Mitochondria-mediated disturbance of fatty acid metabolism in proximal tubule epithelial cells leads to renal interstitial fibrosis

W. SHEN, X.-X. JIANG, Y.-W. LI, Q. HE

Department of Nephrology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China

Abstract. – OBJECTIVE: To investigate the role of mitochondria-mediated fatty acid metabolism in proximal tubule cells in renal interstitial fibrosis.

MATERIALS AND METHODS: Intraperitoneal injection of folate was performed to induce renal interstitial fibrosis in mice. Polymerase chain reaction (PCR) was used to detect the expression of cytochrome c oxidase subunit IV (COX4IL) and phosphoenolpyruvate carboxykinase 1 (PCK1) in samples. Electron microscope was used to detect the activity of mitochondria. Serum creatinine and urea nitrogen were chosen as evaluation criteria for renal function. Western-blotting was used to detect protein expression of cells. Immunohistochemistry was used to test renal structure and deposition of collagen.

RESULTS: In renal interstitial fibrosis, mitochondria mediated the dysfunction and the promotion of tubulointerstitial fatty acid metabolism. Besides, it could also reduce renal interstitial fibrosis and alleviate the fatty acid metabolism of tubulointerstitial fibrosis.

CONCLUSIONS: Mitochondrial dysfunction induced fatty acid metabolism is an important factor to promote the progress of renal interstitial fibrosis. Intervention of related targets of fatty acid metabolism is expected to become a new treatment for renal interstitial fibrosis.

Key Words: Mitochondria, Fatty acids, Proximal tubule epithelial cells, Renal interstitial fibrosis.

Introduction

The incidence of chronic kidney disease (CKD) is increasing year by year, accounting for 10% of CKD patients in China. Renal interstitial fibrosis is a common pathological manifestation of CKD resulted from various causes. Common unilateral ureteral ligation (UUL) model, ischemia-reperfusion model and the folic acid model are models of acute kidney injury (AKI) and subsequent conversion to chronic kidney disease. Folic acid plays an important role in the body. A large number of folic acid enter the body circulation to form unbound folic acid crystallization, leading to acute tubular necrosis, and subsequently renal interstitial fibrosis. Although it is well known that mitochondria is the major site for fatty acid metabolism, it is still uncertain whether mitochondria dysfunction will lead to fatty acid metabolism and kidney damage. In addition, folic acid also acts as important carbon unit carrier. Specifically, when the amount of folic acid in the circulation exceeds the physiological level, it will cause folic acid crystallization, which will further clog the tubules consequently leading to acute tubular damage and a remarkable decline in early renal function, especially for the first seven days. Renal dysfunction will persist for 30 days with gradual improvement, and eventually stabilization.

To verify the interplay among mitochondria, folic acid and renal interstitial fibrosis, first of all, it is important to establish a good model of renal interstitial fibrosis in our study. Common models of acute kidney injury (AKI) include unilateral ureteral ligation (UUL) model, ischemia-reperfusion model and the folic acid model. AKI could subsequently be converted to CKD. Folic acid induced renal interstitial fibrosis model was applied in our study. Niclosamide is a salicylamide derivative that inhibits mitochondrial oxidative phosphorylation and reduces the ATP production of energy substance. It is certain that the exploration of the interplay among mitochondria, folic acid and renal interstitial fibrosis, will provide novel therapeutic options for renal interstitial fibrosis in the future.
Materials and Methods

Mice and Animal Models
Male C57BL/6J mice weighing approximately 18-22 g were acquired from the Specific Pathogen-Free Laboratory Animal Center of Nanjing Medical University and maintained according to the Guidelines of the Institutional Animal Care and Use Committee at Nanjing Medical University. Folate (Sigma-Aldrich, St. Louis, MO, USA) was administered intraperitoneally at a dose of 300 mg/kg. Sham- intraperitoneally injected mice, were used as normal controls. The kidneys were harvested at 1, 7, 30, 90 days after they were intervened. A portion of the kidney was fixed in 10% phosphate-buffered formalin, followed by paraffin embedding for histological and immunohistochemical staining. Another portion was immediately frozen in Tissue-Tek optimal cutting temperature compound (Tissue-Tek, Torrance, CA, USA) for cryosection. The remaining kidney tissue was snap-frozen in liquid nitrogen and stored at -80°C for extraction of RNA and protein. This study was approved by the Animal Ethics Committee of Nanjing Medical University, Animal Center.

