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Abstract. - Mesenchymal Stem Cells
(MSCs) are multipotent cells, able to differentiate
into elements of the mesodermal lineage. Bone
marrow and adipose tissue represent the main
sources for MSC isolation. In the last decade,
several studies have reported the plasticity of
MSCs toward a hepatocyte-like phenotype. The
use of MSCs to generate hepatocyte-like cells
holds great promises to overcome the scarcity
of available organs for transplantation. However,
little is known about the molecular pathways in-
volved in lineage cross-differentiation and sever-
al issues remain to be answered before MSC ap-
plication in clinical settings.

Aim of this review is to critically analyze the
possible sources of MSCs suitable for liver re-
population and the molecular mechanisms un-
derlying MSC hepatic differentiation.
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Introduction

Mesenchymal Stem Cells (MSCs) were first
described by Friedenstein et al', more than 30
years ago, as an adherent, fibroblastoid cell pop-
ulation within the bone marrow (BM) that
showed inherent osteogenic properties. Numer-
ous studies have demonstrated that these cells are
able to differentiate into multiple connective tis-
sue cells, including osteocytes, chondrocytes,
adipocytes and stromal cells?. Furthermore, in
contrast to hematopoietic stem cells, MSCs could
be expanded in culture for long periods of time
without loss of differentiation capacity.

In addition to BM, MSCs have been isolated
from various adult tissues, including muscle?,
adipose tissue?, connective tissue’, trabecular
bone®, synovial fluid’, and from perinatal tissues,
such as umbilical cord®, amniotic fluid®, and pla-
centa'®. The presence of MSCs in peripheral
blood is still debated as some Authors identified
a circulating fibroblast-like population'!, whereas
others failed'.

Adipose tissue has several advantages com-
pared to other adult tissues as source of MSCs, as
it is abundant and can be easily removed by sim-
ple lipoaspirate. Adipose tissue-derived MSCs
(ATMSC:s) have been termed processed lipoaspi-
rates®, adipose tissue-derived stromal cells'?, hu-
man multipotent adipose-derived stem cells'.
ATMSCs can be maintained longer in culture and
possess a higher proliferation capacity than BM-
derived MSCs. Thus, adipose tissue may be an
ideal source of large amounts of autologous stem
cells attainable by a less invasive method than
BM-derived stem cells.

Despite the numerous efforts that have been
made to characterize the immunophenotype of
MSC:s, no specific surface marker has been iden-
tified yet. MSCs are commonly defined as plastic
adherent cells that express a panel of surface
antigens, including CD90, CD29, CD44, CD73,
CD105, CD166 while lacking expression of
hematopoietic and endothelial markers, such as
CD45, CD14, CD34, and CD31. Moreover,
MSCs express human leukocyte antigen (HLA)
class I, but not HLA class II. MSCs secrete sev-
eral extracellular matrix (ECM) molecules, as
collagen, fibronectin, laminin and proteoglycans,
so that it has been postulated a central role for
MSCs in ECM organization. Recently, the low
affinity nerve growth factor receptor (CD271)
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has been proposed as a specific marker for MSC
isolation. However, the value of CD271-based
MSC selection remains unproven'.

Numerous studies have shown that MSCs have
a high degree of plasticity. Indeed, they can not
only differentiate into cells of the mesenchymal
lineage, but also transdifferentiate into neurons,
splenocytes and various epithelial cells, includ-
ing lung, liver, intestinal, and kidney cells'®%. In
particular, in vitro models using culture medium
supplemented with a cocktail of growth factors
achieved the transdifferentiation of MSCs into
hepatic cells with functional properties such as
albumin and urea production and glycogen stor-
age?!. Moreover, the in vivo transdifferentiation
of bone marrow stem cells (BMSCs) into hepatic
cells has been described in rats??, mice® and hu-
mans?. Seo et al® first reported that human
ATMSCs injected to immunosuppressed severely
combined immunodeficient (SCID) mice, follow-
ing toxic liver damage, were able to differentiate
into hepatocyte-like cells.

