Correlation between Neutrophil-to-lymphocyte ratio and Euthyroid Sick Syndrome in elderly patients with proximal femur fractures

L. CIANNI1,2, A. PERNAL1,2, S. PIETRAMALAI1,2, A. DE FAZIO1,2, M.S. OLIVA1,2, M.B. BOCCHI1,2, M. COVINO1,2, A. ZIRANUL1,2, R. VITIELLO2

1Fondazione Polyclinico Universitario A. Gemelli IRCSS, Rome, Italy
2Università Cattolica Del Sacro Cuore, Rome, Italy

Introduction

Nowadays the incidence of proximal femur fractures (PFF) is increasing due to the aging of the population and the increased incidence of osteoporosis in the elderly patients. This represents a current health burden with high social and economic costs because they frequently require surgery with long hospitalizations, which is also affected by the relevant rate of secondary fracture following the primary treatment1-3.

PFF is often an end-of-life phenomenon in elderly patients, and it is linked to a high rate of complications, early mortality and disability, especially in patients affected by chronic diseases4-6. Many factors have been identified as predictors of bad clinical outcome, including anemia and euthyroid sick syndrome (ESS)4,5.

In fact, ESS could represent a reliable indicator to monitor and predict an unfavorable outcome in chronic diseases, such as renal failure, diabetes mellitus and diseases characterized by a state of chronic inflammation7.

Recently, the Neutrophil-to-lymphocyte ratio (NLR) has emerged in literature8,9 as an inflammatory index used to measure the prognosis and guide the therapeutic management in various conditions, such as diabetes mellitus (DM), systemic lupus erythematosus, infections, neoplasms, gouty arthritis and ischemic heart disease. NLR represents an easily calculable value, affordable and immediately available from the full blood count routinely performed in emergency settings9.

The aim of the present study was to evaluate the correlation between NLR and ESS in a cohort of elderly patients with PFFs and estimate its influence on perioperative complications.
Patients and Methods

Study Setting and Design

The present investigation is a retrospective observational analysis performed according to the Strengthening the Reporting of Observational studies in Epidemiology (STROBE) guidelines\(^\text{10}\). Clinical records of patients admitted to our Emergency Unit (EU) from 1 January 2018 to 31 December 2018 with diagnosis of proximal femur fractures (AO classification: 31A or 31B)\(^\text{11}\) consecutively treated were potentially eligible for this study.

This study was conducted in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. A written informed consent for scientific purposes and clinical data collection was obtained according to institutional protocol.

Inclusion and Exclusion Criteria

Patients with age > of 65 years with diagnosis of proximal femur fracture requiring surgical treatment (AO classification: 31A or 31B)\(^\text{11}\) managed in our institution were potentially enrollable in this study.

Patients with: (I) any thyroidal pathology, (II) active infective disease, (III) concomitant or previous neoplastic disease, (IV) home medications with drugs that could modify the thyroidal function (such as: Calcium carbonates, Sulfonylurea, Dopamine-agonists, Spironolactone, Estrogens, Growth Hormones, Octreotide), (V) surgery performed over 72 hours from admission, and (VI) refusal of surgical treatment were excluded from this study.

Outcomes

The primary outcome was the correlation between the ESS and NLR. The secondary outcome was the perioperative compliance rate.

Institutional Database and Data Collection

All patients with diagnosis of proximal femur fracture treated in the emergency unit (EU) of our institution were managed using a standardized data collection system. From each patient the following data were collected and stored: age, gender, clinical history, body mass index (BMI), American Society of Anesthesiologists (ASA) scale, routine blood tests, type of fracture according to AO classification\(^\text{11}\), type of surgery performed, thyroid function obtained through fT3, fT4, TSH, PTH and D vitamin dosage.

Patients’ Management and Group Settings

All patients enrolled in the study underwent surgery within 48 hours from EU admission. All blood tests were performed at EU arrival, on the first and third day after surgery. The ESS diagnosis was made when fT3 values were < 2.3 pg/ml and fT4 and TSH values were normal.

The surgical indication was established by an experienced orthopedic and trauma surgeon according to the AO trauma indication\(^\text{11}\). Generally, the same surgical technique was performed to treat the same type of fracture\(^\text{12}\). In this case, patients underwent two different types of surgery: intramedullary nailing (Synthes PFNA\(^\text{©}\)) or partial hip replacement surgery using Implantcast\(^\text{©}\) hip prosthesis.

Urinary catheter was positioned before surgery, in the emergency room or in the operating room, and it was removed during the first post-operative day in all patients.

