Antidiabetic drug metformin mitigates ovarian cancer SKOV3 cell growth by triggering G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signaling pathway

Y.-L. FU^{1,2}, Q.-H. ZHANG^{1,2}, X.-W. WANG³, H. HE⁴

Abstract. - OBJECTIVE: Metformin is one of most extensively prescribed oral hypoglycemic drug and has received increased attention is cent times for its antitumorigenic potential my possible mechanisms have been proportionally of metformin to overturn cancer of the in vitro and in vivo. The objective of the prestudy was to evaluate the anticancer activity metformin against ovarian SKO prescribed.

MATERIALS AND METH ncer a ormin tivity and IC50 value of e deter mined by MTT assay. Re species oxy (ROS), mitochondria and effect on cycle re dete d by flow cyression wa imated by tometry. Protein Western blotti

RESULTS: 1 esults cated that metformin M against ovarian exhibited IC50 of SKOV3 icer cell line. rmin also caused nd also prompt-DNA nage in SKOV3 cell -medi d alterations in mitochondrial ed ential. Nonetheless, it triggered men cell cy est of S V3 at G2/M checkpoint. activ PI3K/AKT/mTOR pathway a vita ovarian cancer tumorigeneand chemotherapy resistance. esults showed that metformin significantly expression levels of key proteins of 13К/АктыТОR signaling pathway.

conclusions: We propose that metformin its anticancer activity in SKOV3 cells and may prove beneficial in the management of ovarian cancers.

Key Words:

Ovarian Cancer, mTOR, ROS, Metformin.

roduction

2017: 21: 1169-1175

is one of the most deadly causes f cancer-related deaths across the globe and cheppy remains the cornerstone for its mana-However, despite frequent preliminary responses to chemotherapy, the tumors often relapse. Moreover, there are limited chemotherapeutic agents available for the management of ovarian cancer^{3,4}. So far bevacizumab is the only approved therapy for ovarian cancer for which consistent analytical markers are yet to be established. Furthermore, except for p53 signaling pathway, the PI3K/Akt/mTOR cascade is probably the most recurrently changed signaling pathway in cancer, such as ovarian cancer^{1,5}. Consistent with this, first generation mTOR inhibitors exhibit significant anti-cancer properties and many of these inhibitors have even been approved for the management of different types of cancers, which include, but are not limited to, pancreatic, renal and breast cancers. Additionally, PI3K, Akt together with second-generation inhibitors of mTOR are undergoing clinical trials. Metformin is one of commonly prescribed oral hypoglycemic drugs across the globe⁶. Metformin has attained increased attention in recent times for its possible anticancer activity that is believed to be free of its hypoglycemic activity. Since metformin is already prescribed as hypoglycemic drug, there are limited toxicity-related issues, which are considered as an important aspect of anticancer drug development⁷⁻¹². The current

¹Department of Obstetrics and Gynecology, The Central Hospital of Wuhap Longji Medical College, Huazhong University of Science and Technology, Wuhan, China

²Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Ho. Juhan, Tongji Medical College, Huazhong University of Science and Technology, Valan, C.

³Orthopedics Department, The Third People's Hospital of Hubei Province, Wuhan Province, China

⁴Department of Obstetrics and Gynecology, The Third Affiliate. Hospital of Guangzhou Medical University, Guangzhou, China

study was designed to determine the antitumor activity of metformin against ovarian cancer cells and to investigate its effects on TOR/PI3K/Akt signaling pathway. The present work is so far the only study that reports the anticancer activity of metformin via downregulating the TOR/PI3K/Akt signaling pathway in ovarian cancer cells.

Materials and Methods

Cell Line and Culture Conditions

Ovarian cancer cell line cell SKOV31 was procured from Cancer Research Institute of Beijing, China, and it was maintained in Dulbecco's Modified Eagle's Medium (DMEM) and was supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 µg/ml streptomycin and 100 U/ml penicillin G) in a incubator at 37°C (5% CO₂ and 95% air).

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) Assay

The anti-proliferation effect of metformin on ovarian cancer SKOV3 cells was demonstrated by MTT assay. SKOV31 cells were grown x 10⁶ cells per well in 96-well plates for riod of 12 h and then exposed to 0, 10, 2 40 mM metformin dose for 48 h. To each MTT solution (20 µl) was added. Before the dition of 500 µl of dimethyl s (DMS the medium was complete To solu emov ds, 500 bilize MTT formazan o DMSO were added. ELISA late the determination ptical

Colony Form 16 ssay

For clonogenic assa varian cancer cell line s at the exp ntial growth phase SKOV3 ested and count ith a hemocytowere seeding of the cells was done at 200 cells me ated for a period of 48 h to allow per ttach, 2 then to the cell culture the cel (0) 20 and 40 mM) of metforrent After the treatment, the cells vere a again ke, for incubation for 6 days, the solution designate designation methanol was used to fix colonies. cells were then stained with crystal violet out 30 min before being counted under ligh microscope.