Talens-Visconti et al*® have recently confirmed
the possibility of generating hepatocyte-like cells
from ATMSCs. Aurich et al’’” demostrated long-
term engraftment of human ATMSCs derived he-
patocyte-like cells in a xenogeneic transplanta-
tion model of liver regeneration. In particular, the
Authors reported that engraftment was signifi-
cantly improved using ATMSCs pre-differentiat-
ed to hepatocyte like cells in vitro as compared
with undifferentiated MSCs. Differentiated
ATMSCs were capable of extensive proliferation
within the host liver similar to hepatocytes dur-
ing liver regeneration. After 10 weeks, more than
10% of all hepatocytes in the host liver were re-
placed by hepatocyte-like cells derived from
ATMSCs. The Authors concluded that engraft-
ment was significantly more efficient using
ATMSCs pre-differentiated to hepatocyte like
cells in vitro as compared with undifferentiated
ATMSCs. In a previous study, the same Authors
had observed that using human BM-derived
MSCs in the same mouse model, a repopulation
of only 1% of the liver mass was obtained by the
transplanted cell®®. Overall, repopulation rates of
more than 10% make ATMSCs better candidates
than BM-derived MSCs for the stem cell based
liver therapies?’.

ATMSC and Liver Regeneration
The liver is a remarkable organ, given its in-
herent capacity to fully restore itself after sig-
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nificant hepatic tissue loss. In most instances,
mature hepatocytes can undergo several cell
divisions and restore the hepatic mass. Further-
more, numerous studies have reported the pres-
ence of a stem cell compartment within the liv-
er that can participate to the process of repair
in certain circumstances?’. However, several
debilitating diseases tend to compromise the
regenerative ability of both hepatocytes and
the local reservoir of hepatic stem cells. In
such conditions, the liver is unable to maintain
a functional mass, and clinically, this phenom-
enon is mirrored by liver failure®. Orthotopic
liver transplantation (OLT) represents the gold
standard for the treatment of end-stage liver
disease. Nevertheless, only a minority of can-
didates undergo OLT, given the scarcity of
donor organs. Indeed, it was estimated that
about 35% of patients on the waiting list in Eu-
rope do not receive the required organ
(http://www.eurotransplant.nl/) and in the Unit-
ed States, the percentage appears to be even
higher (http://www.unos.org/)*. Other adverse
factors such as rejection, problems associated
with the long-term use of immunosuppressants,
and perioperative morbidity and mortality con-
tribute to additional complications. Hepatho-
cyte-based therapy has been proposed as a po-
tential alternative to OLT. In particular, trans-
plantation of hepatocytes seems to be a versatile
alternative to whole organ transplantation in
various rodent animal models such as mice, rats
and rabbits®'3? but, to date, hepatocyte trans-
plantation trials in humans have shown poor re-
sults**. Probably, this is due to the fact that the
experimental methods used in animal models to
enhance liver repopulation are not applicable in
clinical settings. In addition, human hepatocytes
are currently available only from marginal
donor livers that are not allocated for transplan-
tation, thus yielding cells of low quantity and
quality?*.

Hence to need to find alternative cell sources
that led to the development of protocols to gen-
erate hepatocytes from stem cells. In the past, it
was believed that hepatocytes could only be de-
rived from cells of endodermal origin. However,
subsequent studies have suggested that nonendo-
dermal cells may also form hepatocytes in vivo
and in vitro*>¥. Recently, BM-derived stem cells
have been extensively investigated as potential
sources for liver regeneration. In 1999, Petersen
et al., first showed that liver stem cells might be
derived from BM, in a rat model of liver injury*.
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However, initial reports of the hepatic potential
of hematopoietic stem cells were later shown to
have resulted from fusion between transplanted
donor cells and the resident recipient hepato-
cytes*.

In the last eleven years, many researchers have
reported that MSCs might be more suitable for
clinical transplantation than hematopoietic stem
cells*>. Both BMSCs and ATMSCs can be made
to differentiate in vitro into functional hepato-
cytes using various experimental protocols, based
on either a direct induction®, or a sequential ad-
dition of growth factors**. These experiments
were conducted on unsorted cell cultures®2® or
following immunomagnetic selection of particu-
lar cell subpopulations*. The results of different
protocols change the in vivo functional capacity
of the transplanted cells profoundly.

From MSCs to Hepatocytes

Hepatic differentiation of MSCs is a multi-
step process tightly regulated by intra- and ex-
tracellular communications. Little is known
about the complexity of the molecular pathways
involved in lineage cross-differentiation. The
most important extracellular signals involved in
hepatogenesis are activin A, fibroblast growth
factors (FGFs), bone morphogenetic proteins
(BMPs), hepatocyte growth factor (HGF), and
oncostatin M (OSM)**°. A wide variety of ex-
perimental conditions have been applied thus
far to trigger the differentiation of cultured
MSCs into functional hepatocytes. Among
these, the most promising approaches are based
on reconstructing the in vivo microenvironment
via addition of soluble medium factors. Signifi-
cantly optimized differentiation was obtained
via exposure of MSCs to hepatogenic factors in
a time-specific sequential manner, reflecting
their secretion pattern during in vivo hepatogen-
esis. A mixture of FGF and HGF followed by
OSM have been applied to obtain functional he-
patic conversion of MSCs?*°. Basically, soluble
medium factors such as dexamethasone, insulin-
transferrin-selenium (ITS), and nicotinamide
synergistically affect the hepatic driving path-
ways®. Serum-free conditions have been ap-
plied on a routine basis for hepatic differentia-
tion of MSCs?3:26:531:32,

