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Abstract. – OBJECTIVE: The innate lymphoid 
cells (ILCs) are a recently discovered type of in-
nate immune cell. The functions of these cells 
resemble different T-cell subtypes. These cells 
play important roles in local injury, inflammation, 
pathogen infection, or tumours. However, there 
have been few studies focusing on the role of ILCs 
in nasal diseases. 

MATERIALS AND METHODS: We reviewed the 
literature about the roles of ILCs in nasal inflam-
mation, tissue remodeling, and cancer.

RESULTS: The ILCs represent a newly iden-
tified family of innate immune cells. These cells 
play important roles in inflammation, immune re-
sponses, tissue remodeling, and cancer immu-
nity. The ILCs, especially ILC2s, play important 
roles in CRSwNP and AR. ILC2s may be involved 
in the pathogenesis of eosinophilic inflammation 
in non-allergic nasal diseases, such as non-aller-
gic CRSwNP and non-allergic rhinitis. ILCs also 
play pro-tumor or anti-tumor roles in cancer im-
munity for head and neck cancer. 

CONCLUSIONS: LC2s may be a useful thera-
peutic target for CRSwNP and AR. ILCs may al-
so represent new therapeutic targets to activate 
anti-tumor immunity in head and neck cancer.
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Chronic rhinosinusitis with nasal polyps, Allergic rhinitis.

Introduction

The innate lymphoid cells (ILCs) are a recent-
ly discovered type of innate immune cell. The 
functions of these cells resemble different T-cell 
subtypes1. In contrast to T and B cells, ILCs do 
not express antigen receptors but instead express 
a variety of activating and inhibitory receptors2. 
The ILCs can be divided into three subsets based 
on the expression of cytokines and transcription 
factors, i.e., ILC1s, ILC2s, and ILC3s, which are 
analogous to helper T cells3. The ILC1s consist of 
natural killer (NK) cells and T-bet+ ILCs, which 
respond to IL-12, IL-15, and IL-18 to produce in-
terferon γ (IFN-γ)4. The ILC2s express ST2 and 

CD25, which react to IL-33, IL-25, and thymic 
stromal lymphopoietin (TSLP) to produce type 2 
cytokines5. The ILC3s are composed of lymphoid 
tissue inducer (LTi) cells, natural cytotoxicity 
receptor (NCR)+ ILC3s,, and NCR- ILC3s. They 
express Rorγt and are activated by IL-1 and IL-23 
to produce IL-22 and/or IL-176. 

The ILCs are located in the secondary lym-
phoid and ‘non-lymphoid’ tissues of epithelial 
barrier surfaces, such as the intestine, lung, skin, 
and nasal cavity7,8. The presence of ILC subsets 
has also been confirmed in the blood9. The ILCs 
are the ‘first responders’ of the immune system, 
protect epithelial barriers against pathogens, and 
maintain tissue homeostasis10. These cells can 
produce large amounts of pro-inflammatory and 
regulatory cytokines in response to local injury, 
inflammation, pathogen infection or tumours. 
However, there have been few studies focusing 
on the role of ILCs in nasal diseases. Here, we 
review the roles of ILCs in nasal inflammation, 
tissue remodelling, and cancer. 

The Roles of ILCs in Fibrosis 
and Tissue Remodelling

Fibrosis is an important feature of most cas-
es of chronic inflammation in epithelial organs, 
especially in the liver, lung, kidney, and heart11. 
Fibrosis and tissue remodelling involve excessive 
accumulation of the extracellular matrix (ECM), 
which is mainly composed of collagen depos-
its. This leads to structural changes of the tissue 
and functional impairment, ultimately resulting 
in organ failure12. Both the innate and adaptive 
immune systems play roles in the progression of 
fibrosis and tissue remodelling. Some studies13 
suggested that ILCs contribute to several fibrot-
ic diseases and tissue remodelling. The ECM is 
mainly produced by fibroblasts, the major cells 
controlling ECM metabolism. The ILCs and their 
cytokines have been reported to directly regulate 
fibroblast function14. The IFN-γ, an ILC1s prod-
uct, has been shown to suppress IL-4-induced 
collagen expression and synthesis in lung fibro-
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blasts15. The ILC2s can release cytokines, such as 
IL-4 and IL-13, which can directly regulate fibro-
blast function. In Crohn’s disease, ILCs produces 
IL-13, which can inhibit fibroblast matrix metal-
loproteinase (MMP) synthesis and matrix degra-
dation, leading to excessive collagen deposition16. 
The ILC2s can also express amphiregulin to re-
pair intestinal injury and promote tissue remod-
elling17. IL-33 can activate liver resident ILC2s 
and promote hepatic tissue remodelling and fibro-
sis18. Additionally, cutaneous injury can promote 
an IL-33-ILC2s response, which promotes the 
restoration of skin integrity19. The ILC3s secrete 
IL-17A, which regulates synovial fibroblasts20, 
cartilage catabolism21, and lung connective tissue 
cells22 to promote remodelling. 