DAPI Staining

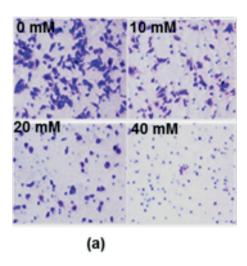
SKOV3 cells/well at a density of 2×10⁵ cells/well were seeded in 6-well plates were admini-

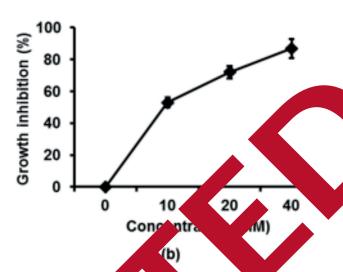
strated with 10 to 40 mM metformin for 48 h. The cells were then subjected to DAPI staining. Afterwards, the cell sample was studied and photographs taken under fluorescence microscopy as previously described¹³.

Determination of ROS and Mitograndina Membrane Potential (MMP)

y of $2 \times$ SKOV3 cells were seeded at a 10⁵ cells/well in a 6-well plan and for 24 h and treated with 0 mM o mM n min for 72 h at 37°C in 5% and 95% and reafter cells from all nples x re collec washed 2 times by Pl suspended in rescein 500 ul of dichlo aihydi cetate (DCFH-DA (μM) for 1 tion and $(DiOC_6)$ (1 3,3'-dihexy cyanine le 7°C in dark room for 30 umol/l) for MMP en examined instantly min. The samples we cytometer as ribed previously in usi li ature¹⁴.

Emation of all Cycle Distribution of G2 Cel


The Lord in 6 well plates (2 x 10⁵ cells/well) and menormin was administrated to the celle doses of 0, 10, 20 and 40 mM followed of incubation. DMSO was used as a control. For estimation DNA content, PBS was used to wash the cells and fixed in ethanol at -20°C. This was followed by re-suspension in phosphate buffered saline (PBS) holding 40 μg/ml propidium iodide (PI) and, RNase A (0.1 mg/ml) and Triton X-100 (0.1%) for 30 min in a dark room at 37°C. Afterwards, analysis was carried out by flow cytometry as reported previously¹⁵.


Western Blotting Analysis

The metformin-administrated cells were harvested and lysed. The protein concentrations of the lysates were quantified by bicinchoninic acid assay (BCA) assay using specific antibodies. β -actin was used as a control. From each sample equal amounts of protein were loaded and separated by electrophoresis on a 12% denaturing SDS gel. Afterwards, the proteins were then electroblotted onto polyvinylidene difluoride membranes (0.45 m pore size).

Statistical Analysis

All experiments were carried out in at least three biological replicates and are expressed as mean \pm standard deviation (SD). Statistical significance was determined using two-way ANOVA

Figure 1. Effect of indicated doses metformin on ovarian cancer cell inhibition a) Crystollet assay (b) owth inhibition curve. All values are mean of three independent replicates ± SD.

and *p*<0.05 was considered as significant using GraphPad Prism Ver. 5.01 (GraphPad Software Inc., La Jolla, CA, USA).

Results

Anti-proliferative Potential of Metfori on SKOV3 Cell Line

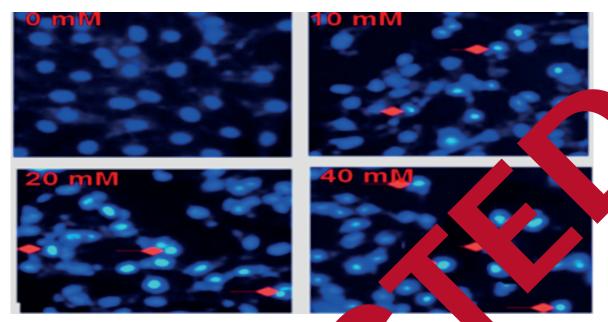
To identify the anti-prolifera f mett min on ovarian cancer SK he cel concent on range were treated with metfor 0-40 mM for 48 h. Met for anti-proliferative ef agains *i*th colony foran IC₅₀ of 20 ml gure 1a). I mation assay, d that met n treated cells reduced the number colonies in a dose-dependent mer (Figure

Me rmin Prompted DNA Damage in 3 arian Çancer Cells

The vere sept ted from metformin and dan, was aluated by DAPI staining. Esults it and that metformin caused DNA dange in a dise-dependently as evident from the greater density of white color deler course 2).

formin Triggers ROS Production in Ovarian Cancer SKOV3 Cells

The potential of metformin to cause DNA damage observed through 4',6-diamidino-2-phenylindole (DAPI) staining suggested that metformin might induce generation of in-


tr ellular ROS. Therefore, we calculated the F S level at varied concentrations of metform for 48 h. The results showed that the intraction lar ROS evels of treated cells increased up to the second compared to untreated cells. Figure 3a). Our result suggested that metforapotent molecule for activating ROS in cells.