Western-Blot Analysis
The kidneys were lysed with radio-immunoprecipitation assay solution containing 1% NP40, 0.1% sodium dodecyl sulfate, 100 mg/mL phenyl methane sulfonyl fluoride, 1% protease inhibitor cocktail, and 1% phosphatase I and II inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA) on ice. The supernatants were collected after centrifugation at 13,000 x g at 4°C for 30 min. Protein concentration was determined by bicinchoninic acid protein assay (BCA Kit; Pierce Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. An equal amount of protein was loaded into 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto polyvinylidene difluoride (PVDF) membranes. The primary antibodies were as follows: anti-FN (Sigma-Aldrich, St. Louis, MO, USA), anti-α-SMA (Sigma-Aldrich, St. Louis, MO, USA), anti-tubulin (Sigma-Aldrich, St. Louis, MO, USA), anti-CPT-1 (Sigma-Aldrich, St. Louis, MO, USA) and tubulin (Sigma-Aldrich, St. Louis, MO, USA).

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. cDNA was synthesized with 1 μg of total RNA, ReverTra Ace (Vazyme, Jiangning, Nanjing, China), and oligo (dT) 12-18 primers. Gene expression was measured by Real-time PCR assay (Vazyme, Jiangning, Nanjing, China) using 7300 Real-time PCR system (Applied Biosystems, Foster City, CA, USA). The relative amount of mRNA or gene to internal control was calculated using the equation 2ΔCT, in which ΔCT = CT gene – CT control.

Immunohistochemical Staining
Kidney sections at 3 μm thickness were fixed for 15 min in 4% paraformaldehyde, followed by permeabilization with 0.2% Triton X-100 in phosphate-buffered saline (PBS) for 5 min at room temperature. After blocked with 2% donkey serum for 60 min, the slides were immunostained with anti-FN (Sigma-Aldrich, St. Louis, MO, USA), anti-α-SMA (Sigma-Aldrich, St. Louis, MO, USA), and collagen I (Sigma-Aldrich, St. Louis, MO, USA).

Detected Serum Creatinine, Urea Nitrogen and ATP
To detect creatinin, urea and ATP levels, Creatinine Assay kit (DIUR-500, BioAssay Systems, Hayward, CA, USA), urea Assay kit (DICT-500, BioAssay Systems, CA, USA) and ATP (EATP-100, BioAssay Systems, Hayward, CA, USA) were used according to the instruction.

Statistical Analysis
Western-blotting, RT-PCR, and immunohistochemical staining were all repeated at least three times independently. The histologic analysis and immunostaining, quantification were performed by using Image-Pro Plus 6.0 software (Media Cybernetics, Silver Springs, MD, USA). For Western-blot analysis, quantitation was performed by scanning and analyzing the intensity of the hybridization signals using NIH Imagine software. All data examined are presented as mean±SD. Statistical analysis of data was performed using the Sigma Stat Software (Jandel Scientific Software, San Rafael, CA, USA). Comparisons between groups were made using one-way ANOVA, followed by Student’s t-test. p<0.05 was considered statistically significant.
Results

Folate-Induced Renal Fibrosis is in a Time-Dependent Manner

On the first day after intraperitoneal injection of 300 mg/kg bw folic acid, the renal function of mice (serum creatinine and blood urea nitrogen) in the experimental group was significantly improved. Although mice in experimental group recovered gradually, the recover period was still longer than 30 days. In addition, the level of blood urea nitrogen at day 1, 7 and 30 were higher than those in the control group; the differences were statistically significant (p<0.05) (Figure 1A, B). At day 1, tubular dilatation was presented after folate injection, tubule epithelial cells became necrotic, and renal interstitial fibrosis started at day 7 (Figure 1C). Besides, a large amount of red collagen formed at day 30 (Figure 1C). Quantitative analysis showed that the Masson and collagen staining positive regions presented an increasing trend over time (Figure 1D, E).