In lung remodelling, ILCs can increase the ex-
pression of various genes, including genes encod-
ing the ECM proteins decorin, asporin, dermato-
pontin, and amphiregulin23. This study showed 
that lung ILC2s were a primary source of amphi-
regulin, which promotes the restoration of airway 
epithelial integrity and tissue homoeostasis. Am-
phiregulin can regulate cell proliferation and dif-
ferentiation by binding to the epidermal growth 
factor receptor. The ILCs can also interact with 
other non-immune cells to promote tissue remod-
elling24. Vannella et al25 reported that the collec-
tive disruption of TSLP, IL-25, and IL-33 signal-
ling reduced the levels of ILC2s and suppressed 
type 2 inflammation and fibrosis of the lung. 

The roles of ILCs in Lower Airway 
Inflammation

The ILC2s play important roles in lower air-
way inflammation. Asthma is a serious condition 
involving obstructive inflammation, airway hy-
per-reactivity (AHR), and remodelling. Asthma 
usually presents with type 2 inflammation and 
is associated with the cytokines IL-5 and IL-13. 
Type 2 inflammation was previously regarded as 
mediated by Th2 cells. However, Kim et al26 sug-
gested that ILCs may mediate airway hyper-re-
activity independent of adaptive immunity. The 
ILC2s have been considered another source of 
type 2 cytokines and were suggested to play a 
role in the onset of asthma. Klein et al27 showed 
that ILC2s accounted for ~50% and  ~80% of IL-
5+/IL-13+ cells in the lung and broncho-alveolar 
lavage (BAL) fluid, after IL-25 and IL-33 admin-
istration27. The ILC2s were suggested to be the 
main source of eosinophilic airway inflammation 
in a chronic house dust mite-driven asthma model 
and to operate independently from B–T cell inter-

action28. The ILC2s may amplify the recruitment 
of eosinophils from the blood to the airways via 
the production of IL-5 and IL-1329. The prevalence 
of ILC2s in blood is also elevated in patients with 
asthma30. The ILC2s can cause epithelial barrier 
impairment by reducing transepithelial electrical 
resistance and increasing fluorescein isothiocya-
nate-dextran permeability in the cultures of hu-
man bronchial epithelial cells31. It has also been 
reported that influenza A virus can induce AHR 
and asthma through the IL-33-ILC2s axis inde-
pendent of adaptive immunity32. The ILC3s also 
play a role in adult-onset severe asthma33.

The ILC2s have also been shown to play roles 
in other types of airway inflammation. The acti-
vation of pulmonary ILC2s in murine models and 
human subjects can induce eosinophilia and aller-
gic lung inflammation34. IL-33 was shown to acti-
vate ILC2s without exogenous stimuli in the neo-
natal lung and to promote type 2 inflammation35. 
The ILC2s in adult mouse lungs can be activated 
by inhaled allergens and produce large amounts 
of IL-13 and IL-536. The ILC2s also respond to IL-
33 and produce type 2 cytokines in mouse lungs37. 
Furthermore, the ILC2s interact with T cells and 
promote Th2 inflammation, adaptive immunity, 
and airway inflammation38,39. The ILC2s were 
shown to play roles in the early allergic response 
to aeroallergens in the airways, bridging the in-
nate and adaptive immune responses40. Many 
factors, including viruses, tobacco smoke, and 
pollutants, can result in the activation of ILC2s 
in allergic disease41. It has been reported42 that 
protein kinase C-theta (PKC-θ) could activate 
ILC2s in allergic lung inflammation. Other stud-
ies showed that the histone deacetylase inhibitor 
trichostatin A43 and H. polygyrus excretory/secre-
tory (HES)44 could suppress murine allergic air-
way inf﻿lammation by blocking the activation of 
group ILC2s. Whereas the origin of eosinophil-
ia in allergic asthma is largely understood, the 
triggers underlying eosinophilia in non-allergic 
eosinophilic airway inflammation remain to be 
elucidated. The ILC2s may be the main source of 
eosinophilic inflammation in non-allergic airway 
inflammation45.