Metformin Reduces the Mitochondrial Membrane Potential (MMP)

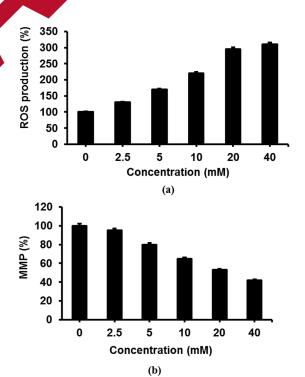
ROS generation is related to mitochondrial dysfunction. It disrupts the outer mitochondrial potential to release the death-promoting proteins¹⁶. Therefore, we examined whether metformin reduces the MMP in SKOV3 cells treated with metformin at varied concentrations (0-40 mM). Metformin treated SKOV3 cells showed a significant reduction in MMP in a dose-dependent manner. The MMP reduced up to 58 % at 40 mM of metformin as compared to untreated control (Figure 3b).

Metformin Caused Alterations in Cell Cycle Distribution of Ovarian Cancer SKOV3 Cancer Cell Line

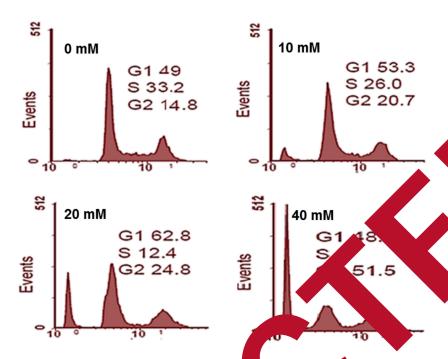
It was observed that the percentage of SKOV3 cells was considerably increased in G2 at the concentrations of 0 to 40 mM concentrations of metformin causing cell arrest at G2/M checkpoint. After 48 h of treatment, cells in the G2/M population increased from 14.8% in control to 51.5% at 40 mM concentration (Figure 4). Additionally, the populations of SKOV3 cells in G2 phase

Figure 2. Effect of indicated doses of metformin on DNA damage projected by DAPI staining the images are representatives of three biological replicates.

were marginally increased at a dose of 10 reasonably increased at 20 mM, and dram increased at 40 mM. This metformin -induce phase increase of SKOV3 cancer cells was oved to exhibit a dose-dependent pattern.


Metformin Acid Targets TOK SK/Akt Signaling Pathway

The m-TOR/PI3K is one of the main anally er metforin cancer cells confirm min could mg protein e sions of ng pathway Western m-TOR/PI3K/Akt sig rmine the expresblotting carried to afferent proteins h as P13, AKT and OR. The findings are shown in Figure 5 in deresting outcome. Compared to d contro ells, metformin-treated the un sho ntration-dependent down-R and pm-TOR proteins. It ation & showed a wnregulation of PI3K/Akt prossions. Thus it may be concluded min induces anticancer partly via TOR/PI3K/Akt signaling pathway.


Discussion

Ovarian cancer is among the deadly reasons of gynecological cancer deaths around the glo-

be. Deminary responses to chemotheapy, the tumors consistently relapse. Metfor-

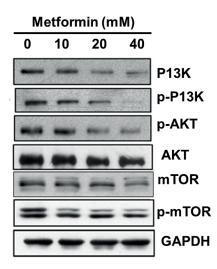


Figure 3. Effect of indicated doses metformin on (a) Mitochondrial membrane potential (b) ROS generation. All values are mean of three independent replicates \pm SD.

