The magnetic resonance imaging assessment of optic nerve sheath diameter in pediatric acute liver failure patients

G.M. DOĞAN¹, A. SIĞIRCI¹, G. OKUT², E. CICEK², S.M. DOGAN², S. YILMAZ², A.K. ARSLAN³

Abstract. – OBJECTIVE: To evaluate the diagnostic value of optic nerve sheath diameter (ONSD) using brain MRI in the pretransplantation period in the pediatric acute liver failure patients, and correlate the ONSD with clinical grade of hepatic encephalopathy (HE) and MRI findings.

patic encephalopathy (HE) and MRI findings.

PATIENTS AND METHODS: Forty acute liver failure patients and 40 control group patients were retrospectively analyzed. The high signal intensities in T2W (T2-weighted image), FLAIR (Fluid Attenuated Inversion Recovery) and DWI (diffusion-weighted imaging) sequences were evaluated and ONSD were measured. The patients were grouped first into 5 according to their West Haven score, and HE grade 0 and grade 1 were accepted as low grade HE, HE grade 2, 3 and 4 were accepted as high grade HE. The patients were grouped to 2 according to the MRI findings as low grade and high grade MRI group.

RESULTS: The mean value of ONSD was 6.0 ± 1.80 and 4.94 ± 1.27 in all the patients and in the control group, respectively. There was statistically significant difference between both the ONSD and the low grade-high grade HE groups (p=0.01), and between the ONSD and the low grade-high grade MRI groups (p<0.001).

CONCLUSIONS: Although high ONSD values do not make the diagnosis of cerebral edema, it may cause suspicion in the early period. MRI can be helpful in the diagnoses of increased intracranial pressure like ultrasound. Our study is the first study to compare ONSD and MRI findings in addition to HE grades. The widespread use of MRI in children in recent years may help determine the normal range of ONSD values.

Key Words:

Optic nerve, Magnetic resonance imaging, Hepatic encephalopathy, Acute liver failure, Ultrasound.

Introduction

Acute Liver Failure (ALF) is a serious condition that can result with hepatic encephalopathy

(HE) in the patients, who had not a history of severe liver related dysfunction and chronic liver disease¹. As a result of the accumulation of ammonia which is toxic in HE, various pathologies have been described in the brain magnetic resonance imaging (MRI) in T2W (T2-weighted image), FLAIR (Fluid Attenuated Inversion Recovery) and DWI (diffusion-weighted imaging) sequences. Symmetrical high signal intensities in insula, thalamus, posterior limbs of internal capsule (PLIC), cingulate gyrus and diffuse cortical edema are these pathologies². The prevalence of these pathologies is related to the clinical severity of the disease².

Increased intracranial pressure (ICP) develops in HE secondary to cerebral edema which is responsible for the mortality and the morbidity of the disease. ICP measurement is done directly with epidural, subdural and intraventricular devices, but these are very invasive methods³. Instead, indirect methods have been developed to suspect an increase in ICP. A positive correlation was found between optic nerve sheath diameter (ONSD) value and increased ICP⁴. The optic nerve is associated with the durameter, and is covered by leptomeninges. Any change in ICP is reflected in the potential space below the optic nerve sheath, and this causes enlargement in ONSD5. ONSD measurements are done with non-invasive imaging methods, such as ultrasound (US) and MRI in the ALF patients especially in the pretransplantation period^{6,7}, but the number of clinical studies in pediatric patients is few⁸.

The aim of this study was to evaluate the diagnostic value of measuring ONSD using MRI in the pretransplantation period in the pediatric ALF patients, and correlation the ONSD with clinical grade of HE, and brain MRI findings.

¹Inonu University, Pediatric Radiology, Malatya, Turkey

²Inonu University, General Surgery, Malatya, Turkey

³Inonu University Faculty of Medicine, Department of Biostatistics, Malatya, Turkey

Patients and Methods

All procedures followed were in accordance with the Helsinki Declaration, and all of the parents of the patients have been informed and approved to participate in this study. This study was approved by the Inonu University Ethical Committee with the number 2021/2440 in 07-09-2021.

Patient Selection

The brain MRI findings of 40 patients aged 0-17 years, who had liver transplantation due to ALF in the transplantation institute of our hospital between 2012 and 2019 were retrospectively analyzed *via* Picture Archiving and Communication Systems (PACS). The medical data, HE grades of the patients were examined in detail by the responsible clinician from the patient files. Patients, who did not have brain MRI in the pretransplant period or who did not have T2-FLAIR and DWI sequences in MRI were excluded from the study. In addition, patients with missing medical data were excluded from the study.

