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Abstract. – Triptolide, a compound isolated 
from a Chinese medicinal herb, has potent anti-
tumor, immunosuppressive, and anti-inflamma-
tory properties. Due to its interesting structur-
al features and diverse pharmacological activ-
ities, it has attracted great interest by the So-
ciety of Organic Chemistry and Pharmaceuti-
cal Chemistry. However, its clinical potential is 
greatly hampered by limited aqueous solubili-
ty and oral bioavailability, and multi-organ tox-
icity. In recent years, various derivatives of Trip-
tolide have made varying degrees of progress 
in the treatment of inflammatory diseases, au-
toimmune diseases, and cancer. The most re-
searched and potentially clinically valuable of 
them were (5R)-5-hydroxytriptolide (LLDT-8), 
PG490-88Na (F6008), and Minnelide. In this re-
view, we provide an overview of the advance-
ments made in triptolide and several of its deriv-
atives’ biological activity, mechanisms of action, 
and clinical development. We also summarized 
some prospects for the future development of 
triptolide and its derivatives. It is hoped to con-
tribute to a better understanding of the progress 
in this field, make constructive suggestions for 
further studies of Triptolide, and provide a theo-
retical reference for the rational development of 
new drugs. 
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Introduction

Triptolide is a natural diterpenoid compound 
derived from the traditional Chinese herb Tripte-
rygium wilfordii1. It has many pharmacological 
effects, including anti-rheumatic, anti-bacterial, 
anti-inflammatory, immunomodulatory, and an-

ti-tumor effects2-6. However, Triptolide has multi-
ple organ toxicity, such as hepatotoxicity, nephro-
toxicity, cardiotoxicity, and reproductive system 
toxicity7-10. The content of triptolide in medicinal 
plants is extremely low11; meanwhile, it also has 
a relatively narrow therapeutic window and poor 
water solubility. These drawbacks greatly limit 
the clinical application of triptolide. To reduce 
the toxicity of triptolide, researchers have ad-
opted strategies that rely on chemical structure 
modification, novel drug delivery systems, and 
combination drug therapy. Among them, chemi-
cal structure modification has the advantages of a 
short development cycle, low cost, and low mar-
ket risk. The C-14 β- Hydroxyl group and lactone 
ring of triptolide are essential for its effectiveness 
and cytotoxicity so that it can serve as one of the 
bases for chemical structural modification12.

The most important functional groups of trip-
tolide have been studied in detail and structural-
ly modified to obtain many critical structure-ac-
tivity relationships (SARs) information, leading 
to the synthesis of a series of well-water-soluble 
and less toxic derivatives (Figure 1). Many 
triptolide derivatives have so far advanced in 
clinical trials, based on the development of 
triptolide’s structural modification. Despite the 
fact that many derivatives have been created, 
the majority of them have been lost because of 
poor distribution or absorption. Only a few de-
rivatives of triptolide (such as LLDT-8 and Min-
nelide) have entered phase I/II clinical trials, 
while some clinical trials of derivatives, such as 
PG490-88Na (F6008), have been terminated due 
to serious side effects or even fatal events13. LL-
DT-8 exhibits superior drug formation, higher 
solubility, and lesser toxicity when compared to 
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triptolide. It is therapeutically indicated for the 
treatment of persistent aberrant immune activa-
tion, including rheumatoid arthritis and AIDS, 
and is now in the phase II clinical stage14. Min-
nelide has successfully passed a phase II clinical 
trial for refractory pancreatic cancer and is now 
the triptolide medicine that is progressing the 
fastest in clinical trials15. Minnelide is even more 
effective than the traditional first-line drug gem-
citabine in the treatment of pancreatic cancer83. 
In addition, newly developed derivatives, such 
as MRx10216, LLDT-24617, LLDT-28818, ZT0119 
have also exhibited great potential in antitumor, 
anti-inflammatory, immunosuppressive effects 
in recent years.

Many molecules and signaling pathways are 
associated with the pharmacological mecha-
nism of triptolide. As many triptolide deriva-
tives are structurally similar to triptolide (some 
of which are prodrugs that are converted to 
TPL in vivo), they may have the same mecha-
nism of action as triptolide. Therefore, in order 
to get a complete understanding of this subject 
and make recommendations for future triptol-

ide research, this article reviews the medicinal 
chemistry progress and the bioactivity, preclin-
ical, and clinical status of triptolide derivatives. 
In addition to a brief overview of existing re-
search on the derivatives of triptolide, we have 
also proposed some new ideas. It is hoped that 
this review will contribute to a better under-
standing of the progress in this field. We also 
hope that our suggestions will be helpful for 
further research and rational development of 
new derivatives of triptolide.

Chemical Structure and 
Structure-Activity Relationships

of Triptolide

In 1972, Kupchan S.M. extracted the first 
epoxy diterpenoid lactone compound triptolide 
from the root of Tripterygium Wilfordii Hook F20, 
and the molecular structural formula was shown 
in (Figure 1), the relative molecular mass was 
360.4, and the melting point was around 226°C20. 
Comprehensive and systematic structure modifi-

Figure 1. SARs of triptolide and chemical structure of some triptolide derivatives.



Pharmacological activity and clinical progress of Triptolide, LLDT-8, PG490-88Na, and Minnelide

10183

cation and structure-activity relationship studies 
of TP have been conducted by research groups 
at home and abroad, mainly focusing on C-14 
β-OH, unsaturated five-membered lactone ring 
(D-ring), C-5, C-6, and 3 epoxide bond sites. As 
a result of these discoveries, a variety of triptol-
ide derivatives have been produced and tested in 
various target or phenotypic screens. Through 
the analysis of these structural analogues of trip-
tolide, the literature provides a comprehensive 
summary of the structure-activity relationship of 
triptolide12,21-25. We have preliminarily summa-
rized the structure-activity relationships (SARs) 
of some triptolides (Figure 2):
(1) The replacement of C2 with a hydroxyl group 

decreased its anti-inflammatory, immunosup-
pressive, and antitumor activities, whereas its 
toxicity increased.

(2) Introducing suitable functional groups at the 
C-5 and C-6 positions, such as replacing 
hydrogen at the C-5 position with hydroxyl 
groups, significantly reduces toxicity but does 
not disrupt its immunosuppressive and anti-
cancer activities.

(3) α-Type epoxide group of positions C-12, C-13 
is an important part of triptolide. When it 
changes, the immune suppression, anti-male 
fertility, and physiological toxicity of triptol-
ide will be affected. When the ortho hydroxyl 
groups were introduced at C-12, C-13, trip-
tolide only showed significant anti-inflamma-

tory activity. The disconnection of C-12 and 
C-13 of triptolide will lose its anticancer and 
immunosuppressive activity, but it can retain 
its anti-inflammatory effect. After the intro-
duction of the chlorine atom at C-12 position, 
its toxicity evidently decreased.

(4) C-14 β-OH is an essential active group and 
an important modification site of triptolide. 
The purpose of drug targetability can be 
achieved by linking esterification with a 
targeted chemical structure, and the water 
solubility of drugs can also be improved 
by linking water-soluble groups. When flu-
orine replaces the hydroxyl group in C-14 
of triptolide, the product obtained also has 
good anticancer activity. The hydroxyl at the 
C-14 position is oxidized to a ketone, and its 
anti-inflammatory and immunosuppressive 
activities markedly decline. The activity was 
also weak after the hydroxyl at the C-14 po-
sition was acetylated.

(5) The epoxy groups of triptolide are key sites 
for their biological activity. Therefore, the 
epoxy bonds of C-9 and C-11 of triptolide can 
be modified to increase its biological activity. 
However, opening the C-7 and C-8 epoxy 
groups will significantly reduce the biological 
activity of triptolide.

(6) The trans conformation of the A/B ring is 
crucial, and derivatives with cis A/B ring 
systems have very weak cytotoxicity.

Figure 2. Structure-activity relationships of triptolide.
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(7) The D-ring of triptolide is crucial for its 
biological activity, and modification of the 
D-ring will significantly reduce its efficacy in 
various aspects.

The above structure-activity relationships can 
be used to guide the design of new derivatives of 
triptolide, providing low toxicity, high efficiency, 
and broad treatment window candidate drugs for 
clinical research.

Triptolide and Diseases

In recent decades, triptolide has attracted in-
creased attention due to its pharmacological ac-
tivities, such as powerful anti-inflammatory26, 
immunomodulatory27, anti-oxidative stress28, an-
ti-proliferation, promoting apoptosis29, anti-os-
teoporosis30, neuroprotection31. Therefore, trip-
tolide is widely used in the treatment of cancer 
(Supplementary Table I), inflammatory diseas-
es and autoimmune diseases (Table I).

Triptolide and Cancer
Triptolide has been proven in numerous studies 

to regulate autophagy, induce apoptosis32, inhibit 
angiogenesis33, arrest cell cycle progression34, and 
inhibit tumor migration, invasion and metasta-
sis35. Triptolide exerts its anti-cancer activity by 
regulating a variety of key molecular mecha-
nisms and signal pathways, such as NF-kB36, Jak/
Stat337, Bcr-abl38, XPB, HSP7039, TFIIH40, RNA 
polymerase I and II41, Rac1, reactive oxygen spe-
cies42, and caspase-343, MKP-1, and Bcl-244. Trip-
tolide has been demonstrated to be effective in 
treating a variety of cancers, including pancreatic 
cancer, lung cancer, ovarian cancer, breast can-
cer, and leukemia. In addition, triptolide not only 
can directly inhibit tumor growth, but also can 
be combined with other chemotherapeutic drugs 
to produce synergistic anticancer effects45. There-
fore, triptolide has emerged as a broad-spectrum 
anti-cancer drug capable of multitarget inhibition 
of cancer cell proliferation and induction of apop-
tosis.

Triptolide and Inflammatory and 
Immune-Related Diseases

Triptolide not only inhibits cancer cell pro-
liferation and induces cell apoptosis, but also 
inhibits inflammation and stimulates cell protec-
tion by inhibiting pro-inflammatory cytokines 
and chemokines, including PMA, THF-a, IFN-r, 

MCP-1, MIP-1a, MIP-1B, RANTES, TARC, IP-
10, MCP-1, G-CSF, IL-1B, IL-6, IL-8, Cxcl-1, 
COX-2, and NO46-51. Triptolide is a promising 
medication for the treatment of inflammatory 
illnesses because of its strong anti-inflammato-
ry and immunosuppressive effects. It has been 
shown that triptolide plays an important ther-
apeutic role in inflammatory diseases, such as 
membranous nephropathy (MN), kidney trans-
plantation, inflammatory bowel disease (IBD), 
asthma, acute lung injury (ALI), and diabetic 
nephropathy (DN). Meanwhile, triptolide also 
played an important therapeutic role in many 
autoimmune diseases, such as rheumatoid ar-
thritis, systemic lupus erythematosus (SLE), and 
CIA-induced arthritis, by regulating immune-re-
lated cells and inflammatory mediators. Triptol-
ide is also a possible medicine for the treatment 
of several neurodegenerative illnesses, such as 
Parkinson’s disease (PK) and Alzheimer’s disease 
(AD), as it reduces neuroinflammation and has 
neuroprotective pharmacological effects. Triptol-
ide has also been demonstrated to effectively 
inhibit HIV-1 replication in vitro at nanomolar 
doses by favoring the breakdown of Tat protein, 
which is expressed by the virus52.