Increased Expressions of Folic Acid Induced Renal Fibrosis Related Indicators

Renal interstitial fibrosis is characterized by inflammatory cell infiltration, accumulation of extracellular matrix (ECM), innate cellular activation, proliferation and phenotypic loss. Fibroblasts are the major ECM-producing cells that express α-SMA and other markers after activation. Immunohistochemical staining showed that the expression of α-SMA and collagen I in renal tissue increased significantly from day 1 to 30, and peaked at day 30. α-SMA was mainly in the tubulointerstitial and glomerular basement membrane, while the collagen I was in the renal tubulointerstitial (Figure 2A). Western-blot results showed that the expression of FN and α-SMA increased in a time-dependent manner (p<0.05) with a peak value reached at day 7 (Figure 2B, C).

Dysfunction of Mitochondrial in Tubulointerstitial Fibrosis

To find out the effect of mitochondria dysfunction in tubulointerstitial fibrosis, the expression levels of COX4IL and PCK1 were determined. As shown in Figure 3A, the mRNA level of COX4IL was significantly reduced at day 1 and 7. At the same time, mRNA expression of PCK1, a regulator of the tricarboxylic acid cycle, was also significantly decreased (Figure 3B). Next, we evaluated if there is morphological change of mitochondria between experimental and control groups. SEM results showed that the number of mitochondria decreased sharply and the morphology was shrunk and fragmented in the acute phase. The number of mitochondria recovered at day 30, which was longer than that in the acute phase. However, there was still morphological abnormalities compared with the control group (Figure 3C-F).

Fatty acid Metabolism Disorder in Folic Acid-Induced Nephropathy Model

Fatty acid metabolism is the main mode of energy supply in proximal tubular epithelial cells. The experimental results showed that the mRNA expression of key enzymes of fatty acid metabolism was decreased after injection of folic acid. A semi-quantitative analysis of the oil-red positive region suggested that it was maximal at day 7 and still remained higher at day 30 compared to that of the control group (Figure 4A). Lipid deposition demonstrated lipid synthesis and catabolism were active. CPT-1a is a key protein which regulates the transport of fatty acids into the mitochondria; its decreased expression suggests a fatty acid transport disorder. Therefore, we measured the expression level of CPT-1a after folic acid injection in renal tissues. When renal tissue specimens were induced by folic acid for 30 days, the results revealed a significant decrease in the expression of CPT-1a (carnitine palmitoyl transferase 1a) (Figure 4B). The mRNA of CPT-1a in the total RNA of the tissue was also significantly decreased (p<0.05) (Figure 4C). The immunohistochemical staining indicated that expression of CPT-1a in the diseased part of the tissue was significantly decreased (Figure 4D). In addition, we found that the expression of carnitine acetyltransferase (Figure 4E) and ACOX1 (Acyl-CoA Oxidases1) was also decreased. Furthermore, the correlation between serum urea nitrogen level and mRNA expression of COX4IL in mitochondrial electron transport chain, and mRNA expression of fatty acid metabolism enzyme ACAD9 was further analyzed (Figure 4F). The results showed that the level of serum urea nitrogen was negatively correlated with mRNA expressions of COX4IL and ACAD9 (R² = 0.3985, 0.6213, respectively, p<0.05). The mRNA expression of COX4IL was positively correlated with the mRNA expression of ACAD9 (R² = 0.9453, p<0.05) (Figure 4G).
Figure 1. Folate induces renal function and kidney morphological changes in the animal model of renal fibrosis. (A) After a single intraperitoneal injection of 300 mg/kg bw folic acid into B6 mice, blood was collected on day 0, 1, 7 and 30, and blood urea nitrogen was measured. *p<0.05 compared with that at day 0. (B) Results of determination of serum creatinine at day 0, 1, 7, 30 after single intraperitoneal injection of 300 mg/kg bw folic acid injection, *p<0.05. (C) After a single intraperitoneal injection of 300 mg/kg bw folic acid injection, pathological specimens of kidney were collected for day 0, 1, 7 and 30 day, and stained with HE, Masson and Sirus red (200×). (D) Semi-quantitative results of Masson stained in (C). *p<0.05. (E) Semi-quantitative results of Sirus red staining in (C). *p<0.05.
Niclosamide Treatment Ameliorates Renal Function and Interstitial Fibrosis

Mitochondrial uncoupler
Niclosamide Ameliorates Renal Function and Interstitial Fibrosis

Fibrosis diphenhydramine has a mitochondrial uncoupling effect. After intraperitoneal injection of folic acid into mice, niclosamide was orally administered for one month. Our data demonstrated that levels of serum creatinine and urea nitrogen were significantly decreased compared with the folate control group (Figure 5A, B). Meanwhile, the protein expressions of FN and α-SMA were decreased after treatment with niclosamide (Figure 5C). Semi-quantitative analysis of α-SMA protein expression also showed significant differences between the treatment group and the folic acid group (Figure 5D), suggesting that niclosamide treatment can ameliorate renal interstitial fibrosis.

