Abstract. – OBJECTIVE: To provide a comprehensive description of the quantitative and qualitative characteristics of pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands on color doppler ultrasonography and contrast-enhanced ultrasonography (CEUS).

PATIENTS AND METHODS: 64 patients with 35 pleomorphic adenomas, 24 adenolymphomas, and 12 malignant tumors were enrolled in this study. All patients were examined by color doppler ultrasonography and CEUS before operation. In color Doppler ultrasonography, degree of vascularity, peak systolic velocity (PSV) and the vascular resistance index (RI) were obtained. In CEUS, type of enhancement, rim enhancement and area of enhancement were assessed. After the time-intensity curves (TIC) were drawn, the time to peak enhancement (TTP), peak intensity (PI) and the time from peak to one half (TFP) were calculated for the tumors and surrounding salivary parenchyma. Postoperatively, histopathologic examination of surgical specimens was used as the gold standard.

RESULTS: Color Doppler ultrasonography showed no significant differences in PSV between tumors, significantly less adenolymphomas had Grade 0-1 vascularity compared to pleomorphic adenomas, and the RI was significantly lower in adenolymphomas compared to pleomorphic adenomas and malignant tumors. CEUS had acceptable diagnostic sensitivity, specificity, and accuracy for differential diagnosis of pleomorphic adenomas and adenolymphomas based on the diagnostic criteria of rim enhancement and slow wash-out rate, respectively. The sensitivity, specificity, and accuracy for differential diagnosis of malignant tumors based on the diagnostic criteria of an ill-defined enhancement margin, an enlarged enhancement area or a fast wash-in rate were also satisfactory.

CONCLUSIONS: Accurate diagnosis of salivary gland tumors in clinical practice can be increased using color Doppler ultrasound and CEUS in combination with a case history and other imaging.

Key Words: Ultrasonography, Pleomorphic adenoma, Adenolymphoma, Malignant tumor.

Introduction

Salivary gland tumors are a group of complex neoplasms accounting for an estimated 3% of all head and neck tumors. Salivary gland tumors are mainly located in the parotid gland. Approximately 80% of salivary gland tumors are pleomorphic adenomas. Although these are benign cases, but recurrence rates of them can reach 40%. They also have the 3-4% potential for malignant transformation. Treatment for pleomorphic adenomas involves resection with a subtotal parotidectomy while preserving the facial nerve. Adenolymphomas are the second most common benign tumors of the salivary glands. Adenolymphomas arise from remnant lymphoid ducts and have little tendency to recur. They can be resected with a less aggressive surgical procedure, but patients with surgery contraindications, especially those who are elderly, can be treated conservatively. Malignant tumors of the salivary glands are rare and have a complex pathology. They should be completely excised with glandular tissue and the possibility of facial nerve resection, followed by chemotherapy or radiation therapy.

HE staining and immunohistochemical staining in postoperative pathological examination are helpful to distinguish these types of salivary gland tumors. In immunohistochemistry, PLAG-1 was strongly positive in pleomorphic adenomas, negative in malignant tumors, SOX10 negative
in mucoepidermoid adenocarcinoma and ductal carcinoma, S-100 positive in adenoid cystic carcinoma and secretory carcinoma, and Myb negative in adenolymphomas. But an accurate preoperative diagnosis of pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands is still essential for treatment decision-making. Imaging plays an important role in the preoperative diagnosis of salivary gland tumors. Traditionally, ultrasonography was used for initial imaging, but qualitative features on conventional and color doppler ultrasonography are inadequate for the differential diagnosis of benign and malignant salivary gland tumors. Furthermore, qualitative interpretation of color doppler ultrasonography mainly depends on the clinical experience of the radiologist rather than measurable evidence. The use of CEUS for the differential diagnosis of pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands has been investigated, but, to the authors knowledge, a systematic assessment of the qualitative and quantitative features of these types of salivary gland tumors on CEUS has not been reported.