Pharmacological Activity and Clinical 
Progress of Triptolide Derivatives

Based on the progress of structural modifi-
cation of triptolide, some derivatives such as 
PG490-88Na (F6008), (5R)-5-hydroxytriptolide 
(LLDT-8), and Minnelide have made progress in 
the treatment of rheumatoid arthritis (RA), auto-
immune diseases, and cancer (Figure 3). Their 
chemical synthetic route is shown in the figure 
(Figure 4). These compounds are less poisonous 
and have improved oral bioavailability and water 
solubility. 

(5R)-5-Hydroxytriptolide (LLDT-8)
(5R)-5-hydroxytriptolide (LLDT-8) is an ana-

log structurally modified from triptolide. Com-
pared to TP, its hydrogen at the C-5 position is 
replaced by a hydroxyl group53. The pharmaco-
logical action of LLDT-8, a structural homolog 
of triptolide, is comparable to that of triptolide. 
Pharmacological experiments have shown that 
LLDT-8 exhibits strong immunosuppressive ac-
tivity in both cellular and humoral immune re-
sponses, and exhibits strong anti-inflammatory 
and immunosuppressive activities in vitro and in 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-I-76.pdf
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Continued

Table I. The potential mechanism of triptolide in the treatment of inflammatory and immune diseases.

 Disease Mechanism of action Signaling pathways Effects Ref.

Rheumatoid 1. Immunosuppression, ↓NF-κB signaling pathways,  ↓ FLS, IL-18, IL-1,  117, 186, 216-228

arthritis 2. Anti-inflammatory MAPK signaling pathways, IL-6, IL-17, IL-10, 
 3. Apoptosis, JNK/MAPK signal pathway, IL-12, TNF-α, 
 4. Anti-angiogenesis, PI3-K/Akt signaling pathways, NF-κB, TGF-β1, 
 5. Cartilage and bone protective, RANKL/RANK/osteoprotegerin COX-2, PGE2, 
     effects signaling pathway, JAK/STAT3 MMPs, STAT3, Th17,  
 6. Inhibit the proliferation of FLSs signaling pathway, cGAS-STING DCs, CCR5, (MIP)-1α, 
  pathway, ↑Notch signaling MIP-1β, (MCP)-2,  
  pathway, GM-CSF, VEGF, 
   ↑ Redox balance, Tregs, 

SLE 1. Immunosuppression ↓ The TLR7/NF-κB signaling ↓miR-146a, TLR7,  62, 229-233

 2. Anti-inflammatory pathway, the JAK/STAT1  MyD88, p-IRAK1,  
  signaling pathway p-NF-κBp65, IFN-γ, 
   IL-6, IL-8, TNF-α, 
   CXCL1, TNF, MCP-1 
   ↑Treg, the miR-125a-5p,  

Ankylosing 1. Anti-inflammatory ↓ NF-κB signaling pathway, ↓circRNA-0110634,  198, 234-237

spondylitis  2. Immunosuppression MAPK signaling pathway,  IL-1β, TNF-α, VEGFA, 
 3. Stimulation of osteoclast genesis the BMP/Smad pathway VEGFR and SDF-1, 
 4. Improved platelet activation  CXCR4, TNF-α, IL-6β, 
 5. Inhibition of proliferation   IL-1, BMPRII, Smad1, 
    differentiation  Smad4 and Smad5 
 6. Induction of osteoblast apoptosis  ↑ IL-4, IL-10 

Inflammatory 1. Anti-inflammatory ↓ TNF-alpha/TNFR2 signal ↓ TNF-α, IFN-γ, IL-17, 153, 207, 238-244

bowel disease  2. Immunosuppression pathway, the IL-6/STAT 3 IL-6, IL-10, PGE2 
 3. Anti-oxidative stress signaling pathway, the mTOR/ (prostaglandin E2), ROS,  
 4. Decreased ECM deposition and STAT3 signaling, the PDE4B/ Bcl-2, Bcl-xl, f IL-12, 
     collagen production AKT/NF-κB signaling, IL-6/ IL-23 
 5. Pro-apoptotic STAT3/SOCS3 signaling pathway.  
  ↑the NRF2/HO-1 signaling pathway   

Intestinal 1. Anti-inflammatory ↓ The miR 16 1/HSP70 signaling ↓ IL 6, TNF α, TGF β1 153, 245

fibrosis 2. Decreased ECM deposition and  pathway 
     collagen production  

Hepatic 1. Anti-inflammatory ↓ The NF-κB signaling pathway ↓ TNF-α, MCP-1, 241, 246, 247

fibromatosis 2. Suppressed collagen deposition  Fibronectin, α-SMA,  
   Collagens, TGF-β, RelB 

Membranous 1. Immunosuppression ↓ p38 MAPK pathway, the NF-κB ↓ ROS, malondialdehyde 229, 248-250

nephropathy 2. Anti-oxidative stress signaling pathway, ERK and JNK (MDA), Cleaved caspase-3 
 3. Anti-inflammatory pathways, NF-κB and cleaved poly ADP-e 
 4. Podocyte protection  ribos polymerase (PARP) 
   ↑ superoxide dismutase 
   (SOD) 