Another critical factor affecting cellular differ-
entiation status is the cell spatial distribution.
Differentiation to a hepatocyte phenotype was
seen only when cells were seeded at high conflu-

ence (upon 60%-100% confluence), which may
cause a post-mitotic state required for differentia-
tion and promote maximal cell-cell contact?*33-7,
Minor roles are ascribed to the type of coatings
used (the natural scaffold collagen turned out to
be most effective)™*7.

Hepatic differentiation has been assessed by
means of immunohistological and molecular ap-
proaches. MSC-derived hepatocyte-like cells
may be characterized in vitro at four levels: mor-
phology, RNA, protein, and activity. However,
each of these methods has potential pitfalls that
complicate interpretation of the results. Many of
the genes usually used to test the differentiation
of MSCs toward the hepatic lineage are not ex-
pressed exclusively by hepatic cells and thus can-
not be considered as ‘‘true’” hepatocyte mark-
ers®®¢!. Hence, exclusive analysis of one marker
cannot count as proof for a genuine hepatic phe-
notype. On the other hand, some genes, like al-
pha-fetoprotein (AFP), are expressed very early
in embryonic development and during the fetal
stages. Their expression gradually levels off with
increasing development and disappears entirely
in adult life®>. AFP thus represents a reliable
marker to discriminate between distinct develop-
mental stages. Alternatively, most, but not all,
metabolic and detoxifying enzymes become
functional during the terminal step of liver
organogenesis. Therefore, to state the differentia-
tion stage of the resultant hepatocyte-like cells,
functional assays need to be carried out. At pre-
sent, functional analysis is particularly focused
on glycogen uptake, urea metabolism, and albu-
min (ALB) secretion.

To date, studies on animal models reported the
beneficial effect of ATSMCs in promoting hepat-
ic tissue regeneration. Recently, Banas et al®,
evaluated the therapeutic potential of ATMSCs
for the treatment of liver failure. In this study, the
Authors transplanted human ATMSCs into im-
munodeficient mice with acute liver failure
caused by carbon tetrachloride (CCl,) injection
and revealed the ability of ATMSCs to incorpo-
rate into the liver and improve its function. The
Authors postulated that benefic effects of human
ATMSC transplantation may be due to MSC
ability to produce a large number and volume of
bioactive factors. Interestingly, the Authors com-
pared in vitro production of cytokines/growth
factors by undifferentiated ATMSCs with BM-
derived MSC and observed a higher production
of bioactive factors in ATMSCs than in BM-de-
rived MSCs.
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These results have been also confirmed by
Kuo et al®*, who demonstrated that undifferenti-
ated MSCs were able to rescue rats from D-
galactosamine-induced fulminant hepatic failure
by soluble factors, indicating that they might act
by paracrine mechanisms.

Overall, these findings confirmed the ATM-
SCs efficacy in animal models of liver diseases
and in the clinical settings for liver disease treat-
ment.

Molecular Mechanisms Underlying
ATMSCs Differentiation in
Hepatocyte-Like Cells

To date, the molecular mechanisms underlying
the differentiation of ATMSCs are largely un-
known. Recently, Yamamoto et al®> examined the
gene expression profiles of AT-MSC-derived he-
patocytes in order to identify the genes responsi-
ble for hepatic differentiation, using several mi-
croarray methods. The resulting sets of differen-
tially expressed genes (1639 clones) were com-
prehensively analyzed to identify the pathways
expressed in AT-MSC-derived hepatocytes. Mi-
croarray analysis revealed that the gene expres-
sion pattern of AT-MSC-derived hepatocytes was
similar to that of adult human hepatocytes and
liver. Further analysis showed that enriched cate-
gories of genes and signaling pathways such as
complementary activation and the blood clotting
cascade in the AT-MSC-derived hepatocytes
were relevant to liver-specific functions. Interest-
ingly, decreases in Twist and Snail expression in-
dicated that mesenchymal- to-epithelial transition
(MET) occurred in the differentiation of AT-
MSC:s into hepatocytes.