Starting by the first post-operative day, all patients followed a physiotherapy protocol including partial and then progressive load.

Based on the diagnosis of ESS, all enrolled patients were divided in two groups. In Group A, we included patients with ESS, while in Group B we collocated patients without ESS.

As standard of care in our institution, all patients with diagnosis of proximal femur fractures surgically treated were systematically monitored at 1, 3, 6 and 12 months after diagnosis and then once a year after surgery. The complication rate was recorded during the follow-up period. According to the overtime appearance, the complications were divided as intraoperative, early (within 6 postoperative months), and late (more than 6 months after surgery) complications.

The NLR value was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count obtained by blood sample performed\(^\text{13}\).

Statistical Analysis

GraphPad QuickCalcs (GraphPad Software, San Diego, CA, USA) was used for data analysis. The data were reported as mean and standard deviation (+ SD). The asymmetry was calculated to evaluate the normality of the different param-
Correlation between NLR and Euthyroid Sick Syndrome in elderly patients with PFF

eers. An unpaired t-test was used to compare unrelated, continuous, variable. Chi-square test was performed for evaluation of complication in the two group. Significance was set for p<0.05.

Results

According to inclusion and exclusion criteria, 79 patients were considered eligible and were finally included in the study. 44 patients were affected by ESS and were assigned to Group A, while 35 patients were assigned to group B (without ESS).

There were 19 males and 60 females, the mean age was 83.8 ± 6.5 y.o., and the mean BMI was 23.5 ± 3.7. There were 41 lateral fractures that underwent intramedullary nailing, and 38 medial fractures that underwent endoprosthesis surgery.

Anthropomorphic data and routine lab test are reported in Table I and Table II. No statistical difference was noted between the two group.

The group of patients with euthyroid sick syndrome demonstrated lower lymphocyte values upon arrival in the emergency room (1.2 ± 0.6 vs. 1.4 ± 0.5; p=0.02) and consequently higher NLR values (10.2 ± 9.4 vs. 6.9 ± 3.9; p=0.001). As regards the hormonal axis, patients in group A showed a further decrease in fT3 in the first postoperative day (1.8 ± 0.4 vs. 2.2 ± 0.3; p=0.001), higher values of PTH (97.9 ± 46.2 vs. 70.1 ± 36.2; p=0.004) and lower levels of Vitamin D (18.8 ± 7.8 vs. 23.5 ± 12.9; p=0.04) (Table II).

No statistical difference was noted among group about ADL and IADL (Table II).

In total, 15 complications were recorded, accounting for 18% of the population. It mostly consisted in medical complications (14/15) and only in one case of a surgical complication with surgical site infection (Table III).

In group A, there were 12/44 complications (27%), while only 3/35 in group B (8%), with a statistically significant difference (p=0.03). All infections were treated with antibiotic therapy.

Table I. Anthropomorphic data.

<table>
<thead>
<tr>
<th></th>
<th>Total population</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>79</td>
<td>35</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 females</td>
<td>26 females</td>
<td>34 females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 males</td>
<td>9 males</td>
<td>10 males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years old)</td>
<td>83.8 ± 6.5</td>
<td>83.8 ± 6.4</td>
<td>83.9 ± 6.7</td>
<td>0.7</td>
</tr>
<tr>
<td>BMI</td>
<td>23.5 ± 3.7</td>
<td>23.5 ± 4.1</td>
<td>23.5 ± 3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Pattern of Fracture</td>
<td>38 medial</td>
<td>16 medial</td>
<td>21 medial</td>
<td></td>
</tr>
<tr>
<td>41 lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical time (minutes)</td>
<td>78.2 (71 ± 31.9)</td>
<td>71 ± 27.6</td>
<td>83.9 (71 ± 34.2)</td>
<td></td>
</tr>
</tbody>
</table>

Table II. Groups’ comparison.