Lupus 1. Anti-inflammatory ↓ The JAK/STAT1 signaling ↓ IP-10, Mig, RANTES, 62, 230-232 
nephritis 2. Immunosuppression pathway IFN-γ, IL-6, IL-8, TNF-α, 
   CXCL1, TNF, MCP-1 
   ↑ Treg, miR-125a-5p 

Renal fibrosis 1. Inhibit macrophage and  ↓ The TGF-β1-smad2 and p53 ↓ α-SMA, TGF-β1, TGF-β1, 94, 251-253

     myofibroblast infiltration pathways, the miR-141-3p/PTEN/ CTGF (connective tissue 
 2. Reducing interstitial collagen  Akt/mTOR pathway growth factor), MCP-1 
     deposition  and osteopontin, TNF-α,  
 3. Regulation of autophagy  IL-6, IL-1β 
 4. Anti-fibrotic   
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vivo, with significantly reduced toxic side effects 
(in vitro cytotoxicity is 122 times lower than 
triptolide, and in vivo acute toxicity is 10 times 
lower)54,55. The researchers constructed the first 
lncRNA-TFmRNA coexpression network, further 
explaining the changes in lncRNA and mRNA 
expression across the entire genome before and 
after LLDT-8 treatment. The authors suggest that 
lncRNAs may serve as biomarkers and therapeu-
tic development targets in LLDT-825. LLDT-8 ex-
hibits superior drug formation, higher solubility, 
and lesser toxicity when compared to triptolide. It 
is clinically intended for the treatment of various 
chronic aberrant immune activations and is cur-
rently in phase II clinical trials14. LLDT-8 may be 
a suitable clinical alternative to triptolide.

LLDT-8 and tumor diseases
LLDT-8 has broad-spectrum antitumor activi-

ty and can exert antitumor activity by inhibiting 
transcription. As a novel transcriptional inhibi-
tor, LLDT-8 has potential therapeutic effects on 
P-glycoprotein-mediated drug-resistant tumors56. 

LLDT-8 also demonstrated strong antitumor ac-
tivity against human and mouse cancer cell lines, 
including P-388, HL-60, A-549, MKN-28, and 
MCF-7, with half inhibitory concentration values 
ranging from 0.04 to 0.20 nM, according to an in 
vitro anticancer activity evaluation. In addition, 
in vivo experiments have shown that LLDT-8 is 
effective against both ovarian cancer and pros-
tate cancer53. These results suggest that LLDT-8 
should be a promising anticancer drug candidate.

LLDT-8 and inflammatory diseases
Previous studies55 have shown that LLDT-8 

may be closely related to its anti-inflammatory, 
antioxidant, and cytokine effects. A recent study57 
found that LLDT-8 inhibits the IL-36α signaling 
pathway and significantly alleviates psoriasis-like 
skin inflammation induced by imiquimod (IMQ, 
TLR7 agonist), suggesting that LLDT-8 may be 
a potential drug for the treatment of psoriasis. 
LLDT-8 can exert anti-inflammatory effects by 
inhibiting its production of IFN-γ, and it may be 
a potential interferon-γ (IFN- γ) inhibitor.

Table I (Continued). The potential mechanism of triptolide in the treatment of inflammatory and immune diseases.

 Disease Mechanism of action Signaling pathways Effects Ref.

Kidney 1. Anti-inflammatory ↓ TGF-βsignaling pathway ↓VCAM-1, TGF-β, C3, 97, 99,254-257

transplant 2. Immunosuppression  CD40, IgA, IgG, IgM 
 3. Inhibited the differentiation of   
     B cells  
 4. Inhibiting complement   
     activation and T-cell infiltration   

Diabetic 1. Anti-inflammatory ↓ The NLRP3 inflammasome ↓IL-1β, IL-6, TNF-α,  5, 125, 258-266

nephropathy 2. Anti-oxidative stress pathway, the microRNA-155-5p, TNF-α, IL-1, IL-1β,  
 3. Prevent the epithelial- the TGF-β1/Smads signaling TGF-β3, Smad7, caspase-1, 
     mesenchymal transition pathway, Wnt3α/β-catenin IL-1β, IL-18, NLRP 3 
     (EMT) signaling pathway, the notch1 (Nod-like receptor  
  pathway protein 3), ASC (apoptosis- 
  ↑ the Nrf2/HO-1 pathway associated speck-like  
   protein), OCP (oxidative 
   carbonyl protein) 
   ↑BDNF (brain-derived  
   neurotrophic factor), IL-4,  
   Smad7, MicroRNA-137 

Diabetic 1. Immunosuppression ↓ TLR4-induced NF-κB/IL-1β ↓TLR4, NF-κB, p65, 54, 267, 268

cardiomyopathy 2. Anti-inflammatory immune pathway, NF-κB/TNF-α/ MCP-1, VCAM-1, TNF-α, 
 3. Increases cardiac energy  VCAM-1, TGF-β1/α-SMA/ IL-1β, α-SMA, TGF-β1 
 metabolism Vimentin fibrosis pathway, the   
  NF-κB signaling pathway.  
  ↑ MAPK signaling pathway  

Psoriasis 1. Immunosuppression ↓ The IL-36α signaling pathway,  ↓ STAT3, IL-36α 57, 269-272