Niclosamide Treatment Ameliorates Fatty Acid Metabolism

The positive area of oil red staining in the folic acid treatment group was significantly decreased compared to that of the control group (Figure 6A). Western-blot results showed that niclosamide reversed the decrease in CPT-1a expression in the folic acid-induced renal fibrosis model (Figure 6B), and the mRNA expression of CPT-1a in total tissue RNA was also significantly increased compared to the folate group (Figure 6C). CRAT expression was also significantly incre-
mitochondria-mediated fatty acid metabolism in renal interstitial fibrosis

Figure 3. Changes in mitochondrial morphology and function in fibrotic kidney tissues. (A) Results of mRNA level of mitochondrial electron transport chain COX4I in total RNA of mouse kidney at day 0, 1, 7 and 30. *p<0.05 compared with day 0. (B) Results of mRNA expression of PCK1, a key enzyme of the tricarboxylic acid cycle in total RNA of kidney of mice at day 0, 1, 7 and 30. *p<0.05 compared with day 0. (C-F) SEM results of mitochondria after folic acid injection at (C) day 0, (D) day 1, (E) day 7, (F) day 30 (400×).

Niclosamide Affects Fatty Acid Oxidation Metabolism by Improving Mitochondrial Function

After 30 days of oral administration of niclosamide, the mitochondrial morphology of kidney was recovered, and the recovered amounts were more than that of folic acid injection group (p<0.05) (Figure 7A-E). Mitochondria are sites of β-oxidation of fatty acids. A single bolus injection of folic acid may result in a reduction in the number of kidney mitochondria and function loss, with a significant reduction in ATP production. Interestingly, there was a significant increase in ATP production after niclosamide treatment (Figure 7F). Additionally, mitochondria are the main energy supply organelles in cells. A certain amount of energy is needed for mitochondrial activity. Therefore, we speculate that lack of intracellular energy during fibrosis may lead to the mitochondria dysfunction, retarded oxidation and decomposition. As shown in Figure 7G, fibrotic damage was observed after folic acid injection, whereas same amount of mitochondrial β-oxidation could not completely rescue the phenotype. That being said, a slight recovery of fibrotic damage was observed, implying that the function of residual mitochondria in cells was activated, while the metabolic status of cells was not improved. After niclosamide decoupling, the ability of β-oxidation of mitochondrial fatty acids was fully activated, which accelerated the catalysis of lipolysis and reduced the deposition of intracellular lipids.

Discussion

Unlike UUL model and ischemia-reperfusion model, folic acid-induced renal fibrosis model does not require surgical procedures, and can
Figure 4. Disordered expression of fatty acid metabolism in fibrotic kidney tissue. (A) Semi-quantitative results of the areas stained positive for oil red O in Figure 4A-D. The area on the vertical axis is the area marked by the oil red staining. *p<0.05 compared with day 0. (B) Western-blot results of CPT-1a in renal tissue 30 days after folate injection. (C) mRNA expression of CPT-1a in total RNA of kidney tissue in control group and folic acid group 30 days after folate injection; *p<0.05 compared with control group. (D) Immunohistochemical staining of CPT-1a and ACOX1 in renal tissue of control group and folic acid group 30 days after folate injection (×200). (E) mRNA expression of CRAT in renal tissue of total RNA of control group and folic acid group 30 days after folate injection; *p<0.05 compared with control group. (F) Folic acid induced renal fibrosis model, correlation analysis results of serum level of urea nitrogen and expression of fatty acid metabolism key enzyme, ACAD9 mRNA. (G) Correlation analysis of folic acid induced renal fibrosis model, correlation analysis results of mRNA expressions of mitochondrial electron transport chain COX4IL and ACAD9, key enzymes of fatty acid metabolism.
Mitochondria-mediated fatty acid metabolism in renal interstitial fibrosis