<table>
<thead>
<tr>
<th></th>
<th>Total population</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>12.3 ± 1.7</td>
<td>12.4 ± 1.4</td>
<td>12.1 ± 1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>White blood cells (x10^9/L)</td>
<td>10.4 ± 3.4</td>
<td>10.2 ± 3.2</td>
<td>10.6 ± 3.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Neutrophils (x10^9/L)</td>
<td>9.1 ± 4.6</td>
<td>8.6 ± 3.3</td>
<td>9.2 ± 4.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Lymphocytes (x10^9/L)</td>
<td>1.2 ± 0.6</td>
<td>1.4 ± 0.5</td>
<td>1.2 ± 0.6</td>
<td>0.02</td>
</tr>
<tr>
<td>Platelet (/µL)</td>
<td>244.8 ± 81.8</td>
<td>253.6 ± 93.1</td>
<td>237.8 ± 71.8</td>
<td>0.3</td>
</tr>
<tr>
<td>NLR</td>
<td>8.7 ± 7.6</td>
<td>6.9 ± 3.9</td>
<td>10.2 ± 9.4</td>
<td>0.001</td>
</tr>
<tr>
<td>PLR</td>
<td>223.4 ± 130.6</td>
<td>200.1 ± 115.1</td>
<td>242.2 ± 140.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Sodium (mmol/L)</td>
<td>139.0 ± 3.2</td>
<td>139.6 ± 2.9</td>
<td>138.5 ± 3.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>4.2 ± 0.6</td>
<td>4.2 ± 0.6</td>
<td>4.3 ± 0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Calcium (mg/dL)</td>
<td>10.3 ± 8.4</td>
<td>11.6 ± 12.6</td>
<td>9.3 ± 0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>28.5 ± 3.5</td>
<td>28.6 ± 3.6</td>
<td>28.4 ± 3.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>1.0 ± 0.5</td>
<td>0.9 ± 0.3</td>
<td>1.0 ± 0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>fT3 (pMol/L)</td>
<td>2.0 ± 0.4</td>
<td>2.2 ± 0.3</td>
<td>1.8 ± 0.4</td>
<td>0.001</td>
</tr>
<tr>
<td>PTH (pg/mL)</td>
<td>85.6 ± 44.0</td>
<td>70.1 ± 36.2</td>
<td>97.9 ± 46.2</td>
<td>0.004</td>
</tr>
<tr>
<td>Vitamin D (ng/mL)</td>
<td>20.9 ± 10.5</td>
<td>23.5 ± 12.9</td>
<td>18.8 ± 7.8</td>
<td>0.04</td>
</tr>
<tr>
<td>ADL</td>
<td>4.9 ± 2.0</td>
<td>5.1 ± 1.8</td>
<td>4.7 ± 2.1</td>
<td>0.4</td>
</tr>
<tr>
<td>IADL</td>
<td>4.9 ± 3</td>
<td>5.4 ± 2.8</td>
<td>4.6 ± 3.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
The surgical site infection was treated with advanced wound care and antibiotic therapy and did not need further interventions.

Discussion

ESS is a widely known disease that usually affects patients with many acute and chronic illnesses, described as a decrease in T3 level and increased levels of rT3⁴. The reduction of thyroid hormones that is observed in this kind of patients is related to an inflammatory state that leads to a lower rate of conversion of T4 and T3 by muscle deiodinases⁵. Considering the great relevance of thyroid hormones in the global homeostasis, many authors found it interesting to analyze the correlation between the levels of T3 and T4 and how they can affect the outcomes in surgical patients. Several studies⁶,⁷ observed how the presence of ESS in patients undergoing coronary artery bypass-grafting (CABG) has detrimental effects on short-term outcomes⁶. ESS, moreover, appears to have the same correlation in patients undergoing elective coronary procedures⁷.

Aside from cardiac diseases, it is interesting to underline how ESS is capable of influencing the prognosis of elderly patients undergoing emergency intervention¹⁵.

ESS has also been recently studied during the COVID-19 emergency. Indeed, it has been shown that patients with ESS who had contracted COVID-19 had a longer hospital stay, more complications, higher frequency of intubation and transfer to the intensive care unit¹⁹.

In the specific field of orthopedics, ESS has been related to a higher risk of developing post-operative anemia in patients undergoing surgery for hip fractures⁴.

Among the other biological markers, CRP has been for a long time the first choice to evaluate patients at high risk of mortality after surgery, although, on the other hand, neutrophil-to-lym-

<table>
<thead>
<tr>
<th>Groups’ comparison.</th>
<th>Total population</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>Urinary Tract Infections</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>/</td>
</tr>
<tr>
<td>Wound Infections</td>
<td>2</td>
<td>/</td>
<td>2</td>
<td>/</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>/</td>
<td>1</td>
<td>/</td>
</tr>
<tr>
<td>Number of complications</td>
<td>15</td>
<td>3</td>
<td>12</td>
<td>0.03</td>
</tr>
</tbody>
</table>

with benefit. The surgical site infection was treated with advanced wound care and antibiotic therapy and did not need further interventions.

