Abstract. – Background: Polycystic ovary syndrome is the most common cause of chronic anovulation infertility in women in fertile period, and it’s characterized by an increased production of androgens and estrogens. The administration of D-chiro-inositol, a B complex vitamin, was associated with a decreased of serum testosterone and simultaneously, due to its ability to increase insulin sensitivity, women who received D-chiro-inositol showed a great improvement of the ovulatory function. Besides, the supplementation of inositol improves the oocytes’ quality and increase the number of oocytes collected after ovarian stimulation in patients undergoing IVF (in vitro fertilization).

Aim: The aim of this study is to determine the effects of myo-inositol on oocyte’s quality on a sample of women with polycystic ovary syndrome.

Material and Methods: The patients were divided into two groups: patients of Group A took 2 g of myo-inositol + 200 µg of folic acid (Inofolic®, LO.LI. Pharma, Rome, Italy) while Group B only 200 µg of folic acid, both groups took the treatment twice a day, continuously for 3 months.

Results: At the end of treatment, the number of follicles of diameter >15 mm, visible at ultrasound during stimulation, and the number of oocytes recovered at the time of pick-ups were found to be significantly greater in the group treated with myo-inositol, so as the average number of embryos transferred and embryo Score S1. Significantly reduced was the average number of immature oocytes (vesicles germ and degenerated oocytes) too.

Conclusions: These data suggest that myo-inositol may be useful in the treatment of PCOS patients undergoing ovulation induction, both for its insulin-sensitizing activity, and its role in oocyte maturation.

Key Words: Inositol, Oocyte’s quality, Polycystic ovary syndrome, Infertility, In vitro fertilization.

Introduction

Polycystic Ovary Syndrome (PCOS) is a complex disease characterized by various endocrine disorders that can be the potential cause of anovulation and hyperandrogenism condition.

This heterogeneous syndrome affects about 5-10% of female population in the reproductive age, and it can be considered as the most common endocrine disorder affecting women during the reproductive life1.

PCOS cannot be merely considered a local ovarian dysfunction or a central hypothalamic-ovary-pituitary defect, but it is the expression of a complex functional alteration of the whole reproductive system.

Under a hormonal point of view, the micropoly-cystic ovary is characterized by an increased production of androgens and estrogens, and a dissociation of gonadotropins serum concentrations: elevated luteinizing hormone (LH), low or normal follicle stimulating hormone (FSH) and LH/FSH ratio that usually exceeds 2.5 in the typical forms.

In the blood of PCOS patients testosterone (T), androstenedione (AS), dehydroepiandros-terone (DHEA), DHEA-S (sulfate), 17-hydroxyprogesterone (17-OHP) and estrone resulted elevated. The circulating levels of sex hormone-binding globulin (SHBG) are instead lower.

The enhancing peripheral conversion of androstenedione to estrone leads to the modest relative hyperandrogenism.

SHBG levels are reduced of about 50% due to the increased levels of insulin2-4.

The syndrome’s etiology is still unknown, but it is probably multifactorial, due to an excessive E1 production, or to an alteration of the primitive hypothalamic regulation and of the ovarian and/or adrenal steroidogenesis.

Corresponding Author: Mariagrazia Stracquadanio, MD; e-mail: mariagrazia.stracquadanio@gmail.com
Clomiphene is a drug normally used for this purpose: it is a weak estrogen that acts also as anti-estrogen. Probably, it interacts with the hypothalamic estrogen receptors, displacing the endogenous estradiol and creating a condition of artificial hypoestrogenism, due to its biological activity almost absent in this district. Hypothalamic centers, responsible for gonadotropin-releasing hormone (GnRH) release are thus stimulated to greater activity. Following the administration of clomiphene, in fact, the frequency of pulsatile secretion of LH and FSH increases, while the amplitude remains unchanged. Ovulation in PCOS is induced in 80% of cases, while pregnancy occurs in 20% of cases.

