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Abstract. – OBJECTIVE: Coronary artery dis-
ease (CAD) is a major global cause of death, 
greatly affecting life expectancy and quality of 
life for populations. With the advent of artifi-
cial intelligence (AI), there is new hope for accu-
rately managing CAD. While recent studies have 
shown remarkable progress in AI and CAD re-
search, there is a gap in comprehensive biblio-
metric analysis in this field. Therefore, this study 
aims to provide a thorough analysis of trends 
and hotspots in AI and CAD-related research uti-
lizing bibliometrics.

MATERIALS AND METHODS: Publications on 
AI and CAD relevant research from 2009 to 2023 
were searched through the WoS core database 
(WoSCC). CiteSpace, VOSviewer and Excel 365 
were used to conduct the bibliometric analysis.

RESULTS: The bibliometric analysis includ-
ed 1,248 publications, indicating a steady in-
crease in AI and CAD-related publications annu-
ally. The United States of America (USA), China, 
and Germany were identified as the most influ-
ential countries in this field. Research institu-
tions such as Cedars Sinai Med Ctr, Med Univ 
South Carolina, Harvard Med Sch and Capi-
tal Med Univ were the main contributors to re-
search production. FRONT CARDIOVASC MED 
is the top-ranked journal, while J AM COLL CAR-
DIOL emerged as the most cited journal. Scho-
epf, U. Joseph, Slomka, Piotr J., Berman, Daniel 
S. and Dey, Damini were the most prolific au-
thors, while U. Rajendra Acharya was the most 
frequently co-cited author. Research related to 
the AI calculation of coronary flow reserve frac-
tion and coronary artery calcification, based on 
coronary CT to identify CAD and cardiovascular 
risk, was a key research topic in this field. The 
potential link between cardiovascular risk strat-
ification and radiomics is currently at the fore-
front of the field.

CONCLUSIONS: This study is the first to use a 
bibliometric approach to visualize and analyze AI 

and CAD-related research. The findings provide 
insights into recent research trends and hotspots 
in the field and can serve as a reference for schol-
ars to identify critical issues in this field.
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Abbreviations 
CAD: coronary artery disease; AI: artificial intelligence; 
WoSCC: WoS core database; USA: United States of 
America; FFR: fractional flow reserve; CT: computed 
tomography; XGBoost: the gradient boosting machine 
learning algorithm; ECG: electrocardiography; HRV: 
heart rate variability; MI: myocardial infarction; PCG: 
phonocardiogram; PPG: photoplethysmographic; OVG: 
orthogonal voltage gradient; MPI: myocardial perfusion 
imaging; PET: positron emission tomography; SPECT: 
single-photon emission computed tomography; CMR: 
cardiac magnetic resonance; WHMRA: whole-heart 
coronary magnetic resonance angiography; RF: random 
forest; CCN: convolutional neural network; CSAI: com-
pressed sensing artificial intelligence; CCTA: coronary 
computed tomography angiography; ANN: artificial 
neural networks; MACE: major adverse cardiac events; 
TPD: total perfusion defects; CAC: coronary artery calci-
um; EAT: epicardial adipose tissue; PVAT: perivascular 
adipose tissue; FAI: fat attenuation index; ROI: regions 
of interest; LDCT: low-dose CT; CACS: coronary artery 
calcification score; PCAT: pericoronary adipose tissue; 
IVUS: intravascular ultrasound; VH: virtual histology.

Introduction

Coronary artery disease (CAD) is one of the 
most common cardiovascular diseases and has 
been identified as the leading cause of death in 

European Review for Medical and Pharmacological Sciences 2024; 28: 1-22

X.-T. QI1, H. WANG1, D.-G. ZHU2, L. ZHENG1, X. CHENG1,  
R.-J. ZHANG3, H.-L. DONG1

1Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China 
2School of Nursing, Shanxi Medical University, Taiyuan, China 
3Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China 

X.-T. Qi, H. Wang, and D.-G. Zhu contributed equally to this work and share the first authorship

Corresponding Author: H.-L. Dong, MD; e-mail: honglindong@sxmu.edu.cn

Global trends in coronary artery disease 
and artificial intelligence relevant studies: 
a bibliometric analysis



X.-T. Qi, H. Wang, D.-G. Zhu, L. Zheng, X. Cheng, R.-J. Zhang, H.-L. Dong

2

both developing and developed countries. The de-
velopment of CAD is characterized by athero-
sclerosis, a chronic progressive inflammation 
that begins with the accumulation of lipids in 
the vessel wall and local inflammatory stimu-
lation. This leads to hardening and thickening 
of the wall and plaque formation, which further 
results in the development of ischemic heart 
disease, stroke, and heart failure1-3. Current 
research on CAD encompasses a wide range 
of aspects, from exploring multiple molecular 
mechanisms4 to in-depth mining of genetic me-
tabolomics5,6, and evaluating efficacy in clini-
cal trials7. Furthermore, the emergence and ap-
plication of artificial intelligence (AI) provide 
potential solutions for further interpretation 
and intervention in CAD.

Artificial Intelligence (AI) is a novel com-
puter algorithm that simulates human thought 
and behavior patterns, allowing automatic pro-
cessing and analysis of data. Machine learn-
ing, a popular subset of AI, is commonly cat-
egorized into two main groups: supervised and 
unsupervised learning. Supervised learning 
algorithms frequently include support vector 
machine, regularized regression, and decision 
tree8, while unsupervised learning is embodied 
in deep learning, which produces automated 
predictions through artificial neural networks9. 
Recent research10 has widely applied AI in var-
ious healthcare settings, including disease di-
agnosis, medical data management, drug devel-
opment, health monitoring, and individualized 
treatment. The CAD research has garnered sub-
stantial attention due to the disease’s high-pro-
file status, and there has been a marked in-
crease in studies predicting CAD diagnosis11,12, 
accurate treatment13,14, and prognosis15,16 using 
machine learning approaches.