Better simulate the natural course of renal fibrosis. Previous studies demonstrated that folic acid crystallization blocked tubules in renal tubules after intraperitoneal injection of large doses of folic acid. On the other hand, large doses of folic acid itself, have a certain toxicity, which will damage the tubular epithelial cells, promoting inflammatory response and extracellular matrix deposition3,5,6,14. Our study demonstrated that folic acid induced fibrosis model was divided into two stages, acute renal injury and chronic renal failure stage. Acute renal injury appeared first and persisted from day 1 to 7, which was followed by chronic renal failure stage. Mitochondria play an important role in regulating energy metabolism, while disorders of energy metabolism often promote disease progression15. This experiment demonstrated that in folic acid-induced renal fibrosis model, disturbances in mitochondrial structure and function led to activation of mitochondrial autophagy and subsequently apoptotic necrosis16,17. Fatty acids are the main energy-supplying substances in tubule epithelial cells18. When tubular epithelial cells undergo a stress response, their ability to metabolize fatty acids is reduced19,20. In this experiment, after folic acid led to renal interstitial fibrosis, the expression of key enzymes of fatty acid metabolism decreased, thereby exacerbating renal failure. These results suggested that mitochondrial damage induced fatty acid metabolism was the key factor to accelerate the progress of renal interstitial fibrosis. Mitochondria are coupled to the electron transport chain via oxidative phosphorylation to generate ATP, which can be destroyed by uncoupling agents21-23. Therefore, experimental mice were orally administrated with niclosamide for one month in our study, starting on the 8th day after folic acid injection. We found that fatty acid metabolism was increased whilst the degree of renal fibrosis was decreased, suggesting that improving fatty acid metabolism can reduce the renal interstitial fibrosis.

Figure 5. Niclosamide ameliorates renal function and tubulointerstitial fibrosis. (A) Niclosamide treatment experiment was divided into four groups, blank control group (oral feeding of equal volume of polyethylene glycol (solvent)), NE control group (oral feeding of equal volume of polyethylene glycol dissolved niclosamide), folic acid group (fed with equal volume of solvent after folic acid injection) and folic acid treatment group (fed with equal volume of niclosamide after folic acid injection). *p<0.05 compared with control oral solvent group; #p<0.05 compared with folic acid oral solvent group. (B) Niclosamide treatment experiment, determination of serum creatinine values in each group. *p<0.05 compared with control oral solvent group; #p<0.05 compared with folic acid oral solvent group. (C) After niclosamide treatment, Western-blot results of fibronectin α-SMA and FN in each group. (D) Semi-quantitative analysis of α-SMA protein in (B), *p<0.05 compared with control oral solvent group; #p<0.05 compared with folate oral solvent group.
Figure 6. Niclosamide reduces tubulointerstitial fat deposition. (A) Semi-quantitative analysis of Oil red staining in picture A *\(p<0.05\). (B) Western-blot of CPT-1a in each group. (C) The mRNA of CPT-1a in each group. (D) The mRNA of CRAT in each group. *\(p<0.05\) compared with control oral solvent group; #\(p<0.05\) compared with folate oral solvent group.

Figure 7. Niclosamide improves the function of mitochondria. (A-D) Electron microscope results of mitochondria (400×) (A) Control group, (B) Niclosamide control group, (C) Folate group, (D) Niclosamide treatment group. (E) Quantitative analysis of mitochondria; *\(p<0.05\) compared with control oral solvent group; #\(p<0.05\) compared with folate oral solvent group. (F) The number of ATP in Niclosamide group. *\(p<0.05\) compared with control oral solvent group; #\(p<0.05\) compared with folate oral solvent group. (G) The rate of fatty acid of mitochondrial oxidation in each group. *\(p<0.05\) compared with control oral solvent group; #\(p<0.05\) compared with folate oral solvent group.
Conclusions

In this study, folic acid-induced renal interstitial fibrosis was established as a model to investigate the relationship between renal interstitial fibrosis and mitochondrial fatty acid metabolism. Renal fatty acid metabolism was found impaired during renal interstitial fibrosis, whereas the uncoupler intervention and enhanced fatty acid metabolism can relieve tubule interstitial fibers. Mitochondrial damage caused by fatty acid metabolism is an important factor in promoting renal interstitial fibrosis. In this work, intervention of mitochondrial metabolism related targets was expected to become a new approach of treatment of renal interstitial fibrosis.

Conflict of Interest

The Authors declare that they have no conflict of interest.

References