Brain MRIs were obtained within 7 days before transplantation. The mental status of the patient was determined according to the clinically used West Haven scoring⁹. This was obtained through a retrospective review of medical record. West Haven scores were evaluated from the data just before the brain MRI examination time.

The patients were grouped into 5 according to their HE grades. HE grade 0 was named as HE group 1, grade 1 as HE group 2, grade 2 as HE group 3, grade 3 as HE group 4 and grade 4 as HE group 5. Group 1 and 2 were accepted as low grade HE, Groups 3, 4 and 5 were accepted as high grade HE.

MR Imaging Sequence Parameters

The 1.5 T device (Siemens, Magnetom-Avanto) was used for MRI scans and a single pediatric radiologist (with 5 years of experience) and reported the whole brain MR images in the PACS system. The radiologists were unaware of the clinical information and West Haven scores of the patients. Axial T1WI, T2WI, FLAIR and DWI with Apparent diffusion coefficient (ADC) maps sequences were evaluated in MR images.

The patients were grouped as follows according to the signal intensity features in T2W-FLAIR and DWI sequences.

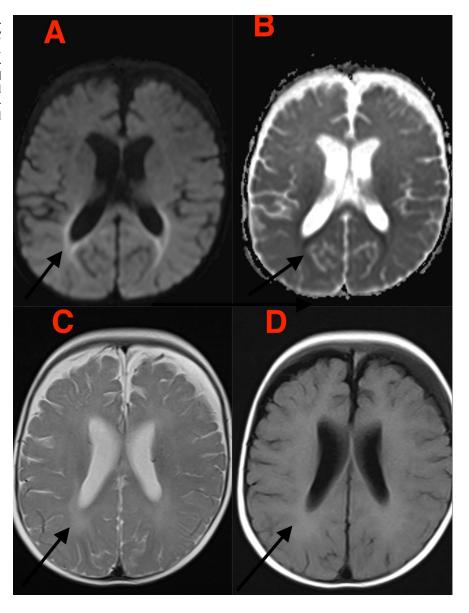
MRI group 1: there was no pathological signal intensity in T2W-FLAIR or DWI. MRI

group 2: there was a symmetric involvement of the following: thalami, PLIC, dorsal brain stem (DBS), periventricular white matter (PVWM) or cerebellar white matter (Figure 1). MRI group 3: there was diffuse cortical involvement (Figure 2). MRI group 1 and 2 were accepted as low grade MRI, MRI group 3 was accepted as high grade MRI.

Age-matched children, who had brain MRI due to headache and had no pathology on MRI were selected as the control group.

ONSD measurements were made from axial T2W images for both 40 patients and 40 control groups. Measurements were made by a single pediatric radiologist. ONSD was performed in transverse diameter perpendicular to the optic nerve at 3 mm behind the globe. The measure at 3 mm behind the globe was taken in accordance with the findings in the Helmke and Hansen study¹⁰. ONSD was performed between the inner edges of the dura surrounding the optic nerve (Figure 3).

Statistical Analysis


Numerical and categorical variables in the data set were expressed as median (min-max) and frequency (percent), respectively. Kruskal-Wallis H test was used to compare numerical variables in terms of groups. After the Kruskal-Wallis H test, paired group comparisons were performed by the Conover test. Statistical significance level was accepted as p<0.05. In the analysis, web-based applications KruskalWallis¹¹ and IAY: Statistical Analysis Software¹² developed by İnönü University Faculty of Medicine, Department of Biostatistics and Medical Informatics were used.

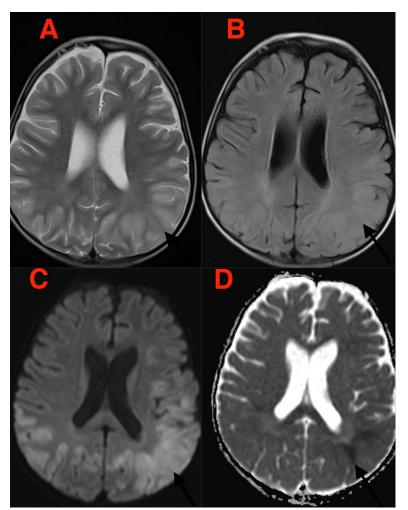
Results

In our study, the 23 (57.5%) of the patients were male, and 17 (42.5%) were female. The mean age was found to be 6.45 ± 4.03 . The cause of ALF was cryptogenic in 22 (55%), HAV (hepatitis A virus) in 13 (32.5%) and toxic in 5 (12.5%) of the patients.