This study provides a comprehensive description of the qualitative and quantitative characteristics of pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands on color Doppler ultrasonography and CEUS.

Patients and Methods

Patients

64 patients (41 males and 23 females) with 35 pleomorphic adenomas, 24 adenolymphomas, and 12 malignant tumors were enrolled in this study. All patients have undergone surgical removal of solid tumors in the salivary glands in the Department of Oral Surgery at the First Affiliated Hospital of Nanchang University between August 2016 and July 2018. The mean age of patients was 53.7±16.0 years (range, 19-88 years), the mean diameter of tumors was 24.5±9.1 mm (range, 7-45 mm). Patients with serious allergies, cardiovascular or hematologic disease, diffuse disease of the salivary gland, such as Sjögren syndrome, or who had received chemotherapy and/or radiotherapy to the head and neck, were excluded. Written informed consent was obtained from all participants. This study was approved by the institutional review board with a waiver of informed consent due to the retrospective nature of the study.

Imaging

All patients were examined preoperatively using a Philips IU22 ultrasonography system equipped with a L12-5 linear array transducer (Philips Medical Systems, Inc., Bothell, WA, USA). Initially, patients were assessed with grayscale ultrasonography in the supine position with the neck fully exposed. Images of salivary gland tumors were obtained in the longitudinal and transverse planes. Tumors were evaluated for location, size, and internal echo. Subsequently, patients underwent color doppler ultrasonography with medium flow velocity and a wall filter. Peak systolic velocity (PSV) and the vascular resistance index (RI) were measured after an optimal doppler signal was obtained. Each measurement was scored three times, and the mean was used for statistical analysis. Finally, CEUS was used to obtain images of the tumors as well as part of the normal adjacent gland. An image of a peripheral part of the tumor with rich blood flow and some normal adjacent tissue was obtained when the tumor was too large. Contrast pulse sequencing was applied, with a probe emission frequency of 3-9 MHz and mechanical index of 0.06. SonoVue® (59 mg lyophilized powder) (Bracco Imaging SpA, Milan, Italy), dissolved in 5 ml 0.9% sodium chloride, was used as the contrast agent. In each patient, 2.4 ml SonoVue® was injected as an intravenous bolus via an antecubital vein, immediately followed by 5 ml 0.9% sodium chloride. After injection of the contrast agent, the salivary gland and tumor were scanned with harmonic gray-scale CEUS for at least 90 sec, and dynamic images were recorded. The saving time and dose was according to the study of Fischer et al. During image acquisition, patients were asked to breathe normally but refrain from other movements and talking. Postoperatively, histopathologic examination of surgical samples was used as the gold standard for diagnosis of the salivary gland tumors.

Ultrasonography Imaging Analysis

For color doppler ultrasonography evaluations, vascularity was graded on a four-step analog scale ranging from 0 to 3 according to Martinoli et al, where grade 0=no detectable color signal, grade 1=transient flow or only one vessel detectable inside the lesion, grade 2=continuous flow or presence of vessels penetrating the neoplasm and grade 3=rich blood supply in the neoplasm.