Bibliometrics is a valuable research tool uti-
lized to analyze existing literature and identi-
fy trends within a specific research area. This 
method has received considerable attention in 
the fields of cardiac arrhythmias17, prostate can-
cer18, and more recently, COVID-1919. However, 
bibliometric studies in the fields of AI and CAD 
remain relatively scarce. Thus, based on the in-
creasing number of studies within the field from 
2009 to 2023, we will use bibliometric analysis 
to provide a detailed and comprehensive over-
view of the current status and future prospects 
of AI applied to CAD. We aim to conduct in-
sightful discussions around potential research 
directions stemming from our analysis.

Materials and Methods

Data Source and Search Strategy
The study utilized data obtained from the 

WoSCC, which is highly regarded as one of the 
most authoritative literature databases for biblio-
metric visual analysis. Data retrieval was com-
pleted on 26 June 2023 to prevent any database 
updates that could pose a bias in the study’s re-
sults. Three independent authors processed and 
downloaded the data and saved it in a “down-
load_.txt” format. The search strategy used 
was as follows: TS=(“Coronary Vessel*”) OR 
TS=(“Coronary Arteries”) OR TS=(“Coronary 
Artery”) AND TS=(“machine learning”) OR 
TS=(“artificial intelligence”) OR TS=(“Neural 
Network Model”) OR TS=(“Deep learning”) 
AND LA=(English). The study literature se-
lection criteria were: (I) Document type: arti-
cles; (II) Time span: up to 26 June 2023; (III) 
Document format: plain text files; (IV) Record 
content: complete records and cited references. 
A total of 1,248 documents were searched. The 
screening process is shown in Figure 1.

Data Analysis and Visualization
Citespace (Chaomei Chen, Drexel University, 

Philadelphia, PA, USA) and Vosviewer (Leiden 
University’s Centre for Science and Technology 
Studies, Leiden, Netherlands) are powerful soft-
ware for visualizing trends in subject areas, and it is 
widely used in bibliometrics20,21. CiteSpace 6.2.R4 
and VoSviewer 1.6.19 were used to construct a vi-
sual bibliometric analysis based on collaborative 
network, co-occurrence analysis and co-citation 
analysis. Citespace is used in the co-occurrence 
analysis of country, institution and keyword, dual 
maps of journals, co-cited reference map, the bursts 
of keywords and co-cited references. Vosviewer 
is mainly used for co-citation and co-occurrence 
analysis of country, institution, journal, author and 
keyword22. The data used in this study were ob-
tained from public databases and, therefore, did 
not require the approval of an Ethics Committee or 
Institutional Review Boards.

Synonym Replacement
Throughout the process of visualizing and an-

alyzing our data, we identified some synonymous 
phrases that were expressed differently, such as 
“computed tomography angiography” and “CT 
angiography”. To accurately describe the hotspots 
of AI research in CAD without affecting the over-
all analysis results, we optimized certain keyword 
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Figure 1. Flowchart of the screening process.

terms, such as converting computed tomography 
to CT.

Results

Publications Analysis
Figure 2 shows an overall trend of a steady in-

crease in the number of articles published since 
2009, which can be divided into two time periods. 
The first period, from 2009 to 2016, saw a prelim-
inary stage of research on CAD through AI, de-
spite extensive research on CAD during the same 
period. The second period, from 2017 to 2023, 
witnessed an exponential increase in the number 
of publications, reaching a peak of 356 publica-
tions in 2022. This remarkable growth showcas-
es the dynamic and transformative capabilities 
of AI in CAD, indicating that a vast number of 
high-quality studies and articles can be produced 
in the future.

Visual Analysis of Countries/Regions and 
Institutions

As of 26 June 2023, a total of 1,592 papers 
have been searched through WoS. After import-

ing CiteSpace 6.2.R4, 1,248 documents were 
extracted after data de-duplication and cleaning 
from 5,774 research institutions in 349 countries/
regions, published in 399 journals.

Countries/Regions
Table I presents the top 10 countries in terms 

of the number of publications and their citation 
frequency. The United States (451) has the most 
publications and the highest number of citations, 
followed by China (340) and Germany (120). It is 
critical to underscore that although China ranked 
second in the number of publications, its citation 
frequency was considerably lower than the Unit-
ed States or even Germany. Centrality reveals 
the cooperation relationship between nodes, with 
higher centrality indicating closer cooperation 
between nodes. In the diagram, nodes with higher 
centrality are represented by the purple outer cir-
cle. Among the top ten publishing countries, Ger-
many, England, and India exhibit high centrality, 
highlighting their crucial role in the collaborative 
network (Figure 3A). Figure 3B demonstrates the 
cooperation between countries and regions. The 
size of the nodes signifies the number of publica-
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tions, while the thickness of the connecting lines 
reflects the intensity of the cooperation. The Unit-
ed States showed the highest total link strength, 
demonstrating strong ties between the USA and 
other countries. This aligns with recent studies 
showing that globalized cooperation is becoming 
more prevalent, with developed countries such as 
the USA, Germany, and England playing a domi-
nant role while developing countries such as China 
and India are also making significant contributions.