Twenty (50%) of the patients had hyperintense signals in the insular cortex, 19 (40%) in the PVWM, 15 (37.5%) in the basal ganglia, 14 (35%) in the DBS, 12 (30%) in the PLIC, 11 (27.5%) in the thalamus, and 15 (37.5%) in diffuse cortical region in T2WI-FLAIR or DWI. Comparison of the pathological signals in T2-FLAIR and DWI is shown in the Table I.

Figure 1. A, DWI (Diffusion-weighted imaging). **B,** ADC (Apparent diffusion coefficient). **C,** Axial T2W sequence. **D,** Axial FLAİR sequence. 6-year-old male patient, increased signal intensity on T2-FLAIR and restricted diffusion in the bilateral periventriculer white matter.

The mean value of ONSD was 6.0 ± 1.80 in all the patients. The mean value of ONSD was 4.94 ± 1.27 in the control group.


The number of the patients and the mean value of the ONSD in the HE and in the MRI groups were given in the Table II and III.

While there was no statistically significant difference between the ONSD and the HE groups (p=0.07), a statistically significant difference was found between the ONSD and the MRI groups (p<0.001).

There was statistically significant difference between both the ONSD and the low gradehigh grade HE groups (p=0.01), and between the ONSD and the low grade-high grade MRI groups (p<0.001) (Table IV, V).

Discussion

In the brain MRI of ALF patients, high signal intensities can be seen in some regions in FLAIR-T2WI, or DWI sequences. These regions are the thalamus, the basal ganglion, the PLIC, the PVWM, and the dorsal brain system¹³. It has been shown that the excess involvement in FLAIR or DWI is strongly correlated with serum ammonia levels and moderately with the severity of the disease². If diffuse cortical involvement is present, the prognosis of the patients is much more serious¹⁴. According to our results, ONSD values with diffuse cortical involvement were found to be statistically higher than the patients with normal MRI findings or

Figure 2. A, Axial T2W sequence. B, Axial FLAİR sequence. C, DWI (Diffusion-weighted imaging). D, ADC (Apparent diffusion coefficient). 10-year-old male patient, increased signal intensity on T2-FLAIR and restricted diffusion in the bilateral parietooccipital cortical region.

Figure 3. Axial T2W sequence. The ONSD was measured 3 mm behind the optic disc. Abbreviation: ONSD, optic nerve sheath diameter.

Table I. Correlation of the hyperintensities in T2W, FLAIR and DWI abnormalities.

	FLAIR-T2WI	DWI
Thalamus	11 (27.5%)	8 (%)
Basal ganglia	15 (37.5%)	10 (%)
Posterior limb internal capsule (PLIC)	12 (30%)	12 (%)
Periventricular white		
matter (PVL)	19 (40%)	17 (%)
Dorsal brain stem (DBS)	14 (35%)	7 (%)
Diffuse cortical	15 (37.5%)	15 (%)
Insular cortex	20 (50%)	20 (50%)

FLAIR: Fluid-attenuated inversion recovery; T2WI: T2 weighted image; DWI: Diffusion-weighted imaging.

Table II. Correlation of the mean ONSD value between the HE groups.

p = 0.07	HE group 1	HE group 2	HE group 3	HE group 4	HE group 5	Healthy group
	(n = 7)	(n = 5)	(n = 7)	(n = 15)	(n = 6)	(n = 40)
ONSD	5.0 (4.8-6.8)	5.3 (4.9-6.9)	6.4 (4.7-7.5)	6.2 (4.8-7.3)	6.8 (6.0-7.1)	4.94 (4.2-5.4)

ONSD: Optic nerve sheath diameter; HE: Hepatic encephalopaty.

Table III. Correlation of the mean ONSD value between the MRI groups.

p < 0.001	ONSD
MRI group 1 (n = 13)	5.0 (4.7-5.3)
MRI group 2 (n = 13)	6.2 (5.6-6.4)
MRI group 3 (n = 14)	6.75 (6.1-7.5)
Healty group (n = 40)	4.94 (4.2-5.4)

ONSD: Optic nerve sheath diameter.

Table IV. Correlation of the mean ONSD value between low grade HE and high grade HE.

p = 0.01	Low grade HE	High grade HE
ONSD	5.12	6.38

ONSD: Optic nerve sheath diameter; HE: Hepatic encephalopaty.

