the reflex activation of these neurons induced by mucosal stimulation or by stretch. Indeed, SP is released from the guinea-pig small intestine when peristalsis is evoked by increasing intraluminal pressure through a capsaicin-resistant but partially hexamethonium-sensitive mechanism. Depolarisation-induced co-release of similar amounts of both SP and NKA from guinea-pig colon motor neurons has also been demonstrated. Likewise, similar amounts of SP and NKA were contained and released during the ascending excitatory reflex in the human small intestine. Whether TKs and acetylcholine are simultaneously co-released is yet an unsolved issue. Functional studies based on the effect of TK antagonists suggest that moderate intestinal distension would release the release of acetylcholine only, whereas more intense stimuli would be required to induce the release of TKs in both humans and animals. However, the difference between mild and intense stimulation in terms of release of mediators could be quantitative rather than qualitative.

In this context it should be pointed out that the efficiency of cholinergic mechanical coupling on GI smooth muscle is much greater than that observed with TKs, and this implies that TK-mediated components of contractions are not evident unless muscarinic receptors are blocked. Indeed, this actually occurs in most of animal and human GI preparations when motility is elicited through electrical stimuli or GI wall distension since NK1r or NK2r antagonists have a very small inhibitory effect (if any) on atropine-sensitive contractions or peristalsis. A notable exception is represented by the colonic CM, where NK2r antagonists decrease the amplitude of contractions induced by electrical field stimulation (EFS) even when muscarinic receptors are viable. Indeed, in all human segments examined so far, i.e., esophagus, ileum, and colon, NK1r and NK2r are expressed on both CM and LM. Despite the fact that selective NK1r and NK2r agonists evoke contractions, the inhibitory effect of NK2r antagonists on non-adrenergic, non-cholinergic (NANC) components of EFS-induced contractions has been only observed in the human ileum and it was limited to short-lasting stimuli. An inhibition of the cholinergic component of EFS-induced twitches by an NK2r antagonist has also been described in the human...
colon LM, but this effect has been observed with antagonist concentrations which far exceed those specific for NK1r. The relative roles of TK receptors in eliciting direct smooth muscle contractions by exogenous application of selective agonists or by the release of endogenous TKs from ascending motor neurons in human GI segments are summarized in Table II.

In the human colon, the largest component of NK2r-mediated contractions is due to a direct effect on smooth muscle. A small atropine-sensitive component has been described when NKA was used as the contractile agent. However, this finding was not replicated when the human colon CM was contracted by NK2r selective agonists. In this latter case, a small indomethacin-sensitive component has been detected, indicating that the stimulation of NK2r produces prostanoid release.

The issue whether stimulation of NK2r can induce the release of acetylcholine is not yet solved. Although NK2r have been localised to nerve varicosities colocalizing TKs and acetylcholine, no direct evidence for NK2r-induced acetylcholine release has been provided yet. Despite this, several results (mostly preclinical) suggest that such an interaction occurs. In both small intestine (guinea-pig) and colon (guinea-pig and rabbit) the inhibitory effect of sub-effective concentrations of muscarinic antagonists on peristalsis is enhanced by the addition of NK2r antagonists. Furthermore, NK2r antagonists reduce a component of colonic hypermotility (giant contractions) elicited by intraluminal irritation, whereas the inhibitory effect of atropine is complete, indicating that endogenous TKs act through NK2r to enhance cholinergic motility.

A similar conclusion can be drawn on the basis of the analysis of sequential addition of muscarinic and NK2r antagonists or vice-versa on EFS-induced contractions in the human colon CM. As is shown in Figure 1, the sum of the inhibitory effects produced by the muscarinic receptor and NK2r antagonists on their own is larger than 100% at all frequencies, indicating that the stimulation of NK2r produces prostanoid release.

In conclusion, in human GI segments, contractions due to the activation of motor neurons is mediated by both acetylcholine and TKs acting through muscarinic and NK2r, respectively. In most of intestinal segments the NK2r-mediated component is not evident unless transmission via muscarinic receptors is blocked. In the human colon, a part of the cholinergic component is modulated by NK2r, and selective antagonists are able to reduce part of the atropine-sensitive contractions.