 2. Anti-inflammatory the Interferon-gamma (IFN-γ)  ↑microRNA-204-5p, 
  signaling pathway microRNA-181b-5p 
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LLDT-8 also has certain therapeutic effects on 
nervous system diseases. In the 6-hydroxydopa-
mine (6-OHDA) hemi Parkinson’s rat model, LL-
DT-8 attenuated activity disorders and neuroin-
flammation in rats, demonstrating potential ther-
apeutic potential for Parkinson’s disease (PD). Its 
research has shown that LLDT-8 can reduce 
PD-like behavior, dopaminergic neurodegenera-
tion, and neuroinflammation in the nigrostriatal 
system, providing a new method and entry point 
for the treatment of PD59. Scholars54 have studied 
the anti-inflammatory and neuroprotective ef-
fects of LLDT-8 on cerebral ischemia-reperfusion 
injury. The results indicate that it can be achieved 
through IκB/NF-κB cascade reaction, which in-
hibits neuroinflammation mediated by microglia, 
plays an anti-inflammatory role, and protects 
against acute cerebral ischemia-reperfusion inju-
ry54. Meanwhile, LLDT-8 can effectively inhibit 
pro-inflammatory factors (TNF-α and IL-1β), and 
suppress the NF-κB signaling pathway, thereby 

inhibiting the LPS-induced glial inflammatory 
response. Further evidence suggests that LLDT-8 
may become a potential drug for the treatment of 
neurodegenerative diseases60.

In certain kidney, liver, and lung diseases, 
it has also been shown to have some degree of 
therapeutic potential. Based on the powerful an-
ti-inflammatory effect of LLDT-8, it can regulate 
the Fcγ signaling pathway and alleviate anti-glo-
merular basement membrane glomerulonephritis 
in NZW mice61. It can also inhibit the expression 
of renal chemokines and the infiltration of renal 
immune cells, thereby weakening systemic lupus 
nephritis in MRL/lpr mice62. In the IFN-y/STAT1/
IRF-1 pathway and immune disorders mediated 
by inflammatory cytokines, LLDT-8 can prevent 
ConcanavalinA-induced hepatitis63. According 
to the findings of Dong et al64, LLDT-8 can al-
so lower serum levels of the enzymes alanine 
transaminase (ALT) and aspartate transaminase 
(AST), as well as diminish liver fatty and bal-

Figure 3. Schematic illustration of potential mechanisms of LLDT-8, PG490-88Na, and Minnelide in the treatment of some 
diseases.
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looning degeneration, which prevents liver injury. 
They also found that LLDT-8 can regulate stea-
ryl-CoA desaturase-1 (SCD1) and hepatic peroxi-
some proliferator-activated receptor α (PPARα). 
The expression level significantly promotes lipid 
breakdown and inhibits lipid synthesis64. Accord-
ing to a recent study65, LLDT-8 may influence 
TLR4 expression and NF-B signal transduction 
suppresses dendritic cell activation, preventing 
lipopolysaccharide-induced acute lung injury. It 
can also protect against bleomycin-induced pul-
monary fibrosis in mice66.

LLDT-8 and immune diseases
LLDT-8 has been shown to be able to prevent 

EAE by inhibiting the activation of T cells, but it 
also has promising effects for the prevention and 
treatment of inflammatory and immune diseases 
in multiple animal models58. The collagenase-in-
duced arthritis in DBA/1 mice can be slowed 
down by using LLDT-8 because of its anti-in-
flammatory and immunosuppressive properties67. 
In the rat RA model, LLDT-8 can inhibit the 
formation of osteoclast through the RANKL/
RANK/OPG pathway2,68, thus playing a role in 
treating RA. This effect has also been applied 

to clinical trials as the primary pharmacological 
effect of LLDT-8. A cellular experiment by Li et 
al69 suggests that CD2 protein may play a crucial 
role in immune disorders in RA. Thus, CD2 may 
be a potential target for treating RA. They further 
showed that LLDT-8 can treat RA by inhibiting 
the expression of the T-cell surface antigen CD2 
(CD2). Scholars70 suggest that activated synovial 
fibroblasts, along with macrophage and lympho-
cyte secretion factors, play an important role in 
the pathogenesis of rheumatoid arthritis as part 
of a complex cellular network. The results of Guo 
et al25 indicate that LLDT-8 mainly affects FLS 
cells in the treatment of RA, especially in the 
process of immune-related pathways. Another 
recent study71 discovered that LLDT-8 provides 
therapeutic effects by preventing fibroblast-like 
synovial cells (FLS) in RA fibroblasts from pro-
liferating and invading, as well as the production 
of the cytokines MMP-3, IL-1, and IL-6. They al-
so validated that LLDT-8 acts through the WAK-
MAR2/miR-4478/E2F1/p53 axis in RA FLS.

In some in vitro experiments, LLDT-8 can 
be inhibited by IFN-γ and inducible nitric oxide 
synthetase (iNOS) expression in lipopolysaccha-
ride (LPS) activated macrophages72, and its use 

Figure 4. Synthetic route of LLDT-8, PG490-88Na, and Minnelide.
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to prevent experimental autoimmune encepha-
lomyelitis (EAE) by inhibiting T cell division. 
It can serve as a potential drug for the treatment 
of multiple sclerosis (MS)58. LLDT-8 can inhib-
it graft-versus-host disease73. Even during heart 
transplantation in mice with major histocompat-
ibility antigen (MHC) mismatch, LLDT-8 can 
also help to prevent allograft rejection. LLDT-8 
can decrease the division of human peripheral 
blood mononuclear cells while also acting as an 
immunosuppressant, implying that it could be 
employed as a human immunosuppressant44.