In our recently published study, we performed
a high throughput molecular analysis of ATM-
SCs before and after hepatogenic conversion in
order to clarify the molecular events involved in
controlling the plasticity of AT-MSCs that give
rise to hepatocytes®®. We achieved the hepato-
genic conversion of ATMSCs, using a two-step
protocol with sequential addition of growth fac-
tors. Under this regimen, spindle-shaped fibrob-
lastoid cells differentiated to a layer of compact
polygonal cells, characteristic of an epithelium.
Interestingly, these cells acquired specific liver
functions, as shown by their ability to store
glycogen and to express hepatic-associated genes
and proteins. Overall, we identified several tar-
gets that depict the numerous biological func-
tions exerted by the liver, including protein me-
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tabolism, innate immune response regulation,
and biodegradation of toxic compounds. More-
over, modulation of molecules involved in adhe-
sion and migration capacity confirmed that a
mesenchymal-epithelial transition occurred. This
process and the reverse epithelial-mesenchymal
transition (EMT) are key developmental pro-
grams playing a fundamental role in the differen-
tiation of multiple tissues and organs during em-
bryogenesis®’. In particular, we observed de-
creased expression of N-cadherin-2 (CDH2) and
vimentin, along with downregulation of gremlin,
a key mediator of EMT in ATMSC-derived hepa-
tocyte-like cells. Finally, we identified several
members of the transforming growth factor-beta
(TGF-p) [(small mother against decapentaplegic
(SMAD?7), latent-transforming growth factor be-
ta-binding protein 2 (LTBP2)] and WNT [Friz-
zled-4 (FZD4), Frizzled-6 (FZD6), dickkopf-re-
lated protein 3 (DKK3)] signaling pathways, that
have been extensively described for their involve-
ment in EMT process®. Altogether, these data
suggest that cellular plasticity observed in ATM-
SCs is dependent of mesenchymal-epithelial
transition and that subtle regulations of the
canonical pathways BMP7, WNT and TGF-f
may be important to allow MSCs to transdiffer-
entiate into another lineage.

Clinical Applications

Given their multipotential differentiation po-
tential and their extensive self-renewal, MSCs
have been considered a promising candidate for
cell-based therapy and tissue engineering.
These cells have the ability to proliferate to an
extensive but finite degree, an important char-
acteristic that should reduce concerns about po-
tential tumorigenicity of these cells upon trans-
plantation in vivo. Moreover, their unique im-
muno-privileged status may allow them to be
used for autologous and allogeneic transplanta-
tion. At present, various clinical trials have
been conducted with MSC concerning three
main applications:

1. MSCs and tissue engineering. Tissue engineer-
ing may represent an alternative for obtaining
tissues and organs needed for transplantation,
circumventing the lack of a sufficient number
of donors. Basically, tissue engineering con-
sists of donor’s cells isolation and expansion,
followed by a reimplantation procedure in
combination with a scaffolding material. The
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recent advent of new bio-scaffolds allowing
the three-dimensional culture of MSCs in
bioreactors might lead to the formation of
whole tissues and organs. A few studies in ani-
mals have shown the feasibility of MSCs
transplantation in repairing and regenerating
damaged tissues of mesodermal origin, such as
bone defects®®’°. ATMSCs and a reasorbable
macroporous sheet has been successfully ap-
plied in a seven-year old girl suffering from
widespread calvarial defect”!.

. MSCs and immune-mediated disorders. One of
the most exciting aspects of MSCs biology is
the so-called immunoprivilege. MSCs express
few HLA class I and no HLA class II mole-
cules, suggesting that they can evade allogene-
ic immune response. These unique immuno-
logic properties were first demonstrated in
sheep, in which human MSCs were shown to
evade rejection’. In vitro experiments showed
that MSCs exert immunoregulatory functions
by suppressing T cell”, B cells’* and natural
killer cells”™ proliferation, and by affecting
dendritic cell maturation’®. The mechanisms
underlying immunoregulation remain unclear:
some investigators suggested a cell-to-cell
contact mediated suppression, while others hy-
pothesized a soluble factor mediated mecha-
nism’’. MSCs have been applied in hematol-
ogy to facilitate hematopoietic stem cells
(HSCs) engraftment and lessen the risk of
graft versus host disease (GVHD). GVHD
constitutes the most frequent form of rejection
associated with the transplantation of allo-
geneic hematopoietic grafts, characterized by
the destruction of host tissues and organs by
the transplanted cells. Leblanc et al’® reported
the safety and efficiency of BMSC infusion for
the control of GVHD in a few patients subject-
ed to allogeneic HSC transplantation. Further-
more, Lazarus et al” reported that co-infusion
of HSCs and MSCs in patients suffering from
haematological malignancies reduced trans-
plant side effects and enhance marrow recov-
ery after myeloablative treatment.