Spontaneous Motility

In addition to propulsive contractions outlined above, intestinal movements include two other aspects: small amplitude rhythmic phasic contractions and smooth muscle tone. Rhythmic smooth muscle contractions and tone are thought to underlie the mixing of the luminal contents and to regulate the threshold for the activation of motor and secretory reflexes but also for visceral sensitivity, respectively. Rhythmic smooth muscle contractions developing spontaneously in vitro and in vivo are believed to be largely myogenic due to the propagation of slow waves generated by ICC pacemakers to the smooth muscle. However, these rhythmic contractions are subject to neural regulation through both excitatory and inhibitory inputs. In the rat colon especially, the neural inhibitory modulation prevails since in the presence of tetrodotoxin or a NOS inhibitor the amplitude of CM contractions is increased and the effect of the combination of these drugs is not additive. Nevertheless in NANC conditions,
there is evidence that TKs play a modulatory role on spontaneous, rhythmic, hexamethonium-resistant contractions since NK2r antagonists reduce spontaneous mechanical activity by about 50% (50). A similar effect has been observed in the isolated human colon, where NK2r antagonists produce a concentration-dependent inhibition (max 80%) of spontaneous phasic contractions (52). Interestingly, in this latter preparation neither NK1r antagonists nor atropine have any effect whereas tetrodotoxin substantially inhibits these contractions, suggesting that TKs could be released from tetrodotoxin-sensitive nerves other than excitatory motor neurons (52).

A further effect of TKs which contributes to spontaneous motility of GI smooth muscle concerns the modulation of basal tension and intraluminal pressure. In the mouse stomach neither NK1r nor NK2r antagonists affect spontaneous mechanical activity under normal conditions. However, NK2r but not NK1r antagonists produce a concentration-dependent gastric relaxation in mdx dystrophic mice or in normal mice pretreated with a NOS inhibitor (53). Likewise, in isolated rat small intestinal segments the application of NK2r but not NK1r antagonists decreases resting tone (up to 70% of the maximal effect of isoprenaline) in a concentration-dependent manner. The source from which TKs are released to mediate this effect remains obscure since the relaxant effect of NK2r antagonists was resistant to apamin, NOS inhibitors, capsaicin pretreatment, indomethacin, tetrodotoxin, omega-conotoxin, hexamethonium, nifedipine and to the removal of the mucosa (54). No evidence for a relaxant effect by NK2r antagonists has been provided in isolated human preparations. The selective NK2r antagonist nepadutant, however, produced a significant increase of rectal compliance during ascending limit balloon distension in volunteers who had previously received a glycerol enema (12). Interestingly, glycerol enema has been shown to induce a mild mucosal inflammation and a reduction of rectal air nitric oxide (55), suggesting that, as it occurs in animals (56), NK2r antagonists could be able to reduce colonic CM tone following NOS inhibition in humans, too.

Figure 1. Effect of sequential addition of NK2r and muscarinic antagonists or muscarinic plus NK2r antagonists on frequency-response curves on human colon CM (from 35 with permission of the publisher).

A further effect of TKs which contributes to spontaneous motility of GI smooth muscle concerns the modulation of basal tension and intraluminal pressure. In the mouse stomach neither NK1r nor NK2r antagonists affect spontaneous mechanical activity under normal conditions. However, NK2r but not NK1r antagonists produce a concentration-dependent gastric relaxation in mdx dystrophic mice or in normal mice pretreated with a NOS inhibitor (53). Likewise, in isolated rat small intestinal segments the application of NK2r but not NK1r antagonists decreases resting tone (up to 70% of the maximal effect of isoprenaline) in a concentration-dependent manner. The source from which TKs are released to mediate this effect remains obscure since the relaxant effect of NK2r antagonists was resistant to apamin, NOS inhibitors, capsaicin pretreatment, indomethacin, tetrodotoxin, omega-conotoxin, hexamethonium, nifedipine and to the removal of the mucosa (54). No evidence for a relaxant effect by NK2r antagonists has been provided in isolated human preparations. The selective NK2r antagonist nepadutant, however, produced a significant increase of rectal compliance during ascending limit balloon distension in volunteers who had previously received a glycerol enema (12). Interestingly, glycerol enema has been shown to induce a mild mucosal inflammation and a reduction of rectal air nitric oxide (55), suggesting that, as it occurs in animals (56), NK2r antagonists could be able to reduce colonic CM tone following NOS inhibition in humans, too.