Minnelide
Minnelide, 14-O-phosphonooxymethyltriptol-

ide disodium salt, is a water-soluble analog of TP. 
Phosphate groups are highly electronegative and 
hydrophilic, and the introduction of phosphate 
groups to improve drug water solubility is a rel-
atively well-established method for the modifica-
tion of drug molecules. The phosphate group can 
be directly attached to the hydroxyl group of the 
parent drug in the form of a phosphomonoester 
or indirectly linked to the parent drug through 
a linker. Minnelide is the fastest-developing de-
rivative of triptolide. In vitro kinetic experiments 
showed that, in the presence of alkaline phospha-
tase, Minnelide (t1/2¼2 min) was converted to 
triptolide, an enzyme present in all tissues, in-
cluding blood. Minnelide is inactive in vitro and 
requires conversion by phosphatase in vivo to its 
active form, triptolide. After entering the human 
body, it can be rapidly and completely converted 
to triptolide, which is beneficial for controlling 
the dosage of the drug and improving its safety 
and efficacy. Currently, Minnelide has entered 
clinical trials for gastrointestinal cancer and pan-
creatic cancer45,74-76.

Minnelide and digestive system tumors
In recent years, Minnelide has been mainly 

used for the treatment of pancreatic cancer and 
has entered clinical trials for advanced pancreatic 
cancer77. The phase II clinical trial of Minnelide 
needle for refractory pancreatic cancer has been 
completed15, which is currently the fastest pro-
gressing triptolide drug in clinical research. In 
pancreatic cell lines, the assessment of cell via-
bility revealed that Minnelide administration had 
an inhibitory impact similar to triptolide in the 
presence as opposed to the absence of alkaline 
phosphatase. In addition, among several inde-
pendent but complementary pancreatic cancer 
models in vivo, Minnelide is very effective in 

reducing the growth and spread of pancreatic 
tumors, improving the survival rate and lowering 
toxicity. Minnelide can also downregulate the 
expression of p3000 and reduce HIF-1α tran-
scriptional activity of the transcription complex, 
which inhibits the survival-promoting signaling 
pathway in pancreatic cancer cells. In addition, 
Minnelide regulates downstream effects by re-
ducing hypoxia and related signals78. A research 
team at the University of Minnesota found that 
Minnelide reduced the tumor volume and num-
ber of tumor initiation cells (TICs) derived from 
cd133+ in tumors79. This is the first report on the 
efficacy of Minnelide in the same gene system of 
immune tolerance. Subsequently, the team con-
ducted in-depth research and established an in 
vitro model to study the characteristics of tumor 
stem cells and tumor-initiating cells, discovering 
that Minnelide has good prospects for preclinical 
evaluation80. The team also found that Minnelide 
can deplete extracellular matrix components by 
consuming hyaluronic acid and collagen to im-
prove drug delivery and survival81. Minnelide can 
cause irreversible CAFs to have passive morphol-
ogies and diminish the generation of TGF-β and 
ECM to inhibit TEC proliferation, which results 
in tumor regression82. Our results indicate that, 
compared to conventional chemotherapy alone, 
the combination of low doses of Minnelide with 
Gemcitabine + nab-paclitaxel significantly inhib-
its pancreatic tumor progression and improves the 
survival rate of tumor bearing mice83. Skorupan 
et al15 found that pancreatic Aden squamous car-
cinoma (ASCP) is a highly invasive pancreatic 
cancer variant, and MYC is overexpressed. Min-
nelide is an oral anti-super enhancer drug, which 
can reduce MYC expression. Minnelide has the 
potential to be a new treatment option for both 
main and metastatic colon cancer because it can 
kill colon cancer cells in vitro, slow the growth 
of primary colon cancer, and transfer colorectal 
cancer to the liver in vivo84. An in vitro study85 
shows that Minnelide can reduce the activity of 
MKN28, a moderately differentiated intestinal 
gastric adenocarcinoma cell line, and MKN45, a 
poorly differentiated diffuse gastric adenocarci-
noma cell line, and that the combination of irino-
tecan (CPT-11) and Minnelide may be an effective 
treatment for gastric adenocarcinoma.

Minnelide and other systemic tumors
In addition to pancreatic cancer and gastro-

intestinal cancer, Minnelide can also inhibit the 
activity of NF-κB to prevent transfer. It can ef-
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fectively reduce the tumor burden and metastasis 
potential of osteosarcoma, minimize the impact 
on osteoblasts of the tested compound, and may 
develop into a very effective new type of osteo-
sarcoma chemotherapy drug86. A new approach 
for treating metastatic renal cell cancer is Min-
nelide in combination with anti-DR5 monoclonal 
antibody87. The experiment of Banerjee et al88 
confirmed that the combination of minocycline 
and sorafenib is a successful combination for the 
treatment of hepatocellular carcinoma models. In 
non-small cell lung cancer (NSCLC), Minnelide 
impairs mitochondrial function by controlling 
SIRT3 in a P53-dependent way and developing 
into a potent anticancer drug89. Minnelide can 
also effectively inhibit the proliferation of plat-
inum-sensitive and resistant ovarian cancer cell 
lines, thereby improving the efficacy of standard 
chemotherapy, such as carboplatin and pacli-
taxel90. There are also studies that have confirmed 
that Minnelide can induce prostate cancer cell 
death by downregulating the androgen receptor 
(AR) and its splicing variants in prostate cancer 
cells91. Minnelide can dramatically lessen the 
burden of leukemia by causing cell cycle arrest, 
cell death, and decreased clonality of leukemia 
mother cells, according to research conducted on 
a number of preclinical models92. Our research 
shows that Minnelide is an effective cervical can-
cer drug, which can inhibit the growth of cervical 
cancer cells alone or be used in combination with 
platinum drugs to improve treatment effective-
ness93. A recent study94 has found that in Angptl3 
gene knockout mice with doxorubicin nephrop-
athy (AN), Minnelide can separately inhibit the 
TGF- β1-Smad2 and p53 pathways, improving 
fibrosis and apoptosis, thereby exerting protective 
effects on AN mice. However, several cases of 
reversible acute cerebellar toxicity have occurred 
in Minnelide’s clinical trials95. Therefore, further 
research and analysis are needed during the clin-
ical trial process.