Although ILCs are known to be involved in 
pulmonary inflammation, the mechanisms under-
lying ILC activation, proliferation, and regulation 
in the lung are not yet clear. 

The Roles of ILCs in Cancer Immunity
Cellular stresses may disturb normal cellular 

processes, DNA proof-reading, and cell division, 
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which can lead to mutations in the cells and de-
velopment of cancer46. Under normal conditions, 
the host immune system can recognise and clear 
cells harbouring mutations by apoptosis via im-
mune effector cells47. The innate and adaptive 
immune cells can produce various cytokines to 
limit the growth of cancer. However, the immune 
surveillance of cancer is usually inhibited by sur-
viving tumour clones. Cancer cells can prolifer-
ate and harness immune responses by destroying 
anti-tumor effector mechanisms and promote the 
accumulation of immunosuppressive immune 
cell subtypes in the tumour tissues48. Recently, 
immunotherapeutic strategies designed to adjust 
the immune system for the treatment of cancer 
were reported to show significant benefit in some 
patients with malignancies49. Common methods 
of cancer immunotherapy include cancer vacci-
nation, adoptive cell therapy, and targeting of im-
mune checkpoints. The development of successful 
cancer immunotherapeutic regimens will rely on 
clarification of the innate and adaptive immune 
systems in cancer. 

The ILCs are innate lymphocytes involved in 
the adaptive immune system and may play a crit-
ical role in cancer immunity and immunothera-
py50. However, few studies regarding the role of 
ILCs in this process have been performed. NK 
cells have been shown to directly kill tumour cells 
via natural cytotoxicity51, and these cells are not 
discussed further in this review. Different sub-
groups of ILCs mainly produce different types of 
cytokines to promote cancer development, main-
tenance, or elimination52,53. 

The ILC1s secrete large amounts of TNF-α 
and IFN-γ in response to tumors54,55. IFN-γ can 
kill cancer cells by inhibiting cellular prolifera-
tion and promoting apoptosis. Additionally, IFN-γ 
can increase the expression levels of MHC class 
I and II molecules on tumor cells and of adhesion 
molecules on T cells that mediate the tumor-kill-
ing functions of these cells56. Previous studies57,58 
showed that IFN-γ increased the colonisation of 
melanoma cells in human and experimental an-
imal models. Furthermore, TNF-α mediates the 
recruitment and activation of macrophages and 
dendritic cells (DCs), leading to anti-tumor re-
sponses59. However, TNF-α has dual roles in can-
cer, and TNF-α signalling can also promote tu-
mor formation and growth60. 

The ILC2s can respond to IL-33 and release 
IL-5 and IL-13 to play roles in cancer immuni-
ty61. The ILC2s usually show pro-tumor activity 
by promoting tumor formation and progression62. 

This effect seems to rely on the recruitment of 
immunosuppressive cells, such as myeloid-de-
rived suppressor cells (MDSCs), Tregs, and M2 
macrophages63,64. IL-13 promotes the recruitment 
and activation of MDSCs and inhibits anti-can-
cer immune responses65. IL-13 can also transmit 
signals through IL-13Rα2 in pancreatic cancer 
cells. IL-13Rα2 may serve as a prognostic bio-
marker of invasion and metastasis in pancreatic 
cancer66. The ILC2/IL-13 axis is also correlated 
with the level of monocytic MDSCs in bladder 
cancer, which is a predictor of tumor recurrence67. 
Trabanelli et al68 indicated that ILC2s activated 
monocytic MDSCs via IL-13 secretion in acute 
promyelocytic leukaemia68. In breast cancer, IL-
33-induced ILC2s can release IL-13 to increase 
MDSC numbers and reduce the numbers of NK 
cells69. IL-5 can activate and recruit eosinophils, 
which express cytotoxic activity and clear tumour 
cells. Hence, ILC2s also have effects in tumor 
surveillance through the production of IL-5. 

The ILC3s may contribute to either pro-tumor 
or anti-tumor mechanisms, depending on the tu-
mor microenvironment and stage. IL-23-induced 
ILC3s release IL-17 and IL-22 to maintain barrier 
homeostasis against cancer cells70. IL-23 signal-
ling can promote tumor growth and progression, 
as well as the development of a tumoral IL-17 
response71. IL-23 was also reported to activate 
ILC3s to promote gut tumorigenesis through IL-
17 responses72. Kirchberger et al73 reported that 
the numbers of IL-17+IL-22+ ILCs were increased 
in colon cancer. IL-22 had a unique role in the 
maintenance of cancer. IL-22 produced from 
ILC3s activates STAT3 signalling to promote 
colitis-associated cancer74.

The Roles of ILCs 
in Chronic Rhinosinusitis

Chronic rhinosinusitis (CRS) is a condition 
involving the chronic inflammation of the nasal 
cavity and sinuses, which can last for at least 3 
months. CRS can be divided into two subtypes: 
CRS with nasal polyps (CRSwNP) and CRS with-
out nasal polyps (CRSsNP). CRSwNP has a more 
complex pathogenesis than CRSsNP. CRSwNP 
is usually associated with type 2 inflammation, 
which manifests as IgE elevation, IL-5, IL-13 se-
cretion, and eosinophilic inflammation, especial-
ly in Caucasian patients. Therefore, CRSwNP has 
been linked with Th2 cells. 

There is accumulating evidence that ILC2s, 
which are activated by TSLP, IL-25, or IL-33, 
play roles in the pathogenesis of CRSwNP. The 
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classic mechanism underlying the activation of 
naive T cells and the proposed mechanism of am-
plification by ILCs previously described are both 
bypassed in CRSwNP75. The ILCs may be closely 
related to environmental triggers, such as virus-
es and allergens. Poposki et al76 reported that all 
ILCs subsets were present in nasal polyps (NP) 
but that ILC2s were dominant and significantly 
elevated compared with peripheral blood mono-
nuclear cells, tonsil, CRSsNP, and normal sinus 
tissue. They suggested that ILC2s were activated 
in CRSwNP in vivo and may play important roles 
in the type 2 inflammation in CRSwNP. Ho et al77 
also reported higher levels of ILC2s in polyp tis-
sue compared to sinus mucosa. Lee et al78 reported 
that severe asthmatics with CRS had higher ILC2 
counts in their nasal tissues. ILC2-induced type 
2 inflammation may contribute to the decline of 
lung function and the recalcitrant status of asthma 
control. It has also been suggested that ILC2s are 
significantly enriched in CRSwNP and allergic 
CRS patients79. The ILC2s may represent early 
events in the pathogenesis of CRSwNP80. How-
ever, there have been very few studies81 regarding 
the roles of ILC1s and ILC3s in CRS. 

Tissue damage may lead to IL-33 expression 
in NP, which can activate the ILC2s responsible 
for perpetuating eosinophilic inflammation in 
CRSwNP82. An increased percentage of ILC2s is 
also observed in inflamed sinonasal mucosa from 
CRSwNP compared with CRSsNP. These ILCs 
secrete IL-13 in response to IL-33 stimulation83. 
TSLP, a protein that can activate ILC2s, is in-
volved in many inflammatory processes, including 
asthma and allergic rhinitis (AR). The activity of 
TSLP is increased in NP tissue84 and is involved 
in the pathogenesis of polyposis85. The number of 
TSLP+ cells in nasal polyps from patients with at-
opy was also significantly greater than that in the 
non-atopic patients86. TSLP regulates the function 
of human ILC2s by enhancing expression of the 
transcription factor GATA3 in the NP of patients 
with CRSwNP87. IL-25, a member of the IL-17 
family, plays roles in the pathogenesis of CRSwNP 
via modulation of ILC2s88. IL-25 expression was 
increased at both mRNA and protein levels in NP 
tissues compared with the control uncinate pro-
cess tissues. Exposure to IL-25 simultaneously 
activated ILC2s and Th2 cells in NP, which fur-
ther increased Th2 cytokine production in vitro89. 
The ILC2s were enriched in NP and responsive to 
IL-25 and IL-3390. Additionally, TSLP, IL-25 and 
IL-33, which were shown to act on ILC2s and Th2 
cells, can induce IL-4, IL-5, and IL-13 in CRS91,92. 

The ILC2s are closely related to other immune 
cells, such as B cells and eosinophils. The ILC2s 
may play an important role in B cell responses 
or in their local class switch recombination in 
CRSwNP93. The numbers of ILC2s are elevated 
in patients with CRSwNP. These cells may play a 
role in the activation and survival of eosinophils94. 
Scholars45,95-98 also suggested that ILC2s were el-
evated in polyps in eosinophilic CRSwNP com-
pared with non-eosinophilic CRSwNP, CRSsNP, 
and controls. However, some studies98,99 did not 
show increased proportions of ILC2s in peripher-
al blood. This happens because ILC2s are recruit-
ed from the peripheral blood circulation and enter 
the nasal mucosa. In CRSwNP, there is a syner-
gistic effect among ILC2s, eosinophils, and Th2 
cells. The ILC2s can activate the eosinophils and 
prolong their survival. In return, pre-activated eo-
sinophils can enhance IL-5 production of ILC2s 
in an IL-4-dependent manner100. The ILC2s 
also promote the proliferation of Th2 cells97. In 
CRSwNP, systemic corticosteroid treatment can 
reduce ILC2s and increase ILC2 apoptosis80,95. 

Allergic fungal sinusitis (AFRS) is a special 
type of CRS, which manifests as characteristic 
CT imaging findings, nasal polyps, allergy to fun-
gi, and eosinophilic mucin. Padro et al101 report-
ed equivalent levels of ILC2s and a small trend 
towards increased Th2 cell numbers in AFRS. 
AFRS may result from defects in the innate im-
mune system reflected by the inability to clear 
fungi from the sinuses.

Taken together, the results outlined above indi-
cate that ILC2s play important roles in CRS and 
represent novel therapeutic targets. 

The Roles of ILCs in AR
AR is a type of chronic rhinitis, which is 

caused by evident allergens. AR is a type 1 hy-
persensitivity reaction in the nasal mucosa main-
ly mediated by IgE, which shows Th2 and eosin-
ophilic inflammation. Patients with AR usually 
show nasal obstruction, sneezing, rhinorrhoea, 
and nasal itching. As mentioned above, ILCs (es-
pecially ILC2s) play important roles in allergic 
lower airway inflammation. However, the roles of 
ILCs in AR are still unclear.

Peripheral blood ILC2s were reported to rapid-
ly increase in patients with AR after a cat allergen 
challenge. The mechanisms underlying the in-
crease of ILC2s in the peripheral blood may trig-
ger by both humoral and cellular mechanisms102. 
Kato et al103 reported that ILC2s resided in the 
nose and produced IL-5 and IL-13 in Rag2−/− mice 
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sensitised with ragweed pollen. They suggested 
that ILC2s alone could not induce strong nasal 
responses. Kumagai et al104 suggested that ozone 
induced eosinophilic rhinitis, nasal epithelial re-
modelling, and type 2 inflammation dependent 
on ILCs104. Lin et al105 reported that ILC2s played 
a pro-inflammatory role in a murine AR model. 
They considered ILC2s a potential new target for 
future AR therapy. Prostaglandin D2 and leu-
kotriene D4 induced by mast cells and basophils 
can activate ILC2s in patients with AR or local 
allergic rhinitis (LAR), thus promoting imme-
diate-phase106 and late-phase responses107. Some 
studies also suggested that allergen subcutaneous 
immunotherapy could suppress ILC2s in patients 
with AR108,109. However, the effects of immuno-
therapy on ILCs are still uncertain110. Addition-
ally, the activation of ILC2s in a mouse model of 
AR may induce resistance to corticosteroid treat-
ment111. Zhu et al112 found that miR-155 played 
critical effects on Th2 factor expression and aller-
gic inflammatory response in ILC2s in AR.