Neuronal Modulation of Motility

Beyond the relatively well characterized excitatory effects at the neuromuscular junction, TKs...
exert a neurotransmitter role in the communication amongst neurons in both MP and SMP. In this context, both NK\textsubscript{1r} and NK\textsubscript{3r} contribute to slow excitatory postsynaptic potentials of MP IPANs during the activation of ascending excitatory pathways while NK\textsubscript{1r} also participate in descending inhibitory circuitries19,57. Indeed, GI motor activity can be altered by TK agonists and antagonists also through an interaction with receptors located on neuronal excitatory or inhibitory motor pathways. In the preclinical setting, either the selective stimulation of NK\textsubscript{3r} or the concomitant stimulation of both NK\textsubscript{1r} and NK\textsubscript{3r} activates acetylcholine- and TK-expressing excitatory motor neurons58,59, whereas a possible neuronal excitatory role of NK\textsubscript{2r} has been identified in hexamethonium-resistant guinea-pig small intestine peristalsis60. On the other hand, the selective stimulation of NK\textsubscript{1r} by SP produces a nitric oxide-dependent inhibitory effect on ongoing guinea-pig small intestine peristalsis61. NK\textsubscript{3r}-mediated nitric oxide-dependent and -independent inhibitory motor effects have been reported in guinea-pig small and large intestine preparations62,63. As a matter of fact, the selective antagonism of NK\textsubscript{1r}, NK\textsubscript{2r}, or NK\textsubscript{3r} has been shown to accelerate rabbit isolated colon peristalsis64 or intestinal transit in a rat model of surgical ileus65. Unfortunately, no evidence has been provided to indicate if such neuronal NK\textsubscript{1r}, NK\textsubscript{2r}, or NK\textsubscript{3r}-mediated excitatory or inhibitory mechanisms operate in isolated human specimens, too.

Other neuronal targets through which TKs can potentially affect GI motility are fibres of extrinsic primary afferent (DRG) neurons. The subset of capsaicin-sensitive neurons is known to be a source of TKs but rarely a target for these peptides. Nevertheless, NK\textsubscript{1r} have been detected in mouse nodose ganglion neurons projecting to the viscera46, and functional evidence for the expression of NK\textsubscript{1r} in capsaicin-sensitive pelvic DRG neurons has been also provided67,68. Obviously an interference with reflex GI motility exerted through the activation of extrinsic sensory fibres is expected to occur in vivo rather than in vitro, although it should not be forgotten that capsaicin-sensitive neurons are capable to release mediators locally upon stimulation, which allows for a modulatory effect to occur even in vitro.

A peripheral modulation of visceral sensitivity in preclinical models of colonic distension has been clearly demonstrated by either NK\textsubscript{1r} or NK\textsubscript{3r} antagonists. In fact, NK\textsubscript{1r} antagonists revert inflammation- or stress-induced hypersensitivity to colonic distension without altering visceral nociception under normal conditions, whereas NK\textsubscript{3r} antagonists produce a clear visceral hyposensitivity in normal animals19,56. Interestingly, the effect of NK\textsubscript{3r} antagonists was associated with a specific reversal of colonic distension-induced hyperexcitability and c-fos expression in spinal cord dorsal horn neurons following colonic inflammation, whereas the responses elicited by electrical stimulation of the pelvic nerve or exposure to somatic noxious stimuli remained unaffected56. Alterations of the sensory transmission elicited by colonic distension have been described in NK\textsubscript{1r} knock-out mice69, and reversal of visceral hypersensitivity by NK\textsubscript{3r} antagonists has been also reported56 but it is unclear if these effects are exerted at the peripheral or central nervous system level.

Clinical Studies

The availability of potent and selective antagonists at the human TK receptors could have theoretically allowed a progress in the understanding about the role of these receptors in human GI diseases. Unfortunately, the progress made was quite modest. Ezlopitant, a selective NK\textsubscript{1r} antagonist, showed a promising effect in a pilot trial in IBS, suggesting a role of these receptors in the modulation of visceral sensitivity71. However, blockade of NK\textsubscript{1r} had no effect on acid-induced hypersensitivity in the human esophagus72. At the colonic level, a NK\textsubscript{1r} antagonist reduced both the compliance and the volume threshold for discomfort under isobaric conditions but not when distension was performed by the method of ascending limits in healthy volunteers73. Interestingly, the stimulation of NK\textsubscript{1r} triggers a relaxation on precontracted human colon CM and LM, but this response was impaired in specimens taken from patients with inflammatory bowel diseases74. These patients suffer from diarrhea, and diarrhea has been reported as a common adverse event in trials in which NK\textsubscript{1r} antagonists were tested as analgesic-antimigraine drugs75. Overall, these results suggest that descending motor neurons regulating colonic tone are tonically activated by NK\textsubscript{1r} and that blockade of this mechanism could stimulate colonic motility.

The blockade of NK\textsubscript{1r} by talnetant did not affect colonic compliance nor sensory threshold recorded by the method of ascending limits or
random phasic distensions in healthy volunteers. The same antagonist had no effect on IBS symptoms in 2 phase II studies where a wide range of doses (20-800 mg/day) was administered to a consistent number of patients. The effect of NK_2r antagonists in patients suffering from GI diseases has not yet been reported. The available evidence indicates that the intravenous infusion of NKA increases small intestinal motility recorded by manometry in healthy volunteers. The fasting pattern of the migrating motor complex was disrupted after NKA administration, since the total duration of phase II motility (>2 contractions/min, without burst organization) as well as the amplitude and frequency of contractions was increased, whereas the duration of phase I motility (periods of relative quiescence with <2 contractions/min) was decreased. In contrast, phase III motility (bursts of propagating contractions with a frequency of 11-12 contractions/min) was not altered by NKA. Nepadutant, a selective NK_2r antagonist, prevented the motor effects induced by NKA administration in healthy volunteers without altering the normal pattern of the migrating motor complex in volunteers treated with saline. Interestingly, volunteers treated with NKA and placebo (n=10) experienced a series of gastrointestinal adverse events (n=10) including abdominal pain, nausea, vomiting and borborygmi, whereas no such adverse events were recorded in the group receiving both NKA and nepadutant. Overall these results indicate that the blockade of NK_2r does not affect physiological motility of the small intestine or GI sensitivity, whereas the stimulation of these receptors increases motility and alters GI sensitivity.