For CEUS evaluation, the type, margin, rim and area of enhancement of tumors were by observing the dynamic imaging. Type of enhance-
ment was categorized as homogenous or hetero-
geneous, margin enhancement was categorized
as well-defined or ill-defined, rim enhancement
was categorized as present or absent, area of en-
hancement was categorized as enlarged if the
tumor area on CEUS was larger than on con-
vention ultrasonography, or not enlarged. Then,
the dynamic imaging was evaluated with QLAB
software. Regions of interest (ROI) were approx-
imately 0.5 cm² in size in areas which showed
avid enhancement of the tumors and surrounding
salivary parenchyma. ROI were not near perfu-
sion defects, focal calcified areas, or tissues such
as large vessels. After the time-intensity curves
(TIC) were drawn, the time to peak enhancement
(TTP), peak intensity (PI) and the time from peak
to one half (TFP) were calculated for both the tu-
mors and surrounding salivary parenchyma. The
following CEUS enhancement features were as-
essed: (1) wash-in rate, defined as fast, identical,
or slow determined by whether TTP was shorter,
equal, or longer in the tumor compared to the sur-
rounding salivary parenchyma; (2) wash-out rate,
deefined as fast, identical, or slow determined by
whether the TFP was shorter, equal, or longer in
the tumor compared to the surrounding salivary
parenchyma; (3) degree of enhancement, catego-
rized as hypo-enhancement, iso-enhancement, or
hyper-enhancement, determined by whether the
PI of the tumor was lower, equal, or higher than
the surrounding salivary parenchyma. All evalu-
ations were performed by one radiologist experi-
enced in CEUS.

Statistical Analysis

Statistical analysis was conducted using SPSS
version 23.0 software (IBM Corp., Armonk, NY,
USA). Continuous variables are presented as the
mean ± standard deviation. Comparisons between
tumors and surrounding salivary parenchyma
were performed using Student’s t-test. Compari-
sions between pleomorphic adenomas, adenolym-
phomas, and malignant tumors were performed
using the Fisher Exact Test (2xC) and one-way
ANOVA, as appropriate. If these tests determined
that a variable was significantly different between
the three tumors, multiple comparisons for all tu-
mors were performed with the Fisher Exact Test
or LSD. p-values < 0.05 were considered statisti-
cally significant.

Results

Convention Ultrasonography

Conventional ultrasonography could not be
used to distinguish between pleomorphic ade-
nomas, adenolymphomas, and malignant tumors
based on margins (5 patients had poorly define
margins) or heterogeneity (8 tumors were het-
erogeneous, consisting of mixed solid and cystic
components).

Color Doppler Ultrasonography

Characteristics of Salivary Gland Tumors

Characteristics of pleomorphic adenomas, ad-
enalymphomas, and malignant tumors on color
Doppler ultrasonography are shown in Table I.
There was a significant difference in vascularity
between pleomorphic adenomas and adenolym-
phomas (p<0.016667). Compared to pleomorphic
adenomas, there were significantly less adeno-
lymphomas with Grade 0-1 vascularity. There
were no significant differences in PSV between
pleomorphic adenomas, adenolymphomas, and
malignant tumors. The RI was significantly
lower in adenolymphomas compared to pleomorphic
adenomas (p<0.016667). The RI was significantly
lower in adenolymphomas compared to malig-
nant tumors too (p<0.016667) (Figure 1).

Table I. Characteristics of pleomorphic adenomas (PA), adenolymphomas (AL), and malignant tumors (MT) on color Doppler
ultrasonography.

<table>
<thead>
<tr>
<th>Location</th>
<th>Count</th>
<th>Location</th>
<th>PSV (cm/s)</th>
<th>RI</th>
<th>Vascularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parotid</td>
<td>35</td>
<td>Submandibular</td>
<td>14.4±10.0</td>
<td>0.84±0.21</td>
<td>14</td>
</tr>
<tr>
<td>PSV (cm/s)</td>
<td></td>
<td></td>
<td>18.4±15.5</td>
<td>0.67±0.12</td>
<td>2</td>
</tr>
<tr>
<td>RI</td>
<td></td>
<td></td>
<td>16.5±9.9</td>
<td>0.86±0.18</td>
<td>4</td>
</tr>
<tr>
<td>Vascularity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-1</td>
</tr>
<tr>
<td>p-value</td>
<td>1.0*</td>
<td>.466</td>
<td>.001</td>
<td>.027</td>
<td></td>
</tr>
</tbody>
</table>

Note: *, PA vs. MT
CEUS Characteristics of Salivary Gland

Qualitative CEUS parameters for pleomorphic adenomas, adenolymphomas, and malignant tumors are shown in Table II. Pleomorphic adenomas were significantly more heterogeneous than adenolymphomas ($p<0.016667$), significantly more malignant tumors presented with ill-defined margins compared to pleomorphic adenomas and adenolymphomas ($p=0.016667$), and significantly more pleomorphic adenomas showed rim enhancement compared to adenolymphomas and malignant tumors ($p=0.016667$). The area of enhancement was enlarged in significantly more malignant tumors than pleomorphic adenomas or adenolymphomas ($p=0.016667$) (Figure 2).

Quantitative CEUS parameters for pleomorphic adenomas, adenolymphomas, and malignant tumors are shown in Table III. In pleomorphic adenomas, wash-in and wash-out rates were identical compared to the surrounding salivary parenchyma. Pleomorphic adenomas were well-defined and showed heterogeneous enhancement, hyper-enhancement, and rim enhancement. In adenolymphomas, wash-in rate was identical, but the wash-out rate was slower than the surrounding salivary parenchyma. Adenolymphomas were well-defined and showed homogeneous enhancement and evident hyper-enhancement. In malignant tumors, although both the wash-in rate and the wash-out rate were identical to the surrounding salivary parenchyma, the TTP of MT was shorter than the surrounding salivary parenchyma ($p=0.052$). Malignant tumors were ill-defined and showed homogeneous or heterogeneous enhancement, hyper-enhancement and enlarged area of enhancement (Figure 3).

Table II. Qualitative CEUS parameters in pleomorphic adenomas (PA), adenolymphomas (AL), and malignant tumors (MT).

<table>
<thead>
<tr>
<th>Type of enhancement</th>
<th>Enhancement margin</th>
<th>Enhancement rim</th>
<th>Enhancement area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Homogenous</td>
<td>Heterogenous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well-define</td>
<td>Ill-define</td>
<td>Present</td>
</tr>
<tr>
<td>PA</td>
<td>7</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>AL</td>
<td>17</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>MT</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>p-value</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

Figure 1. Vascularity and RI. A, adenolymphoma, Grade 3 vascularity; RI=0.6; B, pleomorphic adenoma, Grade 2 vascularity, RI=1.0; C, malignant tumor, Grade 3 vascularity, RI=1.0.
The sensitivity, specificity, and accuracy of CEUS for the differential diagnosis of pleomorphic adenomas with diagnostic criterion of rim enhancement were 91.4% (32/35), 63.9% (23/36) and 77.5% (55/71), respectively. The sensitivity, specificity, and accuracy of CEUS for the differential diagnosis of adenolymphomas with diagnostic criterion of a slower wash-out rate compared to the surrounding salivary parenchyma were 87.5% (21/24), 70.2% (33/47), and 71.8% (51/71), respectively. The sensitivity, specificity, and accuracy of CEUS for the differential diagnosis of malignant tumors with ill-defined enhancement margin and enlarged enhancement area were 75% (9/12), 89.9% (53/59), 87.3% (62/71) and 66.7% (8/12), 96.6% (57/59), 91.5% (65/71).

Discussion

Color Doppler ultrasonography and CEUS provide the opportunity to improve the understanding of salivary diseases and may be particularly useful for differentiation of pleomorphic adenomas, adenolymphomas, and malignant tumors. Vascular patterns and blood flow vary between different types of tumor. Color Doppler ultrasonography can be used to examine macro-vascularity, while CEUS has utility for observing micro-vascularity and for quantitative analysis of microvascular perfusion in solid tumors. In this retrospective study, we provide a comprehensive description of the qualitative and quantitative characteristics of pleomorphic adenomas, ade-
nolymphomas, and malignant tumors of the salivary glands on color Doppler ultrasonography and CEUS, and these indicators are also the most commonly used in clinical practice. Therefore, this research will contribute significantly to the differential diagnosis of salivary gland tumors in clinical practice.

This study showed that conventional ultrasonography does not clearly distinguish between pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands. However, color Doppler ultrasonography showed a difference in the degree of vascularity between pleomorphic adenomas and adenolymphomas, but no

Table III. Quantitative CEUS parameters for pleomorphic adenomas (PA), adenolymphomas (AL), and malignant tumors (MT)

<table>
<thead>
<tr>
<th></th>
<th>PA</th>
<th></th>
<th>AL</th>
<th></th>
<th>MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTP [s]</td>
<td>PI [dB]</td>
<td>TFP [s]</td>
<td>TTP [s]</td>
<td>PI [dB]</td>
<td>TFP [s]</td>
</tr>
<tr>
<td>Tumor</td>
<td>15.69±6.94</td>
<td>7.90±2.30</td>
<td>38.73±12.48</td>
<td>17.12±6.19</td>
<td>9.26±2.03</td>
</tr>
<tr>
<td>SSP</td>
<td>15.09±5.40</td>
<td>6.78±2.36</td>
<td>40.45±14.02</td>
<td>17.28±6.55</td>
<td>6.47±2.34</td>
</tr>
<tr>
<td>p value</td>
<td>.595</td>
<td>.031</td>
<td>.637</td>
<td>.847</td>
<td>.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PA</th>
<th></th>
<th>AL</th>
<th></th>
<th>MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same Feature</td>
<td>hyper-enhancement</td>
<td>identical in identical out</td>
<td>hyper-enhancement</td>
<td>identical in slowly out</td>
<td>hyper-enhancement</td>
</tr>
<tr>
<td>Different Feature</td>
<td>hyper-enhancement</td>
<td>identical in identical out</td>
<td>hyper-enhancement</td>
<td>identical in slowly out</td>
<td>identical out</td>
</tr>
</tbody>
</table>

Figure 3. Time-intensity curves. A, Pleomorphic adenoma showing identical wash-in and wash-out rates compared to the surrounding salivary parenchyma and hyperenhancement; B, Two adenolymphomas, both showing identical wash-in and slower wash-out rates compared to the surrounding salivary parenchyma and hyperenhancement; C, Malignant tumor showing faster wash-in and identical wash-out rates compared to the surrounding salivary parenchyma and hyper-enhancement.
Tumors of the salivary glands by color doppler ultrasonography and CEUS

In this study, there were no significant differences in PSV between pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands. However, Aluffi et al. reported that PSV >30 cm/s was a reminder of malignant tumors in parotid gland. The disparate findings between our study and those previous reports may be explained by the small number of malignant tumors in our sample and our inclusion of tumors of the submandibular gland. Furthermore, results may be confounded as the histological types of malignant tumors vary.

Assessment of the RI may distinguish benign from malignant tumors, with high RIs documented in malignant tumors. Our findings showed that the RI was significantly lower in adenolymphomas compared to pleomorphic adenomas and malignant tumors. However, Badea et al. found that the RI of pleomorphic adenomas was low, and the RI of malignant tumors was high.

Thus, our results with using color Doppler ultrasonography suggest that pleomorphic adenomas are poorly vascularized and showed a high RI, adenolymphomas are well vascularized and have a low RI.

On CEUS, pleomorphic adenomas showed a more heterogeneous enhancement that adenolymphomas, representing their more heterogeneous histopathological structure. Significantly more malignant tumors of the salivary glands presented with ill-defined margins compared to pleomorphic adenomas or adenolymphomas, as malignant tumors are usually characterized by spiculated margins on conventional ultrasonography, and they are invasive to surrounding tissue. The area of enhancement was enlarged in significantly more malignant tumors than pleomorphic adenomas or adenolymphomas, which is similar to the report of Gou et al. Consequently, the specificity and accuracy of CEUS for differential diagnosis of malignant tumors were 89.9%, 87.3%, and 96.6%, 91.5% based on an ill-defined margin and an enlarged enhancement area, respectively.

Most of the pleomorphic adenomas and adenolymphomas were well-defined in our study, and in a previous report Zheng et al. showed that benign salivary gland tumors had clear well-defined margins on magnetic resonance imaging (MRI). Significantly more pleomorphic adenomas showed rim enhancement compared to adenolymphomas or malignant tumors. Enhancement rims are usually associated with a fibrous connective tissue capsule and surrounding compressed adjacent normal parenchyma. In our study, 8 cases of pleomorphic adenomas had incomplete capsules on pathology, so 3 cases of pleomorphic adenomas did not show rim enhancement on subsequent CEUS, and 1 case of pleomorphic adenoma showed invasive biological behavior on pathology and an enlarged enhancement area on CEUS. 4 cases of adenolymphomas were ill-defined, and 1 case of adenolymphoma had an enlarged enhancement area. These anomalies may have been caused by enhancement of an adjacent vessel, lateral acoustic shadowing and tumors being too closed to the probe. Despite of this, CEUS had a high sensitivity of 91.4% when differential diagnosis of pleomorphic adenomas was based on rim enhancement.

CEUS can be used to quantitatively evaluate perfusion characteristics of salivary gland tumors, and has the potential to differentiate parotid gland lesions preoperatively. In this study, the PI of pleomorphic adenomas, adenolymphomas, and malignant tumors was significantly higher than the surrounding salivary parenchyma, all of them presented as hyper enhancing lesions. In contrast, previous studies suggest that the PI of adenolymphomas is higher than pleomorphic adenomas, and that adenolymphomas appear more vascularized than pleomorphic adenomas on CEUS. These dissimilar results may be explained by the different ROIs examined across studies.

Some reports have compared perfusion time in pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands, but to the author’s knowledge, the present study is the first to compare perfusion time in pleomorphic adenomas, adenolymphomas, and malignant tumors to that of the surrounding salivary parenchyma and investigate wash-in and wash-out rates. Malignant tumors tended to fast wash-in compared to surrounding salivary parenchyma, these findings may be explained by the abnormal and chaotic vessel structure in malignant tumor tissue. In adenolymphomas, the wash-out rate was significantly slower than the surrounding salivary parenchyma, possibly due to the rich vessel structure or dense capillaries in these lesions. Based on a diagnostic criterion of slower wash-out rate compared to
surrounding salivary parenchyma, the sensitivity, specificity, and accuracy of CEUS for differential diagnosis of adenolymphomas were 87.5%, 70.2%, and 71.8%, respectively.

However, this study was associated with several limitations. First, the number of malignant tumors was small, due to a low incidence. A larger patient population is required to verify the characteristics of malignant tumors of the salivary glands on color Doppler ultrasonography and CEUS. Second, only one ROI in each tumor was examined. Multiple ROIs in the center and periphery of these tumors should be evaluated in further studies to understand the detailed perfusion characteristics and inform microbubble treatment in salivary gland tumors. Finally, the comparisons between tumors in parotid glands and submandibular glands were not performed.

Conclusions

Color Doppler ultrasonography may have utility in the differential diagnosis of pleomorphic adenomas from adenolymphomas but is limited in its ability to differentiate pleomorphic adenomas and adenolymphomas from malignant tumors. Qualitative and quantitative parameters of CEUS contribute to the differential diagnosis of pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands. These results suggest that diagnostic accuracy of pleomorphic adenomas, adenolymphomas, and malignant tumors in salivary glands can be increased using color Doppler ultrasound and CEUS in combination with a case history and other imaging.

Conflict of Interest

The Authors declare that they have no conflict of interests.

Acknowledgment

The author would like to thank Qiang Zhang from the First Affiliated Hospital of Nanchang University for assistance and insightful comments.

References

13) Drudi FM, Cantiani V, Gnecci M, Malpassini F, Di Leo N, De Felice C. Contrast-enhanced