Institutions
Table I also presents the top 10 institutions in 

terms of publication frequency, along with their 
corresponding citation frequency. Among the in-
stitutional research collaboration networks, Ce-
dars Sinai Med Ctr (48), Med Univ South Caroli-
na (40), Harvard Med Sch (36), Capital Med Univ 
(34), and Yonsei Univ (34) constitute the research 

echelon with the highest contribution intensi-
ty. Notably, among the top ten institutions, four 
are located in the United States, three in China, 
two in Korea and one in the Netherlands, thereby 
highlighting the authority of the US in the field. In 
terms of centrality, 8 institutions, including Lund-
quist Institute (0.32), Harvard University (0.26), 
Cedars Sinai Medical Center (0.26), and German 
Heart Centre Munich (0.26), displayed high cen-
trality values (Figure 3C), indicating a significant 
prominence in CAD and AI research.

According to VoSviewer analysis, Cedars Sinai 
Med Ctr (1,722) was cited most frequently, followed 
by Ngee Ann Polytechnic (1,108) and Med Univ 
South Carolina (842). All institutions were grouped 
into four closely related clusters (Figure 3D). With 
Cedars Sinai Med Ctr ranked highest in overall link 
strength, followed by Med Univ South Carolina and 
Stanford Univ. This indicates that institutions from 

Table I. The Richmond Agitation-Sedation Scale (RASS).

Rank Country/Region Counts Citations Institution Counts Citations 
       
1 Usa 451 9,594 Cedars Sinai Med Ctr 48 1,722
2 China 340 2,617 Med Univ South Carolina 40 942
3 Germany 120 3,022 Harvard Med Sch 36 519
4 South Korea 111 2,277 Capital Med Univ 34 444
5 Netherlands 104 2,831 Yonsei Univ 34 407
6 England 95 1,604 Shanghai Jiao Tong Univ 32 255
7 Italy 91 2,104 Stanford Univ 23 332
8 India 89 1,589 Univ Groningen 25 382
9 Canada 88 2,377 Univ Ulsan 25 529
10 Japan 75 1,613 Chinese Acad Med Sci & Peking 24 227
     Union Med Coll

Figure 2. Trends in the number of publications.
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including Circulation, Jacc Cardiovasc Imag, Eur 
Heart J, and New Engl J Med.

The dual-map overlay of journals reveals the ci-
tation relationship between citing and co-cited jour-
nals. The citing journals are marked on the left, while 
the cited journals are marked on the right, with the 
three main paths indicating the citation relationships 
(in green). As shown in Figure 4C, published arti-
cles related to CAD and AI are concentrated in the 
journals Medicine/Medical/Clinical, while most of 
the cited articles are published in the journals Heath/
Nursing/Medicine, Molecular/Biology/Genetics and 
Systems/Computing/Computer.

Visual Analysis of Authors and Co-cited 
Authors

A total of 7,871 authors have participated in 
CAD and AI research. Table III displays the top 
ten authors in terms of publications and co-ci-
tations. Schoepf, U. Joseph (34) has the highest 
number of publications, followed by Slomka, 
Piotr J. (34), Berman, Daniel S (33) and Dey, 
Damini (33). Among these authors, four have a 
total citation count exceeding 1,000, with Slom-
ka, Piotr J. leading at 1,400. The other three with 
more than 1,000 citations are Berman, Daniel S. 

the US are more focused on enhancing communica-
tion and collaboration with each other.

Visual Analysis of Journals and Co-cited 
Journals

Publications on CAD and AI research are avail-
able in 399 journals. Table II highlights the top 
ten journals in terms of publication frequency and 
the top ten co-cited journals. Front Cardiovasc 
Med (45, IF=3.6) published the highest number of 
articles, followed by Eur Radiol (39, IF=5.9) and 
Comput Biol Med (31, IF=7.7). Among the top ten 
journals, five are in JCR Q1. We performed a net-
work mapping of journals based on the number 
of journal publications. Figure 4A displays the ci-
tation links between Front Cardiovasc Med And 
Eur Radiol, Comput Biol Med, And Diagnostics.

J Am Coll Cardiol (2,262, IF=24.0) topped the 
list of co-cited journals, with Circulation (1,667, 
IF=37.8) and Eur Heart J (1,273, IF=39.3) follow-
ing closely. Among the top ten co-cited journals, 
nine are in JCR Q1. We constructed a co-citation 
network for the journals that met the criteria with 
a co-citation threshold of 70. Figure 4B displays 
a positive co-citation relationship between J Am 
Coll Cardiol and several other influential journals, 

Table II. The top 10 journals and co-cited journals related to CAD and AI.

   IF JCR Co-cited journal  IF JCR  
Rank Journal Counts (2022) (2022) (2022) Citations (2022) (2022) 
     
1 Front Cardiovasc Med 45 3.6 Q2 J Am Coll Cardiol 2,262 24.0 Q1
2 Eur Radiol 39 5.9 Q1 Circulation 1,667 37.8 Q1
3 Comput Biol Med 31 7.7 Q1 Eur Heart J 1,273 39.3 Q1
4 Comput Meth Prog Bio 30 6.1 Q1 Jacc Cardiovasc Imag 980 14.0 Q1
5 Ieee Access 29 3.9 Q2 New Engl J Med 907 158.5 Q1
6 Sci. Rep 28 4.6 Q2 Ieee T Med Imaging 737 10.6 Q1
7 J Nucl Cardiol 24 2.4 Q1 Radiology 686 19.7 Q1
8 Appl Sci-Basel 22 2.7 Q2 J Cardiovasc Comput 662 5.4 Q1
9 Plos One 22 3.7 Q2 Comput Meth Prog Bio 588 6.1 Q1
10 Ieee T Med Imaging 20 10.6 Q1 Am J Cardiol 517 2.8 Q3

Table III. The top 10 authors and co-cited authors of CAD and AI research.