The effect of nepadutant, at the same dose used as in the above mentioned study, was also investigated on sensory thresholds and compliance tested by rectal distension with a barostat by the method of ascending limits. This study was carried out in healthy volunteers challenged with a glycerol enema. Nepadutant did not significantly alter sensory thresholds, which were on the other hand only marginally decreased by glycerol. However, a small but significant increase in rectal compliance (larger balloon volume at constant pressure) was recorded after nepadutant as compared to placebo, suggesting that in the presence of mild inflammation, NK_2r blockade facilitates the accommodation of smooth muscle in response to radial stretch. A question arises whether this modulatory effect of a NK_2r antagonist on accommodation occurs during inflammation only or under normal conditions, too. Animal studies indicate that NK_2r antagonists do not affect GI compliance under normal conditions but do so following pharmacologically induced or genetically determined NOS inhibition. However, NK_2r antagonists tend to decrease compliance during guinea-pig small intestinal peristalsis or in the rat colon during physiological isovolumetric recordings.

The dose of nepadutant used in the above mentioned clinical studies (8 mg intravenously) allowed to block the GI effects of exogenously administered or endogenously released TKs acting at NK_2r, but the duration of this blockade was limited to 2-3 hours. Since the time frame of GI functions outlasts this period, a further study was aimed at evaluating the effects of a longer lasting blockade of NK_2r. Therefore, a larger dose of nepadutant (16 mg intravenously every 12 h) was administered for 8 days in healthy male and female subjects who had to fill in a questionnaire reporting the bowel habits (number of bowel movements and stool consistency according to the Bristol Scale of Stool Form) of the day before. Nepadutant did not alter bowel habits as compared to the baseline (the day before starting the treatment). Interestingly, in the group treated with placebo, bowel movements significantly decreased during the first day of treatment and thereafter returned to the baseline value; no such decrease was observed in the group treated with nepadutant. We interpreted the drop of bowel movements observed in the placebo group as stress-related due to the expectation of receiving 2 injections a day and to be confined to the clinical unit for several days. Whatever the cause of this drop, the fact that nepadutant can prevent an inhibition of motility (whatever the cause of this inhibition), provides a sort of proof of concept for the possibility to normalise bowel habits by blocking NK_2r in intestinal (or other peripheral) neurons. The presence of NK_2r on varicosities of guinea-pig myenteric neurons expressing either NOS or gastrin-releasing peptide provides an anatomical substrate to explain a NK_2r-mediated inhibitory modulation of GI motility.

Conclusions

TKs are important modulators of GI physiology, being able to affect motor, secretory and sen-
sory functions. Animal studies have provided evidence that the stimulation of both NK₁r and NK₂r located on effector cells (either ICC and smooth muscle or smooth muscle only, respectively) mediate the excitatory NANC component due to activation of motor neurons. An increase of motility through stimulation of neuronal NK₁r or NK₂r has also been shown. On the other hand, in adequate preclinical models it is possible to appreciate an inhibitory modulation of motility exerted by neuronal NK₁r, NK₂r or NK₃r.

In humans, NK₁r play a pivotal role in motility by acting on either smooth muscle or neurons. No NK₂r-mediated motor effect has been yet described. The NANC excitatory input to both CM and LM is almost exclusively provided by NK₂r. Neuronal NK₁r or NK₂r exert an inhibitory brake on motility, although these receptors seem to operate in different contexts. Overall the results obtained in humans indicate that NK₁r antagonists could be useful in motility disorders characterized by constipation whereas NK₂r antagonists could be tested in disorders characterized by either diarrhea or constipation.

A recent paper has shown that administration of anti-emetic doses of aprepitant (a NK₁r antagonist) does not alter GI or colonic propulsion in healthy volunteers.

References

Tachykinin receptors and gastrointestinal motility: focus on humans

49) Forrest AS, Ordog T, Sanders KM. Neural regulation of slow-wave frequency in the murine gastric antrum. Am J Physiol Liver Physiol 2006; 290: G486-G495.