There have been few studies113,114 regarding the 
roles of ILCs in AR. Several reports have present-
ed details regarding the production of pro-inflam-

matory cytokines by ILCs, such as IL-25, IL-33, 
and TSLP. The IL-33 levels in the sera of patients 
with AR were significantly higher than those of 
the controls. Expression of IL-33 and its receptor 
ST2 were significantly increased in the epithelium 
from patients with AR115. The level of TSLP was 
also increased in AR patients86. Xu et al116 reported 
that the levels of both TSLP and IL-25 were signifi-
cantly elevated in patients with AR. Furthermore, 
IL-25 enhanced dsRNA-induced TSLP production 
in human nasal epithelial cells (Figure 1).

As ILC2s induce type 2 inflammation inde-
pendent of allergen stimulation, further studies 
are required to determine the roles of these cells 
in non-allergic rhinitis. 

The Roles of ILCs in Cancer 
of the Head and Neck

There have been few papers regarding ILCs in 
cancer of the head and neck and in the primary 
stages. Several studies regarding the cytokines, 
such as TNF-α, IFN-γ, IL-5, IL-13, IL-33, IL-23, 
and IL-17, associated with ILCs in cancer of the 
head and neck, have been published. However, the 
results are still controversial.

Figure 1. The roles of ILC2s in CRS and AR.
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The role of TNF-α in head and neck cancer 
is unclear117. Arthur et al118 suggested that TNF-α 
and IFN-γ play roles in head and neck squamous 
cell carcinoma (HNSCC). Sánchez-Rodríguez et 
al119 reported that TNF-α and IFN-γ played an-
ti-tumor roles in HNSCC. A pilot study120 demon-
strated significant decreases in the serum levels 
of IFN-γ and IL-13 in patients with HNSCC. In 
contrast, Hoffmann et al121 reported that the levels 
of TNF-α and IFN-γ were altered in the serum of 
patients with HNSCC compared with healthy indi-
viduals. Si et al122 suggested that TNF-α promoted 
tumor formation in HNSCC by mediating the ge-
nome-wide redistribution of the cREL/p63/p73 and 
AP-1 interactome, to diminish the TAp73 tumor 
suppressor function. Other studies123,124 also indi-
cated that TNF-α in the plasma of HNSCC patients 
was upregulated and significantly related to short-
er survival. By contrast, Eyigor et al125 did not de-
tect TNF-α and IFN-γ in peripheral venous blood 
samples from patients with HNSCC. Serous levels 
of TNF-α were found to be quite high in cases of 
squamous cell tonsil carcinoma. After radiothera-
py, the TNF-α levels returned to normal limits126. 
Yuan et al127 suggested that there was no signifi-
cant association between TNF-α-308G/A polymor-
phism and the risk of head and neck cancer. 

IL-13 showed cytotoxin anti-tumor effects on 
head and neck cancer cells128,129. However, the role 
of IL-13 in cancer of the head and neck is still con-
troversial. Aziz et al130 reported that the salivary 
IL-13 level was upregulated in patients with oral 
squamous cell carcinoma. It was also suggested 
that there are no differences in IL-13 gene poly-
morphisms between patients with HNSCC and 
healthy subjects131. Chen et al132 identified IL-33 as 
a critical mediator in the carcinoma-associated fi-
broblast-induced invasiveness of HNSCC. Recent 
studies133,134 showed that the serum concentrations 
of IL-17 were significantly elevated in patients with 
laryngeal squamous cell carcinoma and oral epi-
thelial squamous cell carcinoma. Upregulation of 
the IL-17 level is also associated with poor progno-
sis in squamous cervical cancer and oropharyngeal 
squamous cell carcinoma135,136. IL-23 can induce 
IL-17 secretion in HNSCC137 (Figure 2).

Conclusions

The ILCs represent a newly identified family 
of innate immune cells. These cells play import-
ant roles in inflammation, immune responses, tis-
sue remodelling, and cancer immunity. The ILCs, 

Figure 2. The roles of ILCs and its cytokines in cancer immunity of the head and neck. 
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especially ILC2s, play important roles in CRS 
and chronic rhinitis, especially in CRSwNP and 
AR. The ILC2s may be involved in the pathogen-
esis of eosinophilic inflammation in non-allergic 
nasal diseases, such as non-allergic CRSwNP and 
non-allergic rhinitis. The ILC2s may be a useful 
therapeutic target for these diseases. The ILCs 
also play pro-tumor or anti-tumor roles in cancer 
immunity. These cells may represent new thera-
peutic targets to activate anti-tumor immunity in 
head and neck cancer.
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