    Total Link   Total Link  
Rank Authors Counts Citations Strength Co-cited author Citations Strength
      
1 Schoepf, U. Joseph 34 865 24,446 Acharya, U.Rajendra 305 2,685
2 Slomka, Piotr J. 34 1,400 35,258 Alizadehsani, Roohallah 215 1,862
3 Berman, Daniel S. 33 1,363 34,167 Budoff, Matthew J. 131 1,157
4 Dey, Damini 33 1,300 33,790 Ronneberger, Olaf 130 601
5 Acharya, U.Rajendra 22 1,108 2,413 Wolterink, Jelmer M. 130 1,201
6 Isgum, Ivana 21 877 9,912 Tesche,Christian 129 1,412
7 Kim, Young-hak 20 523 9,680 Coenen, Adriaan 115 1,486
8 Tesche, Christian 20 535 18,210 Breiman, Leo 99 307
9 Leiner, Tim 17 686 7,483 Dey, Damini 94 1,083
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Figure 3. A network of national/regional and institutional cooperation in the field of CAD and AI (A) The collaboration network of countries/regions (Citesapce). B, Mapping of cooperation net-
works in countries/regions (VosViewer). C, The collaboration network of institutions (Citesapce). D, Collaborative network mapping of institutions (VosViewer).
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(1,363), Dey, Damini (1,300) and Acharya, U. Ra-
jendra (1,108), respectively. Co-citation data helps 
to identify influential researchers that attract in-
terest among scholars. In this study, 7 scholars 
were co-cited more than 100 times, with Acharya, 
U. Rajendra (305), Alizadehsani, Roohallah (215), 
and Budoff, Matthew J. (131) being the top three. 
It is noteworthy that, although ranked only 5th in 
terms of the number of publications (22), Acha-
rya, U. Rajendra still ranks first in terms of cita-
tions, highlighting the significance of this author 
in the CAD and AI field.

VoSviewer analysis revealed the collaborative 
networks among authors (Figure 5A). Slomka, Pi-
otr J., Dey, Damini, Schoepf, U. Joseph, and Ber-
man, Daniel S. were at the center of these networks. 
The co-cited author network (Figure 5B) indicated 
some active collaboration between authors, such 
as Acharya, U. Rajendra and Saba, Luca, Aliza-
dehsani, Roohallah. However, we observed limited 
authorship overlap in neighboring clusters. There-
fore, there may be a need for enhanced communi-
cation and collaboration in the future.

Visual Analysis of Articles and Co-cited 
References

We conducted a query for highly cited articles 
in CAD and AI research. The paper titled “Pre-
diction of cardiovascular risk factors from reti-
nal fundus photographs via deep learning”23 has 

the highest total number of citations, but its link 
strength is not as great as desired, indicating poor 
relevance to research in CAD and AI.

A co-citation relationship in the literature re-
fers to when two articles are cited by a third arti-
cle at the same time. Table IV illustrates the top 
ten co-cited literature citations. The most cited 
study is a conference paper published in MAC-
CAI 2015 by Olaf Ronneberger et al24. They 
trained an efficient medical image segmentation 
algorithm U-Net, which has been widely used in 
the identification of diseased coronary arteries. In 
addition, the study published in BIOMETRICS ti-
tled “Comparing the areas under two or more cor-
related receiver operating characteristic curves: 
a nonparametric approach”25 showed the highest 
centrality (0.85) and provided methodological 
support for the comparison of diagnostic perfor-
mance of multiple models.

We used Citespace to construct a map of the 
co-cited literature and its clusters (Figure 6A, 
B). The top 7 clusters, according to the LLR al-
gorithm, are quantitative coronary angiography 
(Cluster #0), fractional flow reserve (Cluster #1), 
feature selection (Cluster #2), ivus (Cluster #3), 
x-ray computed (Cluster #4), invasive coronary 
angiography (Cluster #5), deep learning (Cluster 
#6). Additionally, to reveal the association with 
time, we performed a timeline view of the co-cit-
ed literature after clustering (Figure 6C). Cluster 

Table IV. The top 10 co-cited references of CAD and AI research.

    Local 
Rank Year First Author Title citations 

1 2015 Olaf Ronneberger U-Net: Convolutional Networks for Biomedical Image Segmentation 110
2 1990 A S Agatston Quantification of coronary artery calcium using ultrafast computed tomography 93
3 1988 E R DeLong Comparing the areas under two or more correlated receiver operating characteristic 
    curves: a nonparametric approach 84
4 2020 Juhani Knuuti 2019 ESC Guidelines for the diagnosis and management of chronic 
    coronary syndromes 77
5 2017 Manish Motwani Machine learning for prediction of all-cause mortality in patients with suspected 
    coronary artery disease: a 5-year multicentre prospective registry analysis 77
6 2018 Adriaan Coenen Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed 
     Tomographic Angiography-Based Fractional Flow Reserve: Result From the
     MACHINE Consortium 64
7 2014 Bjarne L Nørgaard Diagnostic performance of noninvasive fractional flow reserve derived from 
     coronary computed tomography angiography in suspected coronary artery disease: 
     the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: 
     Next Steps) 64
8 2009 Pim A L Tonino Fractional flow reserve versus angiography for guiding percutaneous coronary 
     intervention 57
9 2016 Lucian Itu A machine-learning approach for computation of fractional flow reserve from 
     coronary computed tomography 56
10 2014 Jonathon Leipsic SCCT guidelines for the interpretation and reporting of coronary CT angiography: 
     a report of the Society of Cardiovascular Computed Tomography Guidelines 
     Committee 55
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Figure 4. Visual analysis of journals. A, The network of article sources journals. B, The network of co-cited journals. C, The dual-map overlay of journals. 
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Figure 5. Visual analysis of authors. A, The collaboration network of scholars. B, The network of co-cited authors.
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Figure 6. Visual analysis of co-cited references. A-B, Cluster analysis of co-cited references. C, The clustering timeline map of co-cited references.
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#0 is currently the most studied class, and Cluster 
#0 and Cluster #4 are currently the most popular 
classes. Future research is probably more focused 
on quantitative coronary angiography and com-
puted X-rays. 