. MSCs and solid organ transplantation. MSCs
have recently emerged as promising candi-
dates for cell-based immunotherapy to induce
tolerance after allogenic solid organ transplan-
tations®*#!. Furthermore, MSCs have a great
regenerative potential and can, therefore, con-
tribute to the marginal organ regeneration after
transplantation, thus improving overall clinical
outcome®?! Animal models featuring MSCs in

solid organ transplantation emerged for the
first time in 200638, Unfortunately, the great
part of results from in vitro studies could not
be transferred in models of transplantation. In
fact, many in vitro effects attributed to MSCs
depend on cell-cell contact or at least the close
vicinity of MSCs and effector cells. Moreover,
organ recipients are heavily immunosup-
pressed during the induction phase in order to
protect the grafts from rejection. Drugs that af-
fect the immune system add extra complexity
to the MSC-induced tolerance. Pop et al*® re-
ported no effects on graft survival when MSCs
were applied concurrently with cyclosporine
after heart transplantation in rats. In contrast,
other groups® have demonstrated prolonged
graft survival when MSCs were applied before
transplantation with or without additional in-
jections in corresponding models. Recently, it
has been shown that MSC injection together
with low doses of mycophenolate promotes
long-term graft survival®,

Clinical use of MSCs for repair/regeneration
of solid organ is in its infancy. However, several
concerns remain before their general application
in clinical settings. A main limit is the lack of a
standardized protocol for isolating a specific cell
population. Each group of investigators using
ATMSC defines these cells in different ways,
ranging from specific-antigen profile to simple
plastic adherence property. The heterogeneity in
the methods of isolation generates variable re-
sults and makes the interpretation of data very
difficult.

In vivo studies reported that transplanted
MSCs may contribute to scar-forming myofi-
broblast in the liver®¢. This result suggests that
MSCs could enhance the fibrotic process instead
of regenerating the parenchymal tissue.

Another issue in using MSCs for liver regener-
ation is the possible differentiation into mesoder-
mal cells within the liver. I.e., one cannot exclude
the possible spontaneous differentiation of ATM-
SCs into adipose cells. In our laboratory, we per-
formed some experiments with intrasplenic injec-
tion of ATMSCs in a murine model of liver dam-
age induced by monocrotaline. Our results
showed the presence of adipose cells in the
spleen of transplanted animals while differentia-
tion of ATMSC into hepatocyte-like cells was not
established (data not published). Other studies
reported unintended differentiation of MSCs fol-
lowing in vivo transplantation. Yoon et al®’ re-
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ported the generation of calcification/ossification
into the infarcted myocardium of rats transplant-
ed with bone marrow cells. The mechanism by
which locally transplanted BM cells induced cal-
cification was not clearly defined, but MSCs as
bone and cartilage precursors were highly sus-
pected.

The safety of using MSCs could be also ques-
tioned as MSCs can also undergo malignant
transformation, thus giving rise to tumors. MSCs,
and in particular ATMSCs, have a high prolifera-
tion rate in vitro. ATMSCs have been proved to
undergo spontaneous transformation in long term
culture (4-5 months)®. Another study suggested
that cultured BMSCs bear karyotype mutations
and may develop osteosarcoma in the lung upon
in vivo injection®.

Overall, these data highlight that numerous
unanswered issues have to be elucidated to en-
sure safety and efficiency of MSC-based thera-
pies in hepatology. To date, 2 clinical trials using
autologous ATMSCs for liver regeneration have
been deposited (http://clinicaltrials.gov/), but the
recruitment’s process has been suspended.

Conclusions

The use of MSCs to generate hepatocyte-like
cells hold great promises to overcome the scarci-
ty of available organs for transplantation. In par-
ticular, human adipose tissue may represent a
novel source for therapeutically applicable MSCs
in liver disease.

However, many concerns remain before MSCs
application in Clinics. A deeper understanding
of the signals emanating from the stem cell
niche, a more accurate analysis of cell-intrinsic
mechanisms underlying differentiation-induc-
ing signals, together with the standardization
of the processes of isolation, expansion, differ-
entiation and reinfusion of MSCs are mandato-
ry prior to consider these cells for clinical pur-
poses.
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