Table V. Correlation of the mean ONSD value between low-grade MRI score and high grade MRI.

p < 0.001	Low grade MRI	High grade MRI
ONSD	5.0	6.48

ONSD: Optic nerve sheath diameter; HE: Hepatic encephalopaty.

with mild involvement. It can be said that, as the ONSD values increase, the prognosis of the disease will be poor.

Our study is the first study to compare ONSD and MRI findings in addition to HE grades. The mean value of ONSD was found to be higher in the high grade HE group compared to the low grade HE group in the present study. In the study of Das et al8 in 41 pediatric patients with ALF, ONSD values were shown to be correlated with HE grades and BA. They also showed that the ONSD of the control group and the ONSD of patients without HE were similar. Although ONSD values were increased in correlation with HE grades, there was no statistically significant difference between HE groups in our study. The mean ONSD values of the patients without HE group and the low-grade MRI group were similar to the control group in our study too. In another study, the prognosis of the children was worse with higher ONSD values than lower ONSD values¹⁵. In the study made by Cardosa et al¹⁶ in adults, a higher ONSD value was associated with higher hospital mortality. In all of these studies, ONSD measurement was made with US. US is used more frequently for ONSD measurement, since it is easily accessible, inexpensive, and easy to apply at the bedside in intensive care units. On the other hand, US has some disadvantages. US is a user dependent technique and US beam has poor penetration and it has low spatial resolution. MRI has a higher spatial resolution and can separately show the optic nerve size and sheath of ONSD.

There are only a few studies, in which ONSD was performed with MRI in healthy children and it is very similar to the ONSD values of our control group 17 . The mean value of ONSD was 4.94 ± 1.27 in the control group in our study. The only study that was an exception was the study by Steinbord et all and the mean ONSD value was 5.96 in normal children aged 5-18 years. This mean value was quite high both compared to the literature and our results. This was shown as thinner slice thickness and the images acquisition plane parallel to the optic nerve in the above-mentioned study 17 .

In a study, in which ONSD was measured in pediatric patients with MRI, ONSD value was found to be significantly high in the patients with idiopathic intracranial hypertension¹⁹. In this study, the mean ONSD value of the control group was found to be lower than in our study. This was due to the fact that ONSD measurement was made from different places with different technique. We measured ONSD at 3 mm distal to origin of the optic nerve, because this is the most distensible part of optic nerve sheath. In another study⁴, the mean value ONSD of the control group was lower than the patients with intracranial hypertension. Although this study involved adult patients, ONSD values of the control group (4.92) was similar to ONSD of our control group (4.96). The mean age was 6.45 in our study, only 8 (20%) of the patients were <4 years of age. This may explain the similarity of ONSD values. As known, there is a significant increase in the thickness of the myelin sheath in the first 2 years of life, and this thickness reaches the adult level at about 4 years of age¹⁷. While that study was performed with high-resolution orbital images, whole-brain axial T2W images were used in our study. The various layers of the optic nerve sheath cannot be resolved in whole-brain axial T2W images and measurements are made based on the outer fibrous layer at the junction with the periorbital fat²⁰. As a result, the ONSD values are found to be higher like in our study.

In comparison of US and MRI, it was found that both methods showed a very good correlation and both methods detect increased ICP with almost the same sensitivity and specificity²⁰. In addition, ONSD values tend to be higher in MRI than in US, in accordance with our study.

Our study included some limitations. It was a retrospective study and MRI measurements were made with low-resolution brain axial T2 images. In addition, true ICP was not measured in our study, and ONSD was compared with clinical and MRI findings.

Conclusions

Although high ONSD values do not make the diagnosis of cerebral edema, it may cause suspicion in the early period. MRI can be helpful in the diagnoses of increased ICP like US. The widespread use of MRI in children in recent years may help determine the normal range of ONSD values. There is a need for studies to determine cut-off values with larger patient groups in pediatric ALF patients.

Conflict of Interest

The Authors declare that they have no conflict of interests.

Acknowledgements

This study received no grant from any funding agency in the public, commercial or not-for-profit sectors.

Funding Sources

This research received no external funding.