Figure 4. Effect of indicated doses metformin on Cell cycle arrest the results are resul

min is extensively prescribed oral hypogle drug and has recently received attention antitumorigenic activity. Metformin sh potential growth inhibition activity aga IT ass SKOV3 cells as evident from As reported previously, exhib antiproliferative effects inducti of apop tosis. For instance, n¹⁷⁻²³ drugs, such as cisr to alter explicit totic path and cause DNA damage ess wheth etformin we carried induces DNA damas SKOV3, out the D staining of reated cells. It was that metformin in es DNA damage ocentration dependent manner. Further, it v d that metformin treated cel-Is disp ROS-m ated MMP reduction²². efore suggest that metformin damage through increasing induce cellular K S and reduction in MMP. Our in in agreement with studies wherein -cancer drugs have been reported to get cancer cells partly by accretion of high of ROS²⁴. Moreover, mitochondria play a key role in ROS²⁵. For example, capsaicin disrupts MMP and mediates oxidative stress resulting in apoptosis in pancreatic cancer cells²⁶. Flow cytometry using propidium iodide as a probe was used to study effects of metformin of cell cycle progression. Metformin induced cell cycle arrest and led to a significant of cells in G2 phase dose dependently. These findings are promising since it is well established that ovarian cancer is one of the most lethal cancers and metformin could inhibit this behavior²⁷. Finally, effects of metformin

Figure 5. Western blots showing effect of indicated doses of metformin on protein expression of m-TOR/PI3K/Akt signaling pathway proteins. The images are representatives of three biological replicates.

on the expression levels of various proteins including m-TOR, pm-TOR, PI3K, p-PI3K and Akt were studied using Western blot assay. Results showed metformin-treated cells revealed a concentration-dependent downregulation of m-TOR and pm-TOR proteins. It also caused downregulation of PI3K/Akt protein expressions. It has been reported that activation of the PI3K/AKT/mTOR pathway plays a vital role in ovarian cancer tumorigenesis, progression and chemotherapy resistance. Therefore, inhibitory effect of metformin on this pathway may prove crucial in the treatment of ovarian cancers.

Conclusions

Metformin may prove a potential candidate for the treatment of ovarian cancer by controlling m-TOR/PI3K/Akt signaling pathway. Since limited drug options available for ovarian cancer and metformin have limited toxicity, it seems a strong option for treatment of ovarian cancer and deserves further research endeavors.

Conflict of interest

The authors declare no conflicts of interest.

Referen

- 1) LEARY A, AUCLIN E, PATIER MARKINTOR pathway and oval care. See all rationale and the apeutic opposities. Ovarian Cancer-A Clinical distribution atia. In Technology 302.
- 2) CANCER ENOME ATLAS SCH NETWORK. Integrated general analyses of carcinoma. Nature 26 474: 609-615.
- 3) Testa JR. Perturbations of the AKT line whway in human cancer. Oncology 455-746
- ENGEL 1. Tartung PI3K signalling in cancer: pportuge allenges and limitations. Nat Revancer 2005. 550-562.
- YANG P, CHEN J, Mu LH, Du QH, Niu XH, ZHANG MY.
 Inhibits invasion and enhances paclitaxer-in acced apoptosis in ovarian cancer cells through the suppression of the transcription factor slug.
 Fur Rev Med Pharmacol Sci 2013; 17: 1722-1729.
- 6), [No AUTHORS LISTED]. United Kingdom prospective diabetes study (UKPDS) 13: relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. Br Med J 1995; 310: 83-88.

- KOURELIS TV, SIEGEL RD. Metformin and cancer: new applications for an old drug. Med Oncol 2012; 29: 1314-1327.
- 8) DIAMANTI-KANDARAKIS E, ECONOMOU F, PALIMERI S, CHRISTAKOU C. Metformin in polycystic ovary syndrome. Ann N Y Acad Sci 2010; 1205: 192-198.
- 9) BIANCHI C, PENNO G, ROMERO F, DEL PRATO R. Treating the metabolic syndrome. For the Candiovasc Ther 2007; 5: 491-506.
- 10) DIABETES PREVENTION PROGRAM RESERVED FROUP. Reduction in the incidence of type 2 tes with lifestyle intervention or more min. N Med 2002; 346: 393-403.
- 11) SHIKHMAN AR, LEBEDT A. [Inhibiting effection phenformin (phenetic quart on the ground of Ehrlich carcinoma]. Onkolor 1981; 27: 67-69.
- 12) COHEN MH (12 to S BL. Enhance of the antitumor eff (2) the bis (2-Chlore 1)-1-Nitrosourea (BC-VU) by anylethylbiguanide (Phenformin) Oncology 19 (257-259).
- HAIL N, JR LO, Apoptosis as a novel carget for cancer chemo, evention. J Natl Cancer Inst 2004; 96: 662-672.
- THIANG JH, Y, JS, Ma CY, YANG MD, HUANG HY, A TC, KUO, Wu PP, LEE TH, CHUNG JG. Danan are aquinone derivative, induces DNA dan caspase cascades-mediated apoptosis in SNU-1 human gastric cancer cells throumitochondrial permeability transition pores Jax-triggered pathways. Chem Res Toxicol 201; 24: 20-29.
- CHIANG LC, NG LT, LIