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Abstract. – OBJECTIVE: This study aims to 
explore underlying molecular variations in the 
expression of miRNAs in kidney tissues of gin-
ger-treated and non-treated cyclophosphamide 
(CP)-intoxicated rats. 

MATERIALS AND METHODS:  A total of 40 
adult male Wistar rats were randomly divided into 
four groups of 10 each: Group I (control: received 
normal food and water), Group II (received ginger 
at a dose of 300 mg/kg), Group III (received CP 75 
mg/kg, i.p.), and Group IV (received the same dose 
of CP and ginger extract).  Rats received a single 
injection of 75 mg/kg CP on days 3, 4, 5, 19, 20, and 
21. In CP-intoxicated rats, the treatment with gin-
ger extract at a dose of 300 mg/kg was received 
by oral gavage starting seven days before CP and 
continuing throughout the duration of the experi-
ment for four weeks. Molecular variations in the ex-
pression of miRNAs, apoptotic genes, histological 
kidney damage, and abnormal kidney function in 
control, ginger, and CP-intoxicated rats were iden-
tified by using real-time RT-PCR Analysis, immu-
nohistochemical, and colorimetric assays. In ad-
dition, HPLC analysis and liquid chromatography 
spectrophotometry analysis using Diphenyl-1-pic-
rylhydrazyl (DPPH) radical, and Β-Carotene-lin-
oleic acid reagents were applied respectively for 

in-vitro screening of phytoconstituents and antiox-
idant activity for ginger extract.

RESULTS: The kidney tissues of CP-intoxicat-
ed rats displayed an increase in lipid peroxida-
tion marker malonaldehyde (MDA), DNA dam-
age, and fibrosis markers like hyaluronic acid 
(HA) and hydroxyproline Hypx) with a decrease 
in the superoxide dismutase (SOD) and total an-
tioxidant capacity (TAC).

In addition, molecular expressions of mR-
NA fibrotic genes such as collagen, type 1, al-
pha 1 (COL1A1), and α-smooth muscle actin (αS-
MA). Molecular expressions of levels of B-cell 
lymphoma 2 (BCl-2) mRNA gene were down-reg-
ulated, and the expression of mRNA apoptot-
ic; BCL2 associated X gene (Bax), caspase-3, 
Bax/BCl-2 ratio genes were significantly up-reg-
ulated respectively. Moreover, cellular oxida-
tive genes, erythroid 2-related factor (Nrf2), and 
heme oxygenase-1 (HO-1) were down-regulat-
ed, respectively. The miR-155-5p, miR-34a-5p, 
miR-21-5p significantly increased while the miR-
193b-3p, miR-455-3p, and miR-342-3p signifi-
cantly decreased. Ginger also increased the ex-
pression of Nrf2, HO-1, and BCl-2 genes in the 
kidneys of rats induced with CP. In addition, ac-
tive phytoconstituents, particularly 6]]-shogaol 
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and 6]]-gingerol, were significantly identified in 
ginger extract using HPLC analysis. Antioxidant 
activity of these active metabolites were shown 
to be higher against in vitro free radicals (DPPH 
and Β-Carotene-linoleic acid), suggesting the 
potential antioxidant and antiapoptotic proper-
ties of ginger against CP-toxicity.

CONCLUSIONS: Treatment with ginger in rats 
induced with CP resulted in significant improve-
ment in the expression of certain molecular miR-
NAs. The kidney tissues of these rats showed a 
marked decrease in the expression of miR-155-
5p, miR-34a-5p, and miR-21-5p, while the lev-
els of miR-193b-3p, miR-455-3p, and miR-342-
3p were observed to increase significantly. In 
conclusion, ginger can protect rats from CP-in-
duced nephrotoxicity. 

Key Words:   
Ginger, miRNAs, Apoptosis, Phytoconstituents, Cy-

clophosphamide, Kidney.

Introduction

Cyclophosphamide (CP) refers to certain al-
kylating drug agents that biologically act on DNA 
cross-linking, and cause cell death (apoptosis) by 
preventing cell division1,2. Even with the estab-
lished toxicity of CP, previous studies3-6 reported 
the use of CP in many clinical trials for treating 
several neoplastic and non-neoplastic diseases, 
particularly leukemia, and breast and pulmonary 
cancers, in addition to other forms of systemic vas-
culitides6 and systemic inflammatory diseases7-10. 

CP showed to be involved in the treatment trials 
of several renal diseases such as nephropathy, ste-
roid-resistant nephrotic syndrome, proliferative lu-
pus nephritis, and progressive IgA-nephropathy11,12. 

Many cytotoxic side effects for CP administra-
tion were reported13-15 in multi-organs, particular-
ly cellular oxidative stress, bone marrow toxicity, 
and severe opportunistic infections. However, 
secondary hematologic malignancy, sterility, and 
teratogenicity are related to latent CP cytotoxic 
effects13,14. Accordingly, the use of CP greatly 
produces toxicity for both the kidneys and uri-
nary bladder by producing the form of hemor-
rhagic cystitis and bladder cancer16-18. Although 
treatment with CP in non-neoplastic diseases 
is dose-dependent, longer uses of the CP need 
Mesna (2-mercaptoethanol sulfonate) in combina-
tion with the drug to reduce bladder toxicity and 
other related adverse effects13,18-20.

Previously, it was noticed21 that microRNA 
(miRNA) regulatory roles of certain genes are 
greatly affected by exposure to toxic substanc-

es. Thus, miRNA expression might be involved 
as predictive biomarkers for the toxic effects of 
different toxicants in animal and human tissues, 
respectively21. In addition, adverse outcome path-
ways of specific toxicants could be verified by al-
teration in the expression levels of miRNAs22.

In injured kidney tissues, the expression of cel-
lular miRNAs was significantly highly upregulated, 
like miR-21-5p, miR-155-5p, and miR-18a-5p. This 
confirms the strength, reproducibility, and specifici-
ty of the miRNA response in distinguishing normal 
and diseased kidney tissues23,24. Thus, in therapeutic 
trials24 of herbal origin, the expression of miRNAs 
in treated and non-treated injured kidney tissues is 
considered a useful potential biomarker for treat-
ment, prevention, and protection as well.

Ginger (Zingiber officinale), a known flavoring 
spice used worldwide, is known to have several bi-
ological activities25. Ginger has been used to treat 
many human diseases, and its effectiveness against 
targeted diseases mainly depends on the number of 
polyphenolic components it presents26. The presence 
of a variety of antioxidants like terpenoids, ascorbic 
acid beta-carotene, alkaloids, and polyphenols, such 
as flavonoids, flavones glycosides, and rutin27, great-
ly represents the antioxidant, dominative protective 
effect on DNA, anti-microbial, antidiabetic as well 
as tumor preventing activities25-29.   

This study aimed to administer cyclophospha-
mide (CP) to induce nephrotoxicity in rats and 
then investigate changes in miRNA expression 
profiles. The study explored their predictive role 
and their link to fibrosis, cellular apoptosis, and 
oxidative stress in kidney tissues. Furthermore, 
the protective and curative effects of ginger ex-
tracts against CP-induced renal toxicity were 
assessed in rats, along with in-vitro screening of 
ginger’s phytoconstituents, antioxidant proper-
ties, and free radical scavenging activity. 

Materials and Methods

Chemicals
CP was purchased from Baxter Oncology 

GmbH, Frankfurt, Germany. The fresh rhizomes 
of Zingiber officinale were obtained from the lo-
cal market and identified by the pharmacognosy 
staff in the Faculty of Pharmacy, at Mansoura 
University, Egypt. 

Assessment of Ginger Extract
The assessment of ginger extract was done as 

previously reported in the literature30-33.
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Analysis of Phytochemical and 
Phytoconstituents in Ginger Extract

Analysis of phytoconstituents
In this method, a liquid chromatography 

HPLC System (Hewlett Packard HP 1050 Se-
ries, Agilent Technologies Inc, East Lyme, CT, 
USA) was used to estimate the proposed phy-
toconstituents, like total phenolic compounds 
present in 300 was used to estimate the pro-
posed phytoconstituents, like total phenolic 
compounds present in 200 mg of the ginger ex-
tract as previously mentioned30-34. 

Analysis of phytochemical
Ginger extract was screened for the presence 

of alkaloids, flavonoids, Tannin, glycosides, trit-
erpenoids, carbohydrates, steroids, saponins, and 
p- Hydroxy benzoic acid (PHBA), as previously 
reported in the literature35-38. 

Estimation of Total and Flavonoid 
Contents 

In this test, total polyphenols were estimated in 
the ginger extract by the Folin-Ciocalteu method, 
as previously described28-38. In addition, the total 
flavonoids were estimated according to the Dowd 
method as previously adopted28-38.

Assessment of In-vitro Antioxidant 
Activity of Ginger Extract

Diphenyl-1-picrylhydrazyl (DPPH) radical 
estimation

The radical scavenging ability against DPPH 
was performed in various concentrations of the 
ginger extract by Spectrophotometric analysis as 
previously described30-41. 

β-Carotene-linoleic acid estimation
In this test, spectrophotometric analysis was 

used to identify the antioxidant activity of the 
ginger extract against Β-Carotene-linoleic as pre-
viously reported29-41.

Animals and Sampling 
Forty adult male Wistar rats (220±30 g) were 

randomly divided into four groups of 10 each. An-
imals with historical surgery, infection complica-
tions, and other medical interventions were exclud-
ed from this experimental study. The animals were 
housed and subjected to normal feeding, drinking, 
and health care mechanisms for two weeks before 
starting any research procedures.

The first group (group I) was considered the con-
trol group and only received water and food. The 
second group (group II) received ginger extract (a 
dose of 300 mg/kg) by oral gavage. The third group 
(group III) received CP (75 mg/kg, i.p.), through 
intraperitoneal administration on days 3, 4, 5, 19, 
20, and 21 of the study41. The fourth group (group 
IV) received the same dose of CP and ginger ex-
tract (a dose of 300 mg/kg) by oral gavage starting 
seven days before CP and continuing throughout 
the duration of the experiment. After four weeks 
of CP injection, all animals were subjected to light 
intraperitoneal pentobarbital anesthesia (50 mg/kg) 
and killed by cervical dislocation. Blood and kid-
ney tissue samples were collected in sterile tubes 
and containers. Then, serum samples were liquated 
in smaller containers and stored at -80°C until as-
saying. The kidney tissues were fixed in a relaxed 
state after emptying under 50 mg/kg intraperito-
neal pentobarbital anesthesia (as an initial dose, a 
smaller amount was added when necessary)38-41. 
The fixed samples were dehydrated in graded lev-
els of ethanol, cleared in xylene, and embedded 
in paraffin. The 5-µm-thick sections were stained 
with hematoxylin and eosin and were examined by 
a light microscope and photographed.

In addition, the cellular expression of caspase-3 
was identified in the kidney tissues by immuno-
histochemical staining analysis. In this test, kid-
ney tissue sections with 5 µm-thick were depar-
affinized and rehydrated. Then, the sections were 
treated with hydrogen peroxide (3%) to block the 
activity of endogenous peroxidase and were in-
cubated with BSA (1%) for one hour. Finally, the 
sections were incubated overnight at 4°C with an-
ti-cleaved caspase-3 primary antibodies at a dose 
of 1:100 (ab2302, Abcam, Cambridge, UK). 

Slides were immersed in horseradish peroxi-
dase-conjugated secondary antibodies (Abcam, Cam-
bridge, UK) (37°C, 0.5 h), labeled streptavidin-biotin 
for 30 min (DETHP 1000, Sigma-Aldrich). The slides 
were counterstained using hematoxylin.

Acute Toxicity Test
In this test, to measure the cytotoxicity of ginger, a 

healthy group of rats (10 rats) were subjected to grad-
ual concentrations of ginger (50 mg to 600 mg/rat) as 
previously reported in many toxicity studies42,43.

Assessments of Kidney Function
Parameters of renal function like creatinine, 

creatinine clearance, and urinary albumin were 
identified according to previously reported rou-
tine lab methodology38-43. 
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Determination of Renal DNA Damage, 
Antioxidant Enzymes, and Oxidative 
Free Radicals
Assessment of cellular DNA damage 

To estimate DNA in liver tissue samples, a di-
phenylamine reagent was used as an organic sol-
vent for extraction, and DNA concentration was 
estimated as previously reported44,45. 

Assessments of renal antioxidant 
enzyme status

The superoxide dismutase (SOD) activity of 
control and treated groups were assayed by the 
modified spectrophotometric method previously 
reported45,46. 

Determination of Renal Malonaldehyde 
(MDA) as Oxidative Free Radical 

MDA was estimated in homogenized kidney 
tissue samples by the thiobarbituric acid method 
as previously reported27,30,31. 

Assessments of Renal Fibrosis Markers 
Hyaluronic acid (HA) and hydroxyproline 

(Hypx) were measured in kidney tissues using 
commercially available bioassays41-49.  

Assessment of Molecular Changes in 
Kidney Tissues 

RNA isolation and cDNA preparation
RNA from rat kidney tissue was isolated using 

TRIzol Reagent (Invitrogen Life Technologies, 
California, USA), and subjected to cDNA prepa-
ration and real-time PCR analysis proceeded in 

a triplicate with coefficients of variation greater 
than 5%50.

 
Real-Time RT-PCR Analysis of Apoptotic, 
Fibrosis, and Antioxidant Markers 

Cellular apoptotic genes like Bcl-2 (B-cell lym-
phoma 2), Bax (Bcl-2-associated X protein), and 
caspase-3 were identified in control, ginger-treat-
ed, and non-treated CP-intoxicated kidney tissues 
by using the Maxima SYBR Green Rox qPCR 
master mix kit (Thermo Scientific Fermentas 
PCR, science house, Corston Bath, UK) as men-
tioned previously in the literature51,52.

In this test, real-time PCR reactions were 
performed using the Steponeplus (Applied Bio-
system, Waltham, MA, USA) with correspond-
ing primers of the respective selected genes 
bcl-2, Bax, caspase-3, α-SMA, Col-1a1, Nrf2, 
heme oxygenase 1 (HO-1), and GAPDH (Glyc-
eraldehyde3-phosphate dehydrogenase) gene 
was applied as standard endogenous control 
primer. (Table I)

Real-Time RT-PCR Analysis of miRNAs
The miRNAs from kidney tissues were ana-

lyzed using miRCURY LNA Universal RTmi-
croRNA PCR reagents with miRCURY LNA 
microRNA set of primers (Invitrogen Life Tech-
nologies, California, USA)50-54. 

Calculation of miRNA Fractional Rank
The Roche LC software (Roche Diagnostics 

Corporation, Indianapolis, IN, USA) was used 
to analyze the amplification curves of miRNAs. 
Both the crossing point (Cp) value and the melting 

Table I. Distribution of diagnoses of patients receiving narrowband UVB phototherapy.

                                      Primer sequences

Primer ID Forward sequence Reverse sequence

miR-155-5p 5′-UUAAUGCUAAUUGUGAUAGGGGU-3′ 5′-ACCCCUAUCACAAUUAGCAUUAA-3′
miR-34a-5p 5′-GGACTTGGCAGTGTCTTAGCTG-3′  5′-GTGCAGGGTCCGAGGTATTC-3′
miR-21-5p 5′-GGGTAGCTTATCAGACTGA-3′ 5′-GTGCAGGGTCCGAGGT-3′
miR-193b-3p 5’- CGCGCCCTGAAACACCC -3’ 5’- AGTGCAGGGTCCGAGGTATT-3’
miR-455-3p  5’- TAAGACGTCCATGGGCAT-3’ 5’- GTGCAGGGTCCGAGGT-3’
miR-342-3p 5′-GGGTCTCACACAGAAATCGC-3′  5′-CAGTGCGTGTCGTGGAGT-3′
GAPDH gene 5`-AAGCTCATTTCCTGGTATG-3` 5`-CTTCCTCTTGTGCTCTTG-3`
Bcl-2 gene 5`-ATCGCCCTGTGGATGACTGAGT-3` 5`-GCCAGGAGAAATCAAACAGAGGC-3`
Bax gene 5`-ATG GAC GGG TCC GGG GAG CA-3 5`-CCC AGT TGA AGT TGC CGT CA-3`
Caspase-3 gene 5`-CAACAACGAAACCTCCGTGG-3` 5`-ACACAAGCCCATTTCAGGGT-3
α-SMA gene 5`- GTGATCACCATCGGGAATGA -3` 5`- CAGCAATGCCTGGGTACATG -3`
Col-1a1 gene 5`- AACCCCAAGGAGAAGAAGCA-3` 5`- AGCGTGCTGTAGGTGAATCG-3`
NRF2 gene 5`- TTGTAGATGACCATGAGTCGC-3 5`- TGTCCTGCTGTATGCTGCTT-3
HMOX1 5`- GTAAATGCAGTGTTGGCCCC-3 5`- ATGTGCCAGGCATCTCCTTC-3
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curve analysis for each miRNA were estimated 
by the 2nd derivative method50-54. 

Statistical Analysis  
Experiments were repeated thrice, and data 

were expressed as mean ± standard deviation 
(SD). Statistics were assessed to be statistically 
significant when differences had a p-value *<0.05 
**p<0.01, and ***p-value<0.001 as compared to 
control.

Results

Screening of Active Constituents 
The results of this experiment showed that 

ethanolic ginger (300 mg) contains approximately 
31.7% w/w of active phytoconstituents. Alkaloids, 
flavonoids, glycosides, tannins, triterpenoids, 
carbohydrates, steroids, and P-hydroxy benzoic 
acid were shown to be the most common 
phytoconstituents in ginger extract (Table II).

Total Phenolic (TPC) and Flavonoid 
Contents 

The ginger extract showed considerable 
amounts of phenolic and flavonoid compounds. In 
this test, the values of TPC and flavonoid were 
calculated as gallic acid equivalents (GAE/300 
g) and quercetin equivalents (mg/300 g) of dry 
ginger weight. The total amounts of phenolic 
and flavonoid compounds in ginger extract (300 
mg) were found to be 34.57±3.8 of gallic acid 
equivalents (mg/300 g) and 89.1±0.86 of quercetin 
equivalents of (mg/300 g), respectively (Table II). 
The most abundant polyphenolic compounds 
present in ginger were pyrogallol, catechin, 
resveratrol, P-coumaric, citral, shogaol-[6], and 
gingerol-[6] (Table II).

In Vitro Antioxidant and Free Radical 
Scavenging Activity Of Ginger Extract  

2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay 
and β-carotene-linoleic acid test were efficiently 

Table II. Phytoconstituents screening, antioxidant activity of ginger extract (mg/300 mg).

Item  Ginger mg/300 mg

Percentage yield 31.7%
Phytochemical screening (+/-):
Alkaloids + 
Flavonoids  +
Tannins  +
Glycosides  + 
Triterpenoids  +
Carbohydrates  +
Steroids  +
Saponins -
p-Hydroxy benzoic acid (PHBA) +
 
Phytochemical constituents (M ± SD)
Total polyphenolic content1 34.57±3.8 mg
Total flavonoid content2 89.1±0.86 mg
 
The most abundant phytochemical compounds Ginger mg/300 mg
Pyrogallol 18.6
Catechein 6.7
Reversetrol 7.4
p-coumaric 6.1
Citral 18.9
[6]-shogaol 22.9
[6]-gingerol 29.1

Antioxidant capacity 
Radical scavenging activity (ΒCLA; %) 
At cons. of 500 μg/mL 92.5%
At cons. 1,000 μg/mL 98.4%
Total antioxidant activity (DPPH; %) 87.5%

(+/-) presence or absence of phytoconstituents; phytochemical constituents represented as mean ± SD (n = 3). 1Expressed as mg of 
gallic acid equivalents (GAE)/300 g of the dry extract. 2Expressed as mg of quercetin equivalents (QE)/300 g of the dry extract.
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used, respectively, to estimate both the free radical 
scavenging and antioxidant activities of ginger. 
The ginger extract showed a significant free 
radical scavenging activity (92.5-98.4%) against 
the DPPH reagent. In addition, its antioxidant 
activity against β-carotene-linoleic acid was 
87.5% (Table II).

Effect of Ginger Extract on Renal 
Oxidant - Antioxidant Function 

TAC, SOD, MDA, and DNA damage as 
markers of renal oxidant-antioxidant function 
were estimated in all groups.

In the kidney homogenate of rats treated with 
ginger (GII) at a dose of 300 mg/kg, TAC, SOD, 
MDA, and DNA damage as parameters of cellular 
oxidative stress significantly (p-value=0.01) improved 
compared to healthy control rats (GI), signifying the 
potential role of ginger when used alone as a protective 
agent in healthy targets. When rats were treated with 
CP (GIII) at a dose of 75 mg, their homogenates 
showed a significant (p-value=0.01) reduction in the 
levels of SOD and TAC activity with an increase 
in the levels of cellular DNA damage and MDA as 
a marker of oxidative lipid peroxidation compared 
to normal and ginger-treated rats. Whereas, in CP-
ginger-treated rats (GIV), the oxidative damage 
induced by CP-intoxication was restored following 
administration of the ginger extract at a dose of 300 
mg/kg. A significant increase (p-value=0.001) in 
both TAC and SOD enzyme activity with a decline in 
the levels of both cellular DNA damage content and 
MDA was reported in ginger-treated rats compared 
with those of CP-treated rats.

Effect of Ginger Extract on the 
Expression of Antioxidant Signaling 
Genes Nrf2/ HO-1 

The gene expression levels of Nrf2 and HO-1, 
transcription factors controlling the expression 
of antioxidant enzymes, were significantly 
(p-value<0.001) down-regulated in the kidney 
of CP-intoxicated rats (GII) at a dose of 75 mg 
when compared with the control (GI) and ginger-
treated (GII) rats. Moreover, the expression 
levels of Nrf2 and HO-1 in the kidney tissues 
of rats treated with ginger as a protective agent 
(GII) were significantly up-regulated, which 
indicates the antioxidant protective activity of 
ginger in healthy status. In addition, the kidneys 
of CP-intoxicated rats (GIV) showed a significant 
upregulation (p-value<0.001) in Nrf2 and HO-1 
mRNA expression levels when treated with 
ginger at a dose of 300 mg/kg, respectively.

Effect of Ginger Extract on Renal Fibrosis 
In this experiment, hyaluronic acid (HA) and 

hydroxyproline (Hypx) were estimated in kidney 
tissues as protein markers of kidney fibrosis in 
all studied rats. In CP-intoxicated, there was a 
significant (p-value=0.01) increase in the levels of 
HA and Hypx compared to normal controls. In 
addition, healthy rats that received ginger at a dose 
of 300 mg/kg showed significant improvement 
in the identified fibrotic proteins, HA and Hypx, 
respectively, identifying the protective role of 
ginger against kidney fibrosis. Whereas, in 
ginger-treated CP-intoxicated rats, a significant 
(p-value=0.001) reduction in fibrotic markers, 
HA, and Hypx, were obtained in comparison 
with CP-intoxicated rats. The data support the 
anti-fibrotic activity of ginger against CP-induced 
fibrosis in kidney tissues of rats.

Effect of Ginger Extract on the 
Expression of Fibrotic Genes a-SMA and 
Col-1a1

The expression levels of both a-SMA and Col-
1a1 fibrotic genes significantly upregulated (in-
creased) in CP-intoxicated (GIII) rats compared 
to healthy (GI) and ginger-protective (GII) rats, 
respectively. When CP-intoxicated rats were 
treated with ginger at a dose of 300 mg/kg, the ex-
pression levels of fibrosis genes a-SMA and Col-
1a1 significantly (p-value=0.001) downregulated, 
which signifies that the use of ginger in healthy 
and intoxicated renal humans or animal models 
might improve the lifespan of the fibrosis models 
without toxicity.

Effect of Ginger Extract on Cellular 
Apoptosis Induced by CP-Intoxication 

In this study, to identify the potential 
antiapoptotic activity of ginger, we identified 
its effect on the gene expression levels of BCL-
2, BAX, and caspase-3 in the kidney tissues of 
ginger-treated and non-treated CP-intoxicated rats 
(Figure 1). The results showed that the expression 
levels of mRNAs of BCL-2 gene significantly 
reduced and the expression of mRNAs of Bax, 
Bax/BCl-2 ratio, and caspase genes significantly 
increased in CP-intoxicated rats (GIII) compared 
to those of the control group (GI), respectively 
(Figure 1A-D). Moreover, healthy rats treated with 
ginger (GII) at a dose of 300 mg/kg significantly 
improved cellular apoptotic proteins. BCL-2 as 
an antiapoptotic gene significantly increased, and 
the other apoptotic inducing genes, Bax, Bax/
BCL-2 ratio, and caspase-3, significantly reduced 
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(Figure 1A-D). In addition, CP-intoxicated rats 
(GIV) treated with ginger at a dose of 300 mg/kg, 
showed a significant reduction in the expression 
levels of Bax, Bax/BCL-2 ratio, and caspase-3 
inducing apoptosis in the kidney tissues compared 
to that of CP-non-treated group of rats (GIII) 
(Figure 1A-D). 

Differential Expression of miRNAs in 
Kidney Tissues

The expression of cellular miRNAs was 
differentially estimated in kidney tissues of 
rats intoxicated with cyclophosphamide (CP) 
and treated with ginger extract at a dose of 300 
mg. In CP-treated rats, differential increases 
in the expression of cellular miR-155-5p, miR-
34a-5p, miR-21-5p, and a decrease in the 
expression of cellular miR-193b-3p, miR-455-
3p, and miR-342-3p were reported in kidney 
tissues of CP-intoxicated rats compared to that 
obtained in healthy control rats as shown in 
Figure 2. Little insignificant (p-value=0.12) 
change (improvement) was reported in healthy 
rats treated with ginger at a dose of 300 mg/kg, 
signifying a protective and non-toxic ginger dose. 
Moreover, when CP-intoxicated rats were treated 
with ginger at a dose of 300 mg/kg, there was a 
significant improvement in the expressed cellular 
miRNAs in the kidney tissues of the rats. The 
results showed that differential decreases in the 
expression of cellular miR-155-5p, miR-34a-5p, 
miR-21-5p, and an increase in the expression of 

cellular miR-193b-3p, miR-455-3p, and miR-342-
3p was reported in CP-rats following treatment 
with ginger (Figure 2).

Effect of Ginger Extract on the Histology 
of the Kidney Tissues

Histological examination showed the normal 
histological structure of the glomeruli and renal 
tubules in both control rats (Figure 3A) and rats 
who received ginger at a dose of 300 mg/kg 
(Figure 3B). On the other hand, several structural 
alterations in the H&E-stained kidney sections 
of CP-intoxicated rats, including vacuolation of 
the cytoplasm of the endothelium of the renal 
tubules, acidophilic depositions of collagen, and 
some tubules have hyaline cast in their lumens 
with a remarkable degree of congestion (Figure 
3C). However, H&E-stained kidney sections of 
CP-intoxicated rats treated with ginger at a dose 
of 300 mg/kg (Figure 3D) revealed remarkable 
improvement in the histological appearance of 
the glomeruli and renal tubules with interstitial 
hemorrhage noticed in the rats received 300 mg/
kg ginger extract.

Effect of Ginger Extract on the 
Expression of Apoptotic Markers Cleaved 
Caspase-3 in Renal Tissues

Immunostaining of the renal tissues for apop-
tosis and necroptosis was detected by cleaved 
caspase-3. Kidney sections of CP-intoxicated rats 
showed marked expression of cleaved caspase-3 

Figure 1. Effect of ginger on renal apoptosis profiles induced by CP-intoxication, BCL-2 (A), Bax (B), Bax/BCL-2 ratio (C), 
and caspase-3 (D).
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Figure 2. Effect of ginger on the expression of renal miRNAs induced by CP-intoxication in ginger-treated and non-treated CP-
intoxicated rats at a dose of 300 mg/kg for 4 weeks, measured by Real-Time RT-PCR Analysis. Normalized levels of expressed 
miRNAs are expressed as the fractional rank. 

Figure 3. H&E-stained sections in the kidney of control (A), normally treated with ginger 300 mg/kg (B), CP-intoxicated rats 
(C), and ginger-treated CP-intoxicated rats (D) (H&E: X200).
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(Figure 4C) compared to normal renal tissues in 
both control rats (Figure 4A) and rats that received 
ginger at a dose of 300 mg/kg (Figure 4B). The 
renal expression for cleaved caspase-3 was mark-
edly decreased in renal sections of CP-intoxicated 
rats treated with ginger at a dose of 300 mg/kg 
(Figure 4D). In addition, a quantification analy-
sis of the immunoreaction of cleaved caspase-3 
in kidney sections was performed (Figure 4E). 
The results showed that the quantity of expressed 

cleaved caspase-3 in the tissues of CP-intoxi-
cated rats significantly (p=0.00001) increased 
compared to those of normal (group I) and gin-
ger-treated rats (group II) (Figure 4E). However, 
in ginger-treated CP-intoxicated rats, the reduc-
tion in the quantity of the immune reaction patch-
es of cleaved caspase-3 in ginger-treated rats was 
significant (p=0.00001) compared to CP-non-
treated rats, which supports the anti-apoptotic 
property of ginger against the cellular toxicity of 
CP.

Figure 4. Kidney expression of cleaved caspase-3. A-B, Representative photomicrographs of immunohistochemically stained 
renal tissue against cleaved caspase-3. C, CP-intoxicated rats, (D) CP-intoxicated rats treated with ginger at a dose of 300 mg/kg, 
(E) Quantification of immunoreaction of cleaved caspase-3 in renal sections (X 200). **<0.01 ***p<0.001, and ****p-value<0.0001.
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Discussion

In this study, ginger extracts at doses of 300 
mg/kg provide a curative and protective activi-
ty against CP-induced renal toxicity at a dose of 
75 mg/kg. Changes in the expression of cellular 
miRNAs, damage of cellular DNA, abnormal 
body and kidney weights, renal function, cellular 
fibrosis, apoptosis, abnormal oxidative stress, and 
antioxidant status were significantly decreased to-
wards the normal ranges following treatment with 
ginger extracts. 

In vitro, the phytochemical analysis revealed 
that the ginger extract showed noticeable free 
radical scavenging (92.5-98.4%) and antioxidant 
activity (87.5%) against both DPPH and β-caro-
tene-linoleic acid-free radicals, respectively. Our 
results were in accordance with others30,55-58 who 
reported the potential free radical scavenging ac-
tivity of ginger against superoxide, hydroxyl, and 
nitric oxide in vitro. In addition, the presence of 
considerable amounts of polyphenolic (345 mg) 
and flavonoid (89.1 mg) compounds in the used 
ginger was reported in a dose of 200 mg. The 
most abundant polyphenolic compounds present 
in ginger were pyrogallol, catechin, resveratrol, 
P-coumaric, citral, shogaol-[6], and gingerol-[6]. 
Our results, with others30 recently, significant-
ly support the curative and activity potency of 
ginger against CP-intoxication, whose higher 
amounts of gingerol-[6], shogaol-[6], citral, and 
pyrogallol were estimated in ginger extracts. In 
addition, the presence of zingerone, shogaols, and 
gingerols with other numerous active compounds 
efficiently supports the natural antioxidant ac-
tivities of ginger as a chemopreventive agent of 
diseases56-58. The use of ginger, even in higher 
doses, was shown59-60 to be very safe for humans, 
and our study revealed that ginger extract at dos-
es of 300 mg/kg has no toxic effects (LD50=0). 
This might be due to its contents of polyphenolic 
compounds that can suppress the chain reactions 
of lipid peroxidation via a free radical scavenging 
mechanism56-60.

In CP-treated rats, the administration of ginger 
extract significantly improved cellular antioxidant 
status. TAC and SOD as markers of antioxidants 
significantly increased, while cellular DNA dam-
age and MDA as a marker of peroxidation were 
significantly reduced when the ginger extract was 
applied at a dose of 300 mg. The used CP anti-
cancer drug induces cellular oxidative stress with 
lower antioxidant enzymes, protein cross-link-
ing, and DNA damage, collectively inducing cell 

death or apoptosis, as well as cytotoxic effects on 
normal cells13,14,61,62.

Like others30,37,60-71, our results support the po-
tential protective effects of ginger phenolic and 
flavonoid compounds, which proceed via the an-
tioxidant and nephroprotective pathways. The re-
sults in that part significantly support the impor-
tance of ginger as a therapeutic herbal remedy to 
manage renal function in patients with uremia, as 
previously reported in the literature71.

Previous studies55,63,72-74 have shown that CP-in-
duced cellular toxicity in kidney tissues signifi-
cantly increased the levels of lipid peroxidation 
(LPO), with a reduction in the markers of anti-
oxidant statuses such as SOD and CAT. This col-
lectively leads to severe renal toxicity, renal cell 
DNA damage, and subsequent pathogenesis of the 
kidney and nephrotoxicity55,64-75, as measured by 
histopathological analysis in our study. 

Previous studies64-75 showed that the antiox-
idant and free radical scavenging efficiency of 
gingerols, shogaols, and other related bioactive 
phenolic compounds that exist in ginger, signifi-
cantly nullify the toxicological effects of CP drug 
and prevent the pathogenesis of the kidney, as pre-
viously shown.

In addition, the molecular influence of gin-
ger activity upon the expression of Nrf2 and 
HO-1 genes was identified in ginger-treated 
and non-treated CP-intoxicated rats. The results 
showed the expression levels of Nrf2 and HO-1, 
transcription factors that control the expression 
of antioxidant enzymes, were significantly up-
regulated in the kidney tissues of CP-intoxicat-
ed rats treated with ginger at a dose of 300 mg/
kg compared to CP non-treated rats. Moreover, 
healthy rats treated with the respective ginger 
dose showed upregulation in the expression levels 
of Nrf2 and HO-1 genes, which in turn signified 
that ginger might be used as a protective agent in 
healthy cases towards toxicity.    

Previous studies76-78 showed that the pro-oxi-
dant nature of CP drug is significantly associated 
with the cellular production of cellular and molec-
ular oxidative stress, inflammation, and apoptosis 
in rats. In intoxicated cells, the excessive produc-
tion of cellular oxidative stress generated from ex-
posure to endogenous or exogenous chemicals79, 
inactivates the action of Nrf2 in the cytosol by a 
set of proteins Kelch like-ECH-associated protein 
1 (Keap1) and Cullin 3. When antioxidants of 
plant origin, such as ginger, were applied in in-
toxicated models with chemicals or drugs, Nrf2 is 
activated and complexed with small Maf proteins 
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(Mafs) like the activator protein-1 (AP-1) protein 
in the nucleus, which consequently activates the 
transcription of antioxidant and cytoprotective 
genes such as SOD and CAT through binding to 
the antioxidant response elements (ARE)80. 

The effect of ginger extract on kidney fibrosis 
was also evaluated in this study. We investigat-
ed the effect of ginger on the production levels 
of fibrotic proteins, HA and Hypx, and molecular 
mRNA levels of a-SMA and Col-1a1 fibrotic genes 
by calorimetry and Real-Time RT-PCR analysis. 
The treatment of CP-intoxicated rats with 300 mg 
of ginger significantly reduced the production of 
HA and Hypx proteins and the expression mRNA 
levels of a-SMA and Col-1a1, respectively, com-
pared to non-treated CP-intoxicated rats. 

It was reported37,71,81-83 that the administration 
of CP anti-cancer drugs can significantly injure or 
damage normal tissues, which gives rise to numer-
ous side effects. According to previous studies81-87, 
CP compound produced some reactive metabolites 
that chemically cross-linked with cellular DNA, as 
well as protein that cause per-oxidative damage to 
the kidney and other vital organs by producing an 
overproduction of reactive oxygen species (ROS), 
which cause per-oxidative damage to the kidney 
and other vital organs. This, in turn, results in 
more expression of kidney fibrosis2,88,89. 

In addition to that, intoxication with CP leads 
to a breakdown in the glomerular filtration barrier 
and the passage of excess protein. The produced 
proteinuria is toxic and leads to excess down-
stream tubular reabsorption of protein, result-
ing in tubular inflammation and fibrosis90. Also, 
CP-toxicity may increase the circulating uremic 
serum, which is considered a permissive factor 
in the systemic fibrogenesis of kidney tissues of 
intoxicated rats.91-92 Whereas, in ginger-treated 
rats, kidney tissues improved and the production 
of both HA and Hypx significantly reduced with a 
reduction in the expression levels of both a-SMA 
and Col-1a1 fibrotic genes, which supports the 
anti-fibrotic activity of ginger against CP-induced 
fibrosis in kidney tissues of rats. The regulatory 
effect of ginger extracts on kidney fibrosis de-
pends mainly upon free radicals scavenging and 
antioxidant activity of ginger as a whole and its 
biological constituents35,55,93-94, which could, in 
turn, normalize microsomes, lysosomes, mito-
chondria, and plasma membranes permeability 
and integrity, which lead to reduced expression of 
collagen fibrils in the kidney.

The treatments with CP drug significantly im-
balance the expression of apoptotic proteins. The 

expression levels of the BCL-2 gene were signifi-
cantly reduced, and Bax and caspase genes, as 
well as Bax/BCl-2 ratio, significantly increased in 
CP-intoxicated rats compared to those of the con-
trol group, respectively. Moreover, a significant re-
duction in the expression levels of Bax, Bax/BCL-
2 ratio, and caspase-3 inducing apoptosis with an 
increase in the expression levels of antiapoptot-
ic BCL-2 gene was reported in kidney tissues of 
CP-intoxicated rats treated with ginger at a dose of 
300 mg/kg. The results of the present study showed 
that the protection of ginger against CP-cytotoxic-
ity proceeds via an antiapoptotic pathway through 
upregulation of the expression of the BCL-2 gene 
as a gene of antiapoptotic, and downregulation 
of respective apoptotic inducing genes like Bax, 
Bax/BCL-2 ratio, and caspase-3. Thus, this was 
confirmed by an increase in the percentage of ex-
pressed antiapoptotic proteins BCL-2 within viable 
renal cells and decreased the apoptotic-inducing 
proteins Bax and caspase-3 as measured by immu-
nohistopathological analysis of ginger-treated and 
non-treated CP-kidney tissues. 

 The present data matched with those93 that re-
ported that ginger oils significantly lowered DNA 
damage and cell death induced by H2O2 via its abil-
ity to scavenge the reproduced oxygen radicals. In 
addition, several studies94-96 showed that the active 
component of ginger, i.e., [6]-gingerol, can effec-
tively protect as a scavenger to the active hydroxyl 
free radicals (O̟H), which leads to DNA damage 
and subsequent cellular kidney apoptosis. General-
ly, ginger and its active constituents, [6]-gingerol, 
at variable doses such as 100-200 mg/kg, may show 
a defensive impact against genotoxicity and reduce 
oxidative cell death induced by toxicants due to 
its anti-apoptotic, anti-oxidant, anti-inflammatory, 
and antifibrotic properties25,97-101.

The effects of ginger extract and CP toxicity 
on the expression of cellular miRNAs were iden-
tified in ginger and CP-treated rats by real-time 
PCR analysis. Cellular miR-155-5p, miR-34a-5p, 
and miR-21-5p significantly increased, and cel-
lular miR-193b-3p, miR-455-3p, and miR-342-3p 
significantly decreased in kidney tissues of rats 
with CP anticancer drug. The disturbance in the 
expression of miRNA correlated significantly 
with renal function, oxidative stress, lower cellu-
lar antioxidants, fibrosis, and apoptosis in CP-in-
toxicated kidney tissues. Previously, miR-21-5p, 
miR-155-5p, and miR-18a-5p were shown to be 
among the highest upregulated miRNAs in the 
kidney after injury. This confirms the robustness, 
reproducibility, and specificity of the miRNA re-
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sponse in distinguishing normal and diseased kid-
ney tissues22,23. MicroRNAs are short, non-cod-
ing RNAs that have demonstratedwith significant 
roles in the pathogenesis and prognosis of various 
diseases. Previous studies 79,80,102,103 showed that 
miRNAs are good regulators in diverse cellular 
processes, like mediating the metabolism and tox-
icity of xenobiotic compounds. 

In kidney tissues injured by ischemia, toxicant 
exposure, hypertension, and fibrosis, abnormal 
increase in the expression of several miRNAs 
such as miR-21, miR-18a-5p, miR-132-3p, and 
miR-146b-5p were identified according to patho-
logic conditions of kidney diseases24,102-104. In ad-
dition, environmental toxicants and nephrotoxic 
therapeutics like cadmium chloride (CdCl2) and 
cyclophosphamide, when increased in the tubules 
of the kidney, significantly affect the expression 
of cellular miRNAs, particularly the increase of 
those localized in the tubules of the kidney88-105. 

However, in CP-intoxicated rats treated with 
ginger extract, the expression of miR-155-5p, 
miR-34a-5p, and miR-21-5p was decreased, and 
the expression of miR-193-3p, miR-455-3p, and 
miR-342-3p was increased compared to rats treat-
ed with CP, respectively. In addition, expressed 
miRNAs significantly correlated with improved 
renal function, reduced oxidative effect, apopto-
sis, and fibrosis, and enhanced antioxidant status 
of kidney cells following ginger treatments.

Conclusions

This study’s findings showed that ginger ex-
tracts at doses of 300 mg significantly alleviate 
the genotoxic, molecular, and cellular damage in 
kidney tissues induced by CP toxicity. The im-
provement in kidney parameters, as well as ex-
pressed in the levels of molecular miRNAs in 
kidney tissues, significantly related to antioxi-
dant, anti-apoptotic, and anti-fibrotic activities 
of phenolic constituents estimated in the ginger 
extract. The data also suggested the potential use 
of molecular miRNAs as diagnostic biomarkers 
in kidney pathological states. However, the esti-
mation of miRNAs in serum and urine and their 
correlation with certain genes, such as fibrotic, 
apoptotic, and oxidative genes, should be further 
addressed in subsequent studies. 
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