Progress in endoscopic imaging of gastrointestinal tumors

G. COSTAMAGNA, M. MARCHESE

Operative Unit of Endoscopic Digestive Surgery, Catholic University of the Sacred Heart, Rome (Italy)

Abstract. – State of the Art: New technologies in the form of high-magnification or “zoom” endoscopy complemented by chromoscopic agents or Narrow Band Imaging permit early detection of neoplastic lesions, particularly flat and depressed types. Detailed characteristics of the mucosal surface can be obtained, enabling an in vivo “optical biopsy” to make an instant diagnosis at endoscopy, previously possible only by using histological or cytological analysis. Advances in fiber optics, light sources, detectors, and molecular biology have led to the development of several novel methods for tissue evaluation in situ.

Perspectives: Promising imaging techniques include fluorescence endoscopy, optical coherence tomography, confocal microendoscopy, molecular imaging, and light scattering and Raman spectroscopy.

Conclusions: These techniques probably are able to replace conventional biopsy in the near future, but the endoscopists should become increasingly more familiar with histopathologic findings.

Key Words: Gastrointestinal tumors, Narrow band imaging, Fujifion intelligent colour enhancement, i-Scan, Autofluorescence imaging, Spectroscopy, Confocal laser endomicroscopy, Endocytoscopy, Optical coherence tomography.

Introduction

The detection of small premalignant lesions is largely dependent upon the experience of the endoscopist and the identification of subtle mucosal changes with standard white light endoscopes. Once the lesion has been detected, visible suspicious areas are targeted biopsied or endoscopically removed to obtain a definitive diagnosis. In addition, in diseases like ulcerative colitis or Barrett’s oesophagus (BE) random biopsies are recommended, but it remains questionable whether this time-consuming approach is clinically effective. This need led to intensified efforts to develop an “ideal” technique that could objectively detect the maximum number of cases of cancer with a minimum number of biopsies (Table I).

Red Flag Techniques With “Virtual” Chromoendoscopy

“Red flag” methods involve special techniques that are added to standard white-light endoscopy in order to increase the sensitivity for detecting early neoplasia in a broadfield imaging examination. Olympus Narrow Band Imaging (NBI), Fujifion Intelligent Colour Enhancement system (FICE), and Pentax i-scan are applied to a new generation of high-resolution endoscopes, allowing the endoscopist to easily switch between the “Virtual chromoendoscopy-mode” and the normal “High resolution-mode” with no need for special equipment or dyes.

NBI works through the application of a special optical filter to the white light source, enabling to “narrow” the wavelength of the light and to emphasize both the mucosal “pit-pattern” and the vascular network. The FICE system is based on a computed spectral estimation technology that processes the reflected photons to reconstruct virtual images with a choice of different wavelengths. This leads to enhancement of the tissue microvasculature as a result of the differential optical absorption of light by haemoglobin in the mucosa. I–Scan (Pentax, Tokyo, Japan) is an endoscopic postprocessing light filter technology using sophisticated software algorithms with online image mapping technology embedded in the high-definition EPKi processor. This technology enables resolution above HDTV standard, which can provide detailed analysis based on vessel (V-mode), pattern (P-mode), or surface architecture (SE-mode).
Progress in endoscopic imaging of gastrointestinal tumors

Prior studies have demonstrated the value of virtual chromoendoscopy in the evaluation of patients with upper GI lesions including BE dysplasia6, and the classification of colorectal lesions 7-9. However, a few recent studies have shown conflicting results with no improvement in adenoma detection rates10-12.

Functional Imaging

While NBI, FICE, and i-Scan rely on improved anatomic resolution and contrast, other methods focus on functional imaging. During progression from normal tissue to neoplasia, tissue undergoes both architectural and biochemical changes which lead to alterations in its interaction with light, producing spectral signatures useful to differentiate between various tissues.

Autofluorescence imaging (AFI) detects subtle changes in the concentration of specific chemicals in tissue that have the ability to fluoresce when activated by specific wavelengths of light. As an example, most changes noted in BE with AFI rely on loss of collagen in dysplastic tissue resulting in reduced green and increased red fluorescence13.

Raman spectroscopy is based on detecting characteristic spectral “fingerprints” of molecules in the tissue based on the molecular vibrations in response to light energy14. Reflectance spectroscopy qualifies the colours and the intensity of reflected light, altered by the tissue through absorption of certain wavelengths such as haemoglobin, thus defining vascularity and oxygenation status. Light scattering spectroscopy uses the variation in scattered light across a full spectrum to measure the size and density of nuclei in the epithelial layer. This is a highly accurate method which correlates directly with histologic changes of dysplasia15.

Some authors suggest that it may be ideal if AFI and NBI could be used back-to-back in a complimentary fashion with a multi-modal system that incorporate high-resolution videendoscopy (HRE), NBI and AFI: high-resolution imaging should be used for a standard examination, AFI to detect suspicious lesions in selected patients and NBI for a close inspection of these areas16.

Virtual Histology

In vivo confocal laser endomicroscopy (CLE) is a newly developed diagnostic tool that allows immediate optical histology of the mucosal layer during ongoing endoscopy. The quality of the new, detailed images obtained with CLE might be the start of a new era.

Confocal laser microscope can be integrated into the distal tip of a conventional video endoscope (Pentax EC-3870CIFK; Pentax, Tokyo, Japan), or a miniaturized probe, using a single optical-mode fibre acting as both the illumination point source and the detection pinhole can be used as “baby-scope” (Optiscan Pty. Ltd., Notting Hill, Victoria, Australia, and Cellvizio, Mau

<table>
<thead>
<tr>
<th>“Red flag” techniques</th>
<th>Chromoendoscopy</th>
<th>Virtual chromoendoscopy (NBI, FICE, I-Scan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Lugol’s Solution</td>
<td>Detection of early squamous carcinoma</td>
<td></td>
</tr>
<tr>
<td>– Methylene Blue</td>
<td>Detection of Barrett’s esophagus</td>
<td></td>
</tr>
<tr>
<td>– Indigo Carmine</td>
<td>Detection of gastroduodenal malignancies</td>
<td></td>
</tr>
<tr>
<td>– Acetic Acid</td>
<td>Detection of Barrett’s esophagus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional imaging</th>
<th>Light-scattering spectroscopy</th>
<th>Subcellular morphological examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raman spectroscopy</td>
<td>Molecular histopathologic examination</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virtual histology</th>
<th>Confocal microscopy</th>
<th>Cross-sectional histopathologic examination of mucosal neoplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocytoscopy</td>
<td>Intracellular changes of mucosal neoplasia</td>
<td></td>
</tr>
<tr>
<td>Optical coherence tomography</td>
<td>Cross-sectional histopathologic examination of mucosal neoplasia</td>
<td></td>
</tr>
</tbody>
</table>

Table I. Novel imaging techniques in digestive endoscopy.
amined specimen. Series of confocal images within successive planes can be used to reconstruct three-dimensional structures in a virtual specimen18.

Several prospective studies have already been published confirming the high level of diagnostic accuracy of CLE. The diagnostic spectrum of CLE is currently expanding from screening and surveillance for colorectal cancer19 towards Barrett’s esophagus20, Helicobacter pylori-associated gastritis21, and gastric cancers22. Several other clinical applications – such as coeliac disease23,24, microscopic colitis25, squamous-cell carcinoma26, and architectural evaluation of the liver during laparoscopy27 – have also been proposed.

Endocytoscopy (EC) provides, in combination with chromoagents, in vivo histologic images with the use of an ultra high magnification (450-1125 times) catheter which is passed through the working channel of the endoscope. Unlike CLE, EC provides images in colour but is limited to the most superficial cell layer. Endocytoscopy imaging may correlate closely with histopathology in differentiating between neoplastic and non-neoplastic lesions as well as adenomas and invasive cancer28, with an estimated sensitivity and specificity of 79 and 90% respectively29.

Optical coherence tomography (OCT) performs a cross-sectional, high-resolution, tomographic imaging of the microstructure of mucosal tissues by measuring back-scattered or back-reflected infrared light, similar to that of B-mode ultrasound imaging30. Most of the so far published studies aimed at evaluating OCT imaging to detect dysplasia and early cancer at different levels of the gastrointestinal tract31. Unfortunately, attempts to identify OCT patterns characteristics for dysplasia within BE, especially the high-grade type, have been substantially disappointing32,33. Whether no data are currently available about its use in the stomach, small bowel and colon34,35, more promising are the results regarding the discrimination between non-neoplastic and neoplastic tissue when bilio-pancreatic strictures of unknown etiology are identified during an endoscopic retrograde cholangiopancreatography (ERCP) procedure36,37.