Figure 7 depicts the top 25 references with the 
strongest citation bursts. Citation burst refers to 
a reference that has been frequently cited over a 
period. James K Min’s article “Diagnostic accu-
racy of fractional flow reserve from anatomic CT 
angiography”, published in 2012, demonstrated 
the highest explosive intensity and highlighted 
the excellent performance of noninvasive frac-
tional flow reserve (FFR) computed from CT plus 
CT in the diagnosis of coronary artery lesions26. 
The longest bursts were published by Chang and 
Lin27, running from 2011 to 2019, and somewhat 
normalizing the application of support vector ma-
chine algorithm in cardiovascular diseases. The 
article published by Al’Aref et al28 still displays 
burst up to now. They scored the coronary artery 
calcification score (CACS) of coronary comput-
ed tomography angiography (CCTA) following 
the Agatston method and showed high accuracy 
in predicting obstructive CAD using the gradient 
boosting machine learning algorithm (XGBoost) 
combined with clinical features.

Visual Analysis of Keywords
Analyzing the co-occurrence of keywords can 

assist researchers in understanding the current 
state of AI in the CAD field. Table V presents the 
top 20 keywords in terms of frequency, with “cor-
onary artery disease” being the most commonly 
occurring one (403), followed by “machine learn-
ing” (331), “deep learning” (216) and “artificial 
intelligence” (159). The keywords were catego-
rized into four groups using VoSviewer’s co-oc-
currence analysis prompts (Figure 8A). The green 
cluster represents research centered around devel-
oping CAD diagnostic models. The red clusters 
focus on CAD prognostic models characterized 
by CCTA and coronary artery calcium. The yel-
low cluster investigates radiomics based on deep 
learning and image segmentation. Lastly, the blue 
cluster explores the application of different ma-
chine-learning classification algorithms in CAD.

Figures 8B and 8C illustrate the timeline view 
of keyword clustering constructed by Citespace. 
Cluster #0 (ct angiography) is the largest currently 
researched topic, with the earliest studies artery 
disease and angiographic severity dating back to 
2010. Ischemic heart disease is currently at the 
forefront of this area’s research. The latest clus-
ters being studied belong to two categories: #6 

Figure 7. Citation burst mapping of references.
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Table V. The top 20 keywords of CAD and AI research. 

Rank Keywords Centrality Counts Year 

1 coronary artery disease 0.46 403 2009
2 machine learning 0.13 331 2011
3 deep learning 0.06 216 2018
4 artificial intelligence 0.15 159 2009
5 risk 0 126 2015
6 classification 0.14 118 2012
7 disease 0.22 104 2009
8 fractional flow reserve 0.05 103 2015
9 computed tomography angiography 0 102 2019
10 diagnosis 0.09 89 2014
11 artery disease 0.52 88 2010
12 prediction 0.03 88 2018
13 association 0.15 86 2015
14 angiography 0.38 79 2009
15 cardiovascular disease 0.09 76 2016
16 quantification 0.11 76 2015
17 heart disease 0.13 71 2011
18 computed tomography 0 66 2016
19 coronary computed tomography angiography 0.08 64 2019
20 guidelines 0.13 62 2018

Figure 8. Visual analysis of keywords. A-B, Cluster analysis of keywords. C, The clustering timeline map of 
keywords.
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(stress echocardiography), with research focusing 
on myocardial perfusion SPECT and deep neural 
network, and #8 (coronary CT angiography), with 
research centered around vessel segmentation. 

We conducted a burst test on the keywords, and 
Figure 9 lists the top 25 burst-intensity keywords. 
The highest burst was experienced by “comput-
ed tomography angiography”. The longest-last-
ing bursts were observed in “neural networks”, 
spanning up to eight years. “acute coronary syn-
drome”, “iterative reconstruction” and “emission 
computed tomography” are currently undergoing 
bursts, with a greater focus on radiomics.

Discussion 

Global Research Distribution
The study retrieved 1,248 articles on AI in CAD 

from the WoSCC database from 1 January 2009 
to 26 June 2023, from 5,774 research institutions 

in 349 countries/regions, published in 399 jour-
nals, while a total of 7,871 authors participated in 
the study. Our analysis reveals that the number of 
relevant articles published has increased signifi-
cantly year by year over the last 15 years and that 
the interest of researchers in the field continues to 
rise. The explosive growth of publications from 
2017 to date is closely linked to the rapid devel-
opment of AI, and the continuous optimization of 
several algorithmic models in the field of artificial 
intelligence has facilitated further CAD research 
under the AI label.