Where no response to the treatment with clomiphene and metformin was obtained, or where an in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) was necessary, ovulation induction was performed by the administration of gonadotropins. Gonadotropins used for this purpose are obtained from the urine of postmenopausal women (Menotrophin). Recently, gonadotropins obtained with biosynthetic technique from recombinant DNA have been introduced (Follicotropin α and Follicotropin β). The goal of the therapy with gonadotropins, or rather with FSH, is acting on the follicles in the last stage of their maturation process that, under physiological conditions is restricted to the first two weeks of the menstrual cycle in which ovulation occurs8,9.

The aim of this study is to determine the effects of Myo-Inositol, a compound belonging to vitamin B complex, on oocyte’s quality in a group of patients with PCOS, suffering from chronic anovulation and infertility, undergoing medically assisted reproduction techniques (ART), such as IVF and ICSI.

Scientific studies have shown that D-chiro-inositol, thanks to its ability to increase insulin sensitivity, has beneficial effects on ovulation and on the androgens production in women with PCOS. The administration of D-chiro-inositol was associated with a decreased of serum testosterone8 and increased of SHBG concentration. Simultaneously to the reduction of insulin secretion, women who received D-chiro-inositol showed a great improvement of the ovulatory function9,10. Scientific evidence has also shown that the supplementation with inositol contributes to reducing the amount of FSH necessary to ovulation, to improving oocyte’s quality (reduction of the total amount of the germinal vesicles and the degener-
ated oocytes) and to increasing the number of oocytes collected after ovarian stimulation in patients undergoing ART techniques, as IVF or ICSI11-13. Inositol cannot be defined exactly as a vitamin, but it is considered a vitamin factor belonging to B complex. In the human organism it is present in the phospholipids, and it can stimulate endogenous production of lecithin. Its role also includes a specific biological activity of control on fat and sugar metabolism, and on the cellular function of the nervous system. It is also essential to hair growth and it can prevent baldness. Scientific studies revealed that diabetic subjects eliminate amounts of inositol significantly higher than no-diabetic ones14.

In case of insulin resistance or type II diabetes, inositol helps to improve the whole clinical pattern. In these cases, inositol may be useful to prevent and to correct pathophysiological mechanisms underlying the metabolic and reproductive abnormalities related to PCOS15-18.

Materials and Methods

All the patients were enrolled and treated in the Department of Gynecological Sciences (“Santo Bambino” Hospital, Catania), at the Gynecological Endocrinology Clinics and Human Reproduction Pathophysiology Centre. In the 12-month enrollment phase a total of 34 women, aged <40 years with polycystic ovary syndrome (PCOS) were selected.

PCOS diagnosis was indicated by oligo-menorrhoea (six or fewer menstrual cycles during a period of one year), hyperandrogenism (hirsutism, acne or alopecia) or hyperandrogenemia (elevated levels of total or free testosterone), and typical feature of ovaries at ultrasound scan.

Concomitant endocrine and metabolic pathologies, as hyperthyroidism, hyperthyroidism, diabetes mellitus, androgen-secreting cancers, adrenal hyperplasia, Cushing syndrome were excluded.

The ICSI or IVF procedures were recommended after the evaluation of the sperm semen of the male partner.

According to a randomization table, patients were divided into two groups; patients of Group A intook 2 g of myo-inositol + 200 µg of folic acid (Inofolic®, LO.LI. Pharma, Rome, Italy) while Group B only 200 µg of folic acid, both groups took the treatment twice a day, continuously for 3 months.

Oocyte’s quality assessment was performed after the oocyte pick-up conducted during the assisted reproductive technology procedure in which patients have been submitted. The ICSI or IVF includes several phases (ovarian stimulation, oocyte collection, oocyte quality assessment, oocytes in-vitro fertilization, embryo culture and scoring, embryo transfer), all crucial for the success of the technique. They were all followed by the medical team of the Reproduction Pathophysiology Centre of “Santo Bambino” Hospital, in Catania at the IVF clinic with the attached surgery room.

Statistical Analysis

The comparison between Group A and Group B was performed using:

- Χ² test for qualitative data (β-hCG positivity);
- Student t test for quantitative data normally distributed (age, BMI, total FSH units administered, number of follicles of diameter >15 mm);
- U test for quantitative data not normally distributed (days of stimulation, E₂ maximum peak, number of oocytes retrieved).

Results

During the study period, patients were randomly divided into two groups, as described before, and the investigation was performed in a double-blind design.