NLR is an easy tool to obtain, since a simple WBC count is necessary, and it is a reliable marker of subclinical inflammation²¹. Neutrophils and lymphocytes play an important role in inflammatory response: the count of neutrophils increases resulting in a release of cytokines and molecular mediators while lymphocytes undergo demargination and apoptosis, which lead to lymphocytopenia. NLR reflects the balance between these two mechanisms and thus is a reliable index of inflammation and stress²².

While considering the different mortality rate of their patients, Temiz and Ersözlu ²³ found a significant correlation between admission NLR values and poor prognosis, independently from the diagnosis.

On the other hand, in our study we observed how high NLR values are significatively related to post-operative complications (27%), compared to the control group (8%).

NLR is also useful to predict 30-days, 6- and 12-months outcomes after emergency abdominal surgery in the elderly²⁴ and risk of death 2 years following vascular surgery²⁵. According to the abovementioned studies, though, NLR is to be considered as a risk factor more than a predictive one, and it should be used in addition to other well-known risk factors such as age, male sex, and comorbidities. This is true, considering the values of NLR after 5 days after surgery²⁶.

As we also observed in our study, both ESS and NLR seem to be related to the risk of developing an infection in the postoperative period. These two factors already came out as helpful prognostic biomarkers both in sepsis²⁷ and COVID19²⁸. It could be interesting to investigate if they could be implemented in clinical practice among the already well-known risk factors of infection in PFF²⁹.

Despite that, NLR has been found to be a good predictive factor, easy to obtain and to under-
stand, to evaluate the patient before surgery as higher admission NLR values relate to a higher rate of post-operative complications.

As mentioned before both ESS and NLR found several applications as prediction markers of poor prognosis in a wide variety of patients. Despite that, they failed to become standardized parameters due to the weak feedback and the lack of consensus from physicians. Recognizing their role in the inflammatory processes, we suggested a cross analysis of the two factors to increase their reliability.

In particular, elderly patients with hip fractures show a persistent inflammatory state in the post-operative period associated with a higher risk to develop complications such as anemia and cardiovascular issues. As emerged from the literature and our study itself, both ESS and NLR are alone helpful predictive factors in elderly patients undergoing surgery. For this reason, we decided to analyze the association between ESS and NLR as negative predictive factors in patients with proximal femur fractures.

Our analysis showed how ESS group presented not only a higher risk of complications (27%), compared to the control group (8%), but also a higher NLR.

Femur fractures alone already bear a high-mortality rate and having a predictive index can be decisive for the management of surgical planning. In our specific case, the ESS group showed a significant increase \((p=0.001) \) of the NLR compared to the control group. Moreover, the patients in the ESS group who also showed higher NLR values, came out with a statistically significant rate of complications \((p=0.03) \).

Limitations

One of the limitations of our study was the size of the sample. A larger number of patients, especially in the context of a multicenter study, could have brought more reliability to the results. Moreover, ours was a retrospective study, so it is clear the need of an observational study to validate the results.

Another aspect that should be considered is that we had no data regarding the pre-operative thyroid hormonal axis of the patients. It could be interesting to analyze if ESS was present before the trauma or if it was triggered by the trauma itself.

Conclusions

Despite the limitations of this study, the results observed by now are promising and point out how both ESS and NLR are related to a higher risk of complications and mortality in patients with hip fractures. Our hope is to validate these two values as standardizes predictive factors to use in the preoperative evaluation of elderly with hip fractures.

Conflict of Interest

The Authors declare that they have no conflict of interests.

Acknowledgements

None.

Funding

Publication costs are funded by Orthopaedic and Traumatology School of Università Cattolica del Sacro Cuore (Rome). The funders did not play any role in the design of the study, the collection, analysis, and interpretation of data, or in writing of the manuscript.

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Informed Consent

A written informed consent for scientific purposes and clinical data collection was obtained according to institutional protocol.

Ethics Approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of Orthopedic and Traumatology Institute.

ORCID ID

Luigi Cianni: 0000-0003-1439-2917; Andrea Perna: 0000-0002-2475-1955; Silvia Pietramala: 0000-0001-9489-3230; Andrea De Fazio: 0000-0001-8321-532X; Maria Serena Olivia: 0000-0001-9555-4943; Maria Beatrice Bocchi: 0000-0002-0363-4514; Marcello Covino: 0000-0002-6709-2531; Antonio Ziranu: 0000-0002-6789-7495; Raffaele Vitiello: 0000-0003-2321-9665.

References

Correlation between NLR and Euthyroid Sick Syndrome in elderly patients with PFF