PG490-88Na(F6008)
To boost triptolide’s water solubility, early re-

search mainly concentrated on the esterification 
of C-14-OH, which introduces some large polar 
groups, improving the parent drug’s water solu-
bility, absorption and utilization. It is generally 
believed that the β Orientation of C-14 hydroxyl 
group is necessary to maintain its strong antican-
cer activity. Based on this principle, for a long 
time, to improve water solubility and reduce ad-
verse side effects, the structural modification of 

C-14 has mainly focused on the carboxylation of 
C-14 hydroxyl groups, enhancing the water-sol-
uble or nitrogen-containing segments. Among 
them, PG490-88Na (F6008), a water-soluble pro-
drug, can effectively prevent acute and chronic 
rejection reactions in organ transplantation and 
has been elucidated as an effective anticancer 
drug96. PG490-88 has a stronger anti-cancer ef-
fect compared to triptolide, reducing liver and 
kidney toxicity, providing a reference for the clin-
ical application of triptolide. In the human body, 
the conversion of PG490-88 to triptolide is unex-
pected. Therefore, PG490-88 is not the optimal 
derivative of triptolide used in clinical practice.

PG490-88 and tumor diseases
PG490-88 has been shown to be cytotoxic in 

tumor cell lines such as H23 (NSCLC), HT1080 
(fibrosarcoma), and Colon205 (colon cancer) 
cells12. When PG490-88 is used alone, it can lead 
to the regression of lung cancer and colon cancer 
xenograft tumors, and the synergistic effect of 
PG490-88 and CPT-11 can also lead to tumor 
regression96. In 2003, it entered the first phase of 
clinical trials for the treatment of solid tumors. 
However, it failed in the Phase I clinical study 
due to delayed and insufficient biotransformation 
in vivo. Due to significant individual differences 
in its pharmacokinetic properties found in the 
Phase I clinical dose-increasing trial, the process 
of transforming it into TP in the human body is 
slow and incomplete, and the degree of transfor-
mation is difficult to predict and uncontrollable. 
Additionally, two deaths occurred, and the clini-
cal trial has been suspended13.

PG490-88 and inflammatory, 
immune diseases

Pan et al97 found that PG490-88 significantly 
prolonged the survival time of allograft kidneys 
in acute rejection models in rats and prevented 
chronic allograft kidney rejection in rats. Accord-
ing to some researchers, PG490-88 can alleviate 
acute humoral rejection by inhibiting complement 
activation and T cell infiltration, thereby signifi-
cantly prolonging the survival time of a canine 
model after kidney transplantation98,99. PG490-88 
and tacrolimus synergistically inhibit T cell ac-
tivation, reducing IFN-c production and NF-AT/
NF-κB activity, thereby prolonging the survival 
time of transplanted kidneys in monkey mod-
els100. PG490-88 may reduce the release of p-ERK 
in cisplatin-induced acute kidney injury (AKI), 
thereby protecting AKI and acute tubular necro-
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sis (ATN)101. Krishna et al102 found that PG490-88 
can block bleomycin-induced pulmonary fibrosis, 
which has a potential role in the treatment of idio-
pathic pulmonary fibrosis. Recent studies103 have 
revealed that PG490-88 can block the generation 
of pro-inflammatory mediators and cytokines, as 
well as the activation of the NF-κB and MAPK 
signaling pathways, and eventually act as a lung 
protective factor in ischemia-reperfusion (I/r) in-
jured rats. In lungs with damaged I/R, PG490-88 
can inhibit inflammatory response, damage to 
tight junction structures, and cell apoptosis. The 
above experiments prove that PG490-88 has the 
potential to prevent lung injury induced by I/R. 

Other Triptolide Analogs Showing Po-
tential for Clinical Development
MRx102

MRx102 (18-benzoyloxy-19-benzoylfurano-
triptolide) is a lactone ring derivative of TPL. 
MRx102, a highly hydrophobic TPL derivative, 
is being developed for the treatment of AML. 
Through the downregulation of the anti-Mcl2 
apoptotic proteins XIAP and Mcl2, it can hinder 
RNA transcription and cause cell death. It pro-
duces in vitro cytotoxicity to human leukemia 
cells at nanomolar concentrations and reduces the 
activity of CD34+AML cells from patient sourc-
es104. It is believed that it has the least side effects 
in mouse AML xenotransplantation and is safer 
than TPL105. In addition, studies16 have shown that 
it also plays a role in non-small cell lung cancer. 
IMRx102 appears to disrupt the Wnt signaling 
pathway in a xenograft model of non-small cell 
lung cancer (NSCLC), resulting in a decrease in 
tumor growth and metastasis.

LLDT-246
LLDT-246 inhibited the proliferation of col-

orectal cancer cell line HCT-116 by attenuating 
the NF-kB signaling pathway like triptolide. It 
has been shown that LLDT-246 is a unique trip-
tolide derivative because of its somewhat more 
significant inhibitory action on NF-kB of colorec-
tal cancer HCT-116 cells and cytotoxicity, which 
is less harmful to non-cancer cells than its parent 
molecule17.