The ability of OCT imaging to recognize the villous pattern and submucosal inflammatory changes, could be used to identify and stage colonic disease38, and to differentiate patients with Crohn’s disease from those with ulcerative colitis39.

Conclusions

Current limitations of standard endoscopic practice are rapidly being overcome by advanced methods described in this review. Unfortunately, lack of such studies does not allow clear recommendations about the clinical use of these promising technologies.

At this time, clinicians should resist the temptation to use these very promising, but experimental, technologies in making patient management decisions, and a detailed “japanese-like” evaluations is mandatory in western Countries, to achieve an early diagnosis of all gastrointestinal cancers. In the future, the endoscopists should become increasingly more familiar with histopathologic findings, in order to draw the full potential benefits of these new techniques.

References

8) HIRATA M, TANAKA S, OKA S, KANEKO I, YOSHIDA S, YOSHINARA M, CHAYAMA K. Magnifying endoscopy

10) Rex DK, Helbig CC. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. Gastroenterology 2007; 133: 42-47.

30) HUANG D, SWANSON EA, LIN CP, SCHUMAN JS, STINSON
WG, CHANG W, HEE MR, FLOTTÉ T, GREGORY K, PULI-

31) SIVAK MV Jr, KOBAYASHI K, IZATT JA, ROLLINS AM, UNG-
RUNYAWEE R, CHAK A, WONG RC, ISENBERG GA, WILLIS
J. High resolution endoscopic imaging of the GI
tract using optical coherence tomography. Gastro-

32) LI XD, BOPPART SA, VAN DAM J, MASHIMO H, MUTINGA
M, DREXLER W, KLEIN M, PITRIS C, KOINSKY ML, BRESIN-
KI ME, FUJIMOTO JG. Optical coherence tomogra-
phy: advanced technology for the endoscopic
imaging of Barrett's esophagus. Endoscopy 2000;
32: 921-930.

33) PONEROS J. Optical coherence tomography and the
detection of dysplasia in Barrett's esophagus.
Gastrointest Endosc 2005;62: 832-833

34) HSILING PL, PANTANOWITZ L, AGUIRRE AD, CHEN Y,
PHATEK D, KO TH, BOURBOUN S, SCHNITT SJ, RAZA S,
CONNOLLY JL, MASHIMO H, FUJIMOTO JG. Ultrahigh-
resolution and 3-dimensional optical coherence
tomography ex vivo imaging of the large and
small intestines. Gastrointest Endosc 2005; 62:
561-574.

35) ANANDASABAPATHY S. Endoscopic imaging: emerging
optical techniques for the detection of colorectal
neoplasia. Curr Opin Gastroenterol 2008; 24: 64-
69.

36) SINGH P, CHAK A, WILLIS JE, ROLLINS A, SIVAK MV Jr. In
vivo optical coherence tomography imaging of the
pancreatic and biliary ductal system. Gastrointest

37) TESTONI PA, MARIANI A, MANGIAVILLANO B, ARCidia-
cono PG, DI PIETRO S, MASI E. Intraductal optical
coherece tomography for investigating main
pancreatic duct strictures. Am J Gastroenterol
2007; 102: 269-274.

38) MASI E, MANGIAVILLANO B, ALBARELLO L, MARIANI A,
DOGLIONI C, TESTONI PA. Pilot study on the correla-
tion of optical coherence tomography with histol-
ogy in celiac disease and normal subjects. J Gas-

39) SHEN B, ZUCCARO G Jr, GRAMLICH TL, GLADKOVA N,
TROLLI P, KARETA M, DELANEY CP, CONNOR JT, LASHER
BA, BEVINS CL, FELDCHTEIN F, REMZI FH, BAMBRICK ML,
FAZIO VW. In vivo colonoscopic optical coherence
tomography for transmural inflammation in inflam-
matory bowel disease. Clin Gastroenterol Hepatol