Analysis of countries/regions enables visualiza-
tion of global collaboration trends in a particular 
area. As we can observe from the above results, 
the authoritative position of the United States is 
evident, with China and Germany also occupy-
ing important positions. The higher centrality of 
Germany, England, and India has recently shown 
a central bridging role in this field. Although the 
USA and China have the highest number of publi-

Figure 9. Citation burst mapping of keywords.
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cations, their centrality does not match the volume 
of publications. As shown in Table I, four of the top 
ten institutions in terms of number of publications 
are from the USA, with Lundquist Institute being 
more prominently central. Overall, the USA is the 
absolute dominant player in AI and CAD research 
and collaborates extensively with countries/regions 
such as China, South Korea and Italy.

The analysis of journals provides an accurate 
picture of the core key journals in a particular 
field. As shown in Table II, the top ten journals 
and co-cited journals are all high-quality jour-
nals, with FRONT CARDIOVASC MED having 
the highest number of publications, which has 
contributed significantly to the development of 
the field. J AM COLL CARDIOL is not only the 
most co-cited but also leads in the number of ar-
ticles published, and it has profoundly influenced 
the course of the field.

Current Status of AI Research in CAD
CAD, as a traditional risk factor for death in 

the population, has been favored by many schol-
ars, and AI-oriented CAD research has shown 
great vigor in the modern era, along with the new 
iteration of AI technology. Firstly, in the era of 
precision medicine, the high incidence of CAD in 
the population provides a prerequisite for the ap-
plication of artificial intelligence. For patients un-
der different physiological conditions, multi-di-
mensional analysis based on big data is carried 
out to explore new ideas for CAD personalized 
treatment and drug development. Secondly, the 
diagnosis and treatment of CAD are inseparable 
from cardiovascular multimodal images. The re-
sults of electrocardiogram, echocardiography, and 
CTTA are closely related to images. The iterative 
reconstruction and image segmentation brought 
by artificial intelligence undoubtedly simplify the 
workload of cardiologists. Moreover, natural lan-
guage processing (NLP) in the analysis of elec-
tronic health records and phone recordings also 
highlighted the characteristics associated with 
CAD29. Finally, due to different regional popula-
tions, large-scale epidemiological data can deter-
mine the key factors influencing CAD and guide 
CAD prevention in different areas.

The continuous improvement of AI technolo-
gy and the innovation of CAD researchers have 
led to the diversification of research directions, 
and the current frontiers are more focused on 
three major directions: the construction and val-
idation of models for early diagnosis of coronary 
artery disease, the study of prognostic models of 

coronary artery disease characterized by plaque, 
and the study of imaging histological features in 
CAD risk stratification. The second is the study 
of prognostic models for coronary artery disease 
characterized by plaque, and the third is the study 
of imaging radiomics features in CAD risk strat-
ification.

Learning large amounts of data to automatical-
ly diagnose diseases is a major direction for AI 
applications in medicine. Diagnosis of CAD by 
coronary angiography is necessary, but due to its 
invasiveness, a non-invasive, economical and reli-
able way to identify CAD early is more respected 
by researchers. On the other hand, there is still 
some variation between diagnostic models due to 
differences in the content and sample size of the 
analyzed data sets. Currently, multiple types of di-
mensional data are being used for CAD diagnosis, 
with a more prominent trend toward non-invasive 
imaging as a key target, in addition to traditional 
demographic characteristics, social life factors, 
and clinical laboratory indicators. Electrocardi-
ography (ECG) is widely promoted as a screen-
ing test for cardiac function in admitted patients 
and can accurately and rapidly predict obstructive 
vessels by learning 12-lead ECG alone30-32, in ad-
dition, ECG-based heart rate variability (HRV) 
has been shown33 to predict CAD and myocardial 
infarction (MI). Previous studies in the literature 
have shown the presence of abnormal heart sounds 
in patients with coronary stenosis, and Pathak et 
al34 explored the use of phonocardiogram (PCG) 
in the diagnosis of CAD disease through multi-
nuclear learning. In particular, the dual dimen-
sional analysis of ECG and PCG showed superior 
performance for the detection of CAD35. Patients 
with CAD are often accompanied by hemody-
namic alterations, and the elastic network mod-
el construction of photoplethysmographic (PPG) 
with a three-dimensional orthogonal voltage gra-
dient (OVG) can accurately identify CAD36. Stress 
echocardiography shows localized regions of ab-
normal ventricular wall motion in patients with 
CAD, and artificial intelligence helps clinicians 
diagnose CAD effectively and quickly by identi-
fying abnormal regions before and after motion37. 
The deep learning model of coronary artery cal-
cification identified by echocardiography also 
realizes the risk stratification of coronary artery 
disease38. Nuclear imaging (SPECT, PET/CT) 
myocardial perfusion imaging (MPI) has become 
the gold standard for non-invasive detection of 
CAD, single-photon emission computed tomogra-
phy (SPECT) MPI is dominant in the diagnosis of 
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CAD, and deep learning-based MPI models can 
classify CAD patients in a short time39. The lat-
est research40 proposes that the polar map-free 3D 
deep learning algorithm eliminates the previous 
steps of axis and manual correction, simplifies the 
process of data processing, and demonstrates an 
efficient ability to predict CAD. In addition, the 
inclusion of low-risk populations has increased 
the sensitivity of MPI models to more accurately 
guide clinical CAD patient stratification41. Posi-
tron emission tomography/computed tomography 
(PET/CT) MPI has shown42 advantages for the de-
tection of myocardial ischemia due to its higher 
image resolution. The CT attenuation correction 
scan during PET reduces the radiation dose to the 
patient, and the automatic coronary artery calci-
fication (CAC) score trained by the CNN model 
reduces the time required for visual evaluation, 
which is more suitable for clinical application43. 
Cardiac magnetic resonance (CMR) allows accu-
rate assessment of cardiac structure and function, 
myocardial perfusion and ischemic infarct areas, 
and analysis of CMR 2D images based on ran-
dom forest (RF)-convolutional neural network 
(CNN)-F accurately assesses CAD44. For patients 
with renal failure suspected of MI, a deep learn-
ing framework based on non-contrast-enhanced 
cardiac cine MRI also outlines the location and 
area of MI satisfactorily45. Whole-heart coronary 
magnetic resonance angiography (WHCMRA) 
often cannot be applied on a large scale because 
of image quality, and the CNN model proposed 
by Prof. Kobayashi et al46 improves this situation, 
and a compressed sensing artificial intelligence 
(CSAI) framework was introduced to bring a 
better future for MRA diagnostic CAD47. Nota-
bly, the deep CNN model based on retrospective 
analysis of chest radiographs of patients who sus-
pected angina pectoris shows a good prior proba-
bility of CAD prediction, but it still needs further 
external validation48. In addition to the imaging 
examinations mentioned above, CCTA49, a hot 
topic of interest in the last decade, has seen vig-
orous progress in cross-integration with artificial 
intelligence. Deep CNN, as the most prominent 
focus, has played a crucial role in coronary image 
segmentation and CAD-RADS classification50-55. 
A novel CCTA image segmentation algorithm, 
CAS-Net, brings new ideas for the determination 
of coronary artery lesions56. Moreover, Yoneyama 
et al57 used a hybrid image of SPECT MPI and 
CCTA CAD models constructed based on artifi-
cial neural networks (ANN) also showed excellent 
performance. The FFR reflects the hemodynamic 