LLDT-288
LLDT-288, a C14b-heterocycle amino meth-

yl substituent triptolide analog, exhibited prom-
ising efficacy with extremely low toxicity in 
a xenograft mouse model of human prostate 
cancer. In a human prostate (PC-3) xenograft 

mice model, oral treatment of LLDT-288 showed 
promising efficacy with relatively low toxicity. 
Their study also demonstrated that LLDT-288 has 
broad-spectrum, potent antitumor activity, and is 
effective against drug-resistant cancer cells, and 
induces apoptosis in vitro but with less toxicity18.

LLDT-67
LLDT-67 was shown to enhance nerve growth 

factor synthesis in brain astrocytes in mice with 
Parkinson’s disease. The neuroprotective effects 
of LLDT-67 have been largely attributed to its 
ability to enhance NGF synthesis in mesencephal-
ic astrocytes, as well as indirectly rescue dopami-
nergic neurons through TrkA activation106.

ZT01
ZT01 is a triptolide derivative with strong 

anti-inflammatory activity and low toxicity. By 
preventing the synthesis of pro-inflammatory fac-
tors, our findings demonstrated that ZT01 greatly 
reduced the inflammatory response to sepsis in 
serum or lung tissue and increased the survival 
rate of septic mice in vivo. The anti-inflammatory 
activity of ZT01 primarily prevents the pro-in-
flammatory phenotype of macrophages by block-
ing TAK1-TAB1 complex formation and sub-
sequent phosphorylation of MKK4 and JNK107. 
Furthermore, by regulating the JAK-STAT sig-
naling pathway, ZT01 significantly inhibits T 
cell differentiation into Th1 and/or Th17 cell 
subsets, as well as macrophage differentiation 
into inflammatory phenotypes, and ZT01 may 
be a potential IBD candidate for inflammatory 
bowel disease, warranting further research as a 
therapeutic approach for patients19.

Conclusions and 
Future Perspectives

In the past few decades, the anticancer, anti-in-
flammatory, and immunosuppressive properties 
of triptolide have made it a promising drug for 
treating diseases. We found that the main re-
search areas of triptolide are focused on its an-
ti-inflammatory and anticancer pharmacological 
effects, as well as toxicity. However, the current 
research focus is more on its anticancer activity 
and toxicity. The ability of triptolide to inhibit 
cancer cell proliferation and induce cancer cell 
apoptosis in multiple targeted ways makes it a 
promising anticancer drug. Researchers studied 
the molecular mechanism of action of triptolide 



L.-S. Zeng, P. Yang, Y.-Y. Qin, W.-H. He, L. Cao

10192

using chemical biology methods and discovered 
that XPB/TFIIH may be a physiological target for 
its anticancer and immunosuppressive actions.

Two derivatives of triptolide, Minnelide and 
LLDT8, have entered phase II human clinical 
trials. To some extent, both Minnelide and LL-
DT8 have addressed the issues of low solubility 
and toxicity. However, additional effective mea-
sures are required to reduce triptolide’s poten-
tial side effects further and expand its therapy 
window. For the study of triptolide derivatives, 
standard derivatization methods include hydrox-
ylation or glycosylation, which can be achieved 
by cytochrome P450 and glycosyltransferases. 
The biosynthesis route was also studied us-
ing dioxygenases and methyltransferases, which 
expanded the options for studying triptolide 
derivatives. Many pathways and targets in the 
research of the pharmacological action of trip-
tolide derivatives and triptolide are the same, 
which can provide new ideas for improving 
triptolide and its derivatives production. In ad-
dition to the derivatives obtained by structural 
modification, it is worth considering the search 
for other bioactive components with enhanced 
activity and low toxicity.

With the progress of total synthesis, vari-
ous triptolide derivatives were synthesized and 
tested. Meanwhile, some molecular targets re-
sponsible for triptolide’s various pharmacological 
actions and toxicity were identified through the 
design and manufacture of multiple bioactive 
probes. This will undoubtedly facilitate the de-
sign of new triptolide derivatives in the future. 
However, there are still some problems and new 
directions to advance triptolide derivatives into 
clinical treatments:
1) The traditional method of acquisition of trip-

tolide and its derivatives cannot meet the com-
mercial demand. Researchers examined and 
optimized the synthetic route of triptolide and 
derivatives by studying the whole synthesis of 
triptolide. In addition, studies on the chemical 
synthesis of triptolide derivatives can mainly 
focus on optimizing and innovative synthetic 
conditions to increase the amount of triptolide 
derivatives.

2) Although triptolide has been shown to possess 
diverse pharmacological activities through 
functional phenotypic screens in vitro and in 
vivo, its precise molecular targets responsible 
for robust biological activities have not been 
fully identified. Therefore, it is important to 
further design and synthesize new bioactive 

probes of triptolide to identify unexplored mo-
lecular targets and map the complete signaling 
network responsible for its diverse pharmacol-
ogy and toxicity.

3) The development of triptolide derivatives in 
combination with other medications would be 
a useful technique. Combination medication 
has many advantages, including synergy to 
improve efficacy, delaying or reducing the inci-
dence of drug resistance and reducing the dose 
of individual drugs to reduce toxic side effects.

4) In addition to the synthesis of triptolide de-
rivatives, the development of a new triptolide 
loaded delivery system is a wise strategy to 
overcome the limitations of clinical applica-
tions. For example, small and macrocyclic li-
gand guided targeting have been investigated, 
including glucose triptolide conjugates and an-
tibody triptolide conjugates, and demonstrat-
ed enhanced efficacy and reduced toxicity in 
different in vivo disease models. Recently, 
the application of nanotechnology for targeted 
delivery of triptolide has also shown some suc-
cess.

With the development of chemical synthesis 
and the development of an actual synthetic route 
for triptolide, the future of triptolide and its de-
rivatives as drugs to treat various human diseases 
seems to have a promising future.
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