No significant differences were found between the two groups in mean age and body mass index (BMI).

Total r-FSH units administered for the ovarian stimulation were significantly reduced in group A.

As reported in literature, peak E₂ levels at human chorionic gonadotropin (hCG) administration were lower in group A, but our data were not statistically significant.

Two cycles were cancelled in group A, whereas in group B five cycles were suspended, because of peak E₂ >4,000 pg/mL (risk of hyperstimulation).

The number of follicles with a diameter >15 mm, visible at ultrasound scan during stimulation, and the number of oocytes retrieved at the pick-up resulted significantly higher in the myo-inositol-treated group (Table I).
The mean number of immature oocytes (germinal vesicles and degenerated oocytes) was significantly reduced, and there was an increasing trend of the rate of oocytes in metaphase II (MII), that are oocytes characterized by not visible germinal vesicles and visible first polar body (Table II).

No statistical significance in the number of fertilized embryos was emerged, but in group A the mean number of transferred embryos resulted significantly higher, with higher amounts of score 1 embryos in comparison with lower-quality embryos (Table III).

In compliance with the italian ART law, no more than three embryos were transferred. No differences in the total number of biochemical pregnancies were detected.

Discussion

Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders. Insulin-resistance and hyperinsulinemia are strictly correlated with the phenotype of a large part of PCOS women.

A defect in the insulin’s action has been suspected, probably because of a deficiency of D-chiro-inositol, that is a component of inositol phosphoglycans. Insulin-lowering drugs, particularly different forms of inositol, represent novel therapies in spontaneous ovulation restoration, with a potential positive action even on meiotic oocyte maturation. These therapies seem to directly influence steroidogenesis, by reducing androgen production in theca cells. In fact, the administration of D-chiro-inositol has been demonstrated to increase the insulin action in PCOS patients, improving ovulatory function\(^10\), and reducing serum testosterone concentration\(^8,9,19\). Nowadays, there are few data on the action and effects of myo-inositol, a precursor of D-chiro-inositol, on the anovulatory women in reproductive age or on the spontaneous ovulation in stimulated cycles.

Anyway, myo-inositol is an important constituent of the follicular microenvironment, playing a key role in the nuclear and cytoplasmic oocyte’s development.

In the assisted reproduction techniques, in fact, the supplementation with myo-inositol is positively related to meiotic progression of mouse germinal vesicle oocytes, enhancing intracellular Ca\(^{2+}\) oscillation\(^20\). Furthermore, higher concentrations of myo-inositol in human follicular fluid provide a marker of good-quality oocytes\(^21\).

Our study is one of the fews focusing on this molecule, that belongs to vitamin B complex, and on its effects in PCOS patients undergoing ovulation induction. Preliminary data in our hands show that, in PCOS patients the treatment with myo-inositol and folic acid, compared with folic acid alone, reduces the number of germinal vesicles and degenerated oocytes, without compromising the total number of retrieved oocytes. These results, as other trials’, suggest that myo-inositol has a positive effect on mature oocytes development\(^22\).

Furthermore, it is well known that ovulation induction in PCOS patients is a pivotal matter, even because of the risk of the ovarian hyperstimulation syndrome\(^23,24\). Elevated basal serum levels of androgens are involved in the produc-
tion of high serum E₂ levels, as typically detected in PCOS patients undergoing ovulation induction with exogenous gonadotropins.

Because myo-inositol is a D-chiro-inositol precursor, an insulin-sensitizing action on the ovary may be similarly hypothesized, with a subsequent positive action on the hormonal profile, particularly on basal serum testosterone reduction⁸⁻¹⁰. In fact, in patients treated with myo-inositol plus exogenous gonadotropins a significant reduction in E₂ levels at hCG administration was found. As consequence, it can be supposed that this protocol could be adopted to reduce the risk of hyperstimulation in such patients.

In conclusion, these observations suggest that myo-inositol may be useful in the treatment of PCOS patients undergoing ovulation induction, both for its insulin-sensitizing activity, and its role in oocyte maturation.

References

15) LOWENSTEIN EJ. Diagnosis and management of the dermatologic manifestations of the polycystic ovary syndrome. Dermatol Ther 2006; 19: 210-223.