status of the coronary artery branches to the sup-
plied myocardial region, and the CT-FFR obtained 
based on CCTA calculations achieved a judgment 
power consistent with CCTA for CAD classifica-
tion58,59, and the combined application of CT-FFR 
and CCTA further enhanced the performance of 
the CCTA-based models alone60,61. Surprisingly, 
in patients with moderate coronary stenosis (50-
90%), the combined application of CT-FFR and 
CCTA even outperformed the diagnostic potential 
of invasive coronary angiography (ICA)62.

Due to the unique nature of CAD, not only does 
it require early diagnosis, long-term detection, 
and timely treatment, but it also requires accurate 
prediction of adverse cardiovascular events to 
better guide clinical intervention. Previous stud-
ies63 have shown that several blood biochemical 
parameters can predict the occurrence of major 
adverse cardiac events (MACE), but the rapid de-
velopment of clinical imaging and the continuous 
improvement of imaging technology has greatly 
contributed to the interest of investigators in im-
age analysis, so it has become a recent research 
hotspot to determine the occurrence of MACE 
in CAD patients by mining the parameters of 
medical imaging, such as plaque characteristics, 
hemodynamics, etc. Two-dimensional echocardi-
ography can provide many variables that reflect 
cardiac structure and ventricular function. 

Composite Variables 
The derivation of the transthoracic echocar-

diographic heart failure index (HFI) constructed 
by left ventricular mass index (LVMI), left atrial 
volume index (LAVI), mitral regurgitation (MR), 
and left ventricular outflow tract velocity-time 
integral (VTILVOT) and diastolic dysfunction 
(DD) performs well in the prediction of heart fail-
ure in CAD patients64. The advantages of SPECT 
MPI in CAD prognosis have been extensively 
studied65, and the prediction of per-vessel revas-
cularization within 90 days in patients with sus-
pected CAD by machine learning of SPECT MPI 
imaging radiomics features is even better than 
clinical nuclear cardiologists. The model, after 
simplifying several imaging radiomics variables, 
had mildly reduced accuracy for MACE, but its 
predictive interpretation and clinical utility were 
more prominent66, and the deep learning model 
showed better accuracy and calibration than tra-
ditional logistic regression models in predicting 
death and MI67. The semi-quantitative assessment 
of myocardial perfusion defects after SPECT 
has been proven to predict MACE. IPTD as the 
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difference between stress-total perfusion defects 
(TPD) and rest-TPD is different in men and wom-
en, and women with moderate to severe myocardial 
ischemia (IPTD > 5%) show a worse prognosis68. 
The prediction of CAD prognosis by CMR has 
been accepted by the general public, and Pezel et 
al69 showed high predictive value in predicting 10-
year mortality in CAD patients based on a machine 
learning model of 5 parameters of stress CMR and 
11 clinical data. The newly proposed fully automat-
ed MRI parameter analysis software did not differ 
from manual segmentation in predicting MACE 
within 1 year due to the time-bound nature of MRI 
image segmentation and simplifies the workflow70. 
Non-invasive FFR obtained by CCTA is consid-
ered to have more excellent diagnostic performance 
compared to CCTA and ICA, and several studies by 
Qiao et al14,71 showed that machine learning-based 
FFRCT has better predictive potential for adverse 
events compared to CCTA. Machine learning CT-
FFR has also shown72 a certain prognostic value in 
the occurrence of MACE and in-stent restenosis af-
ter coronary stent implantation. Previous studies73,74 
have shown that CAC score and epicardial adipose 
tissue (EAT) have some predictive value in cardio-
vascular risk stratification, and EAT quantification 
based on deep learning models integrating fully au-
tomated analysis of non-enhanced cardiac CT data 
can adequately predict MACE. Perivascular adipose 
tissue (PVAT) is closely associated with its perivas-
cular structural alterations, and coronary PVAT ra-
diomic features outperform the conventional CCTA 
model in predicting MACE within 5 years of CAD15. 
It is worth mentioning that another indicator associ-
ated with adipose tissue, fat attenuation index (FAI), 
reflects coronary inflammation, and the results ob-
tained from unsupervised cluster analysis suggest 
that high FAI is associated with high-risk plaques 
and represents a higher risk of MACE75.

Over the past decade, there has been a significant 
shift in risk stratification and therapeutic manage-
ment of coronary artery stenosis, where the focus is 
no longer limited to the severity of intraluminal ste-
nosis, but where the intrinsic characteristics of plaque 
morphology are also of concern. Although clinical 
indicators and blood biochemical markers have per-
formed well in CAD stratification76,77, decisions about 
the risk of adverse coronary events still have some 
shortcomings. Therefore, how to accurately identify 
plaque has become the frontier of research to explore 
the prognosis of patients with CAD. With the rapid 
development of accurate quantitative medical imag-
ing technology, image recognition technology, and 
data algorithm updates, the mining and analysis of big 

medical image data can be realized. The combination 
of plaque identification and image radiomics is criti-
cal. Traditional image radiomics analysis is reflected 
in the extraction and modeling of high-throughput 
features of regions of interest (ROI) in CT, PET and 
MRI. Automatic Cardiac CT CAC score based on the 
convolutional neural network shows the height of the 
artificial measurement consistency and significantly 
reduces the analysis time78. Low-dose CT (LDCT) for 
lung cancer screening can identify arterial calcifica-
tion. Homayounieh et al79 completed cardiac image 
segmentation and radiomic feature extraction using 
existing models and found that whole-heart imaging 
radiomics of LDCT can diagnose coronary stenosis 
and predict cardiovascular disease risk. Similarly, 
semi-quantitative coronary artery calcium volume 
(CACV) based on LDCT artificial intelligence CNN 
prototype also showed similar results80. Recently, 
the fully automatic CAC score comparison between 
ECG-gated cardiac CT and non-ECG-gated LDCT 
has shown81 good reliability, but the results in differ-
ent institutions show evident heterogeneity, so it may 
need further verification. Assessment of the coronary 
artery calcification degree is usually measured using 
the coronary artery calcification score (CACS), and 
the XGBoost model combining CACS with clinical 
features accurately reflects CAD risk stratification28.

The application of imaging radiomics in CAD 
is mostly focused on CCTA images. Several previ-
ous studies82-84 have shown that the use of radiom-
ic features of CCTA plaque regions can accurately 
and rapidly identify unstable plaques in coronary 
arteries. At the same time, the radiomics features 
associated with unstable plaques are associated with 
the occurrence of adverse cardiovascular events85. 
In addition to coronary plaque studies, the radiom-
ic features of pericoronary adipose tissue (PCAT) 
have also been extensively studied86,87 in the last 
two years, whether it is of certain significance in 
the evaluation of coronary artery stenosis or acute 
coronary syndromes such as myocardial ischemia 
and myocardial infarction88-91. In addition, PCAT is 
more advantageous in predicting the occurrence of 
MACE within 3 years compared with EAT92. In re-
cent years, new imaging techniques have been grad-
ually applied in radiomics, such as intravascular ul-
trasound (IVUS) and virtual histology (VH), which 
can also diagnose unstable plaques and thus prevent 
MACE occurrence93. IVPA, as a new type of intra-
vascular imaging, has been confirmed to detect ath-
erosclerotic plaque, but the cardiac motion artifact 
limits the use of CAD. Motion and Artifact Correc-
tion (MAC) - Net, as a new type of deep learning 
algorithm, has been used to correct coronary IVPA 
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artifacts. It provides a prerequisite for the applica-
tion of IVPA in the diagnosis of CAD94.

The Future Vision of AI in CAD
In the nearly 100 years in which clinical re-

searchers have been studying coronary artery dis-
ease, our understanding of coronary artery disease 
has become clearer. With the advent of the era of 
artificial intelligence, we are acutely aware that 
the next research boom in coronary artery disease 
is about to take off. In recent years, researchers 
have moved away from focusing solely on the di-
agnosis of CAD and instead have focused more 
on the issue of cardiovascular risk stratification 
after CAD. In terms of research methods, the rise 
of radiomics has placed higher demands on the 
quality of medical images while also promoting 
the use of medical images for the comprehensive 
management of CAD. With the rapid development 
of radiomics, the orientation of clinical medical 
images to predict the occurrence of cardiovas-
cular risk will be at the forefront of research on 
artificial intelligence in CAD in the next decade.

Limitations
This study is the first visual review and analy-

sis of AI applications in coronary artery disease 
through bibliometrics in the last 15 years, but there 
are still some limitations. First, we tried to refine the 
search strategy as much as possible, so it is inevita-
ble that there are certain articles with low relevance. 
Second, we only selected the WOSCC to complete 
the literature search and collection; Pubmed, Goo-
gle Scholar, and other databases were not included 
in our study, so there may be some articles missing. 
Finally, there may be some bias in the results of this 
study due to problems such as changes in institu-
tional names or unidentifiable author ranking.

Conclusions

In this study, we searched for AI and CAD-re-
lated research over the last 15 years through bib-
liometric analysis. FRONT CARDIOVASC MED, 
EUR RADIOL and J AM COLL CARDIOL are 
the influential journals in this field. Schoepf, U. 
Joseph and Acharya, U. Rajendra are the leading 
authors in this field. Future research may be more 
towards the potential link between cardiovascular 
risk stratification and radiomics. Our study illus-
trates the full range of applications of AI in CAD 
and the relationship between them, providing 
important clues to current trends and future di-

rections of their research. The visualization study 
based on Citespace and VoSviewer software will 
hopefully provide researchers with a comprehen-
sive view of the current general trends in the field.
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