Authors' Contribution

TStudy concept and design: G.M.D., G.O., E.Ç.; statistical analysis: A.K.A; analysis and interpretation of data: G.M.D, E.Ç., G.O.; drafting of the manuscript: G.M.D, A.S., S.Y., S.M.D.; critical revision of the manuscript for important intellectual content: A.S., S.M.D., S.Y. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

- 1) Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet 2010; 376: 190-201.
- McKinney AM, Lohman BD, Sarikaya B, Uhlmann E, Spanbauer J, Singewald T, Brace JR. Acute hepatic encephalopathy: diffusion-weighted and fluid-attenuated inversion recovery findings, and correlation with plasma ammonia level and clinical outcome. AJNR Am J Neuroradiol 2010; 31: 1471-1479.
- Warden KF, Alizai AM, Trobe DJ, Hoff JT. Short term continuous intraparenchymal intracranial

- pressure monitoring in presumed idiopathic intracranial hypertension. J Neuroophthalmol 2011; 31: 202-205.
- Turkin AM, Oshorov AV, Pogosbekyan EL, Smirnov AS, Dimitrieva AS. Correlation of intracranial pressure and diameter of the sheath of the optic nerve by computed tomography in severe traumatic brain injury. Zh Vopr Neirokhir Im N N Burdenko 2017; 8: 81-88.
- Soldatos T, Chatzimichail K, Papathanasiou M, Gouliamos A. Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J 2009; 26: 630-634.
- Krishnamoorthy V, Beckmann K, Mueller M, Sharma D, Vavilala MS. Perioperative estimation of the intracranial pressure using the optic nerve sheath diameter during liver transplantation. Liver Transpl 2013; 19: 246-249.
- Kim YK, Seo H, Yu J, Hwang GS. Noninvasive estimation of raised intracranial pressure using ocular ultrasonography in liver transplant recipients with acute liver failure -A report of two cases. Korean J Anesthesiol 2013; 64: 451-455.
- Das MC, Srivastava A, Yadav RK, Yachha SK, Poddar U. Optic nerve sheath diameter in children with acute liver failure: A prospective observational pilot study. Liver Int 2020; 40: 428-436.
- Ferenci P, Lockwood A, Mullen K, Tarter R, WeisseNborn K, Blei AT. Hepatic encephalopathy: definition, nomenclature, diagnosis, and quantification—final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 2002; 35: 716-721.
- Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. I. Experimental study. Pediatr Radiol 1996; 26: 701-705.
- 11) Arslan AK, Yaşar S, Colak C, Yoloğlu SR. Shiny Paketi ile Kruskal Wallis H Testi için İnteraktif Bir Web Uygulaması. İnönü Üniversitesi Sağlık Bilimleri Dergisi 2018; 7: 49-55.

- 12) Yasar S, Arslan AK, Çolak C, Yoloğlu S. A Developed web-based software can easily fulfill the assumptions of correlation, classification and regression tasks in data processing. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP) (pp. 1-5). IEEE.13.
- Fridman V, Galetta SL, Pruitt AA, Levine JM. MRI findings associated with acute liver failure. Neurology 2009; 72: 2130-2131.
- 14) Zheng YM, Hao DP, Tang GZ, Zhou RZ, Pang J, Dong C. High-resolution MRI assessment of optic nerve sheath diameter in adults: optic nerve sheath variation and a new diagnostic tool for intracranial hypertension. Acta Radiol 2021; 62: 1397-1403.
- Helmke K, Burdelski M, Hansen HC. Detection and monitoring of intracranial pressure dysregulation in liver failure by ultrasound. Transplantation 2000; 70: 392-395.
- 16) Cardosa FS, Preira R, MorenO R, Karvellas CJ, Germona N. Optic Nerve Sheath Diameter in Acute Liver Failure: A Prospective Cohort Study. GE Port J Gastroenterol 2021; 28: 170-178.
- Janthanimi P, Dumrongpisutikul N. Pediatric optic nerve and optic nerve sheath diameter on magnetic resonance imaging. Pediatr Radiol 2019; 49: 1071-1077.
- 18) Steinborn M, FriedmannM, Hahn H, Hapfelmeier A, Warncke K, Macdonald E. Normal values for ransbulbar sonography and magnetic resonance imaging of the optic nerve sheath diameter (optic nerve sheath diameter) in children and adolescents. Ultraschall Med 2015; 36: 54-58.
- 19) Shofty B, Ben-Sira L, Constantini S, Freedmann S, Kesler A. Optic Nerve Sheath Diameter on MR Imaging: Establishment of Norms and Comparison of Pediatric Patients with Idiopathic Intracranial Hypertension with Healthy Controls. AJNR Am J Neuroradiol 2012; 33: 366-369.
- 20) Patterson DF, Ho ML, Leavitt JA, Smischney NJ, Hocker SE, 4, Eelco F. Comparison of Ocular Ultrasonography and Magnetic Resonance Imaging for Detection of Increased Intracranial Pressure. Front Neurol 2018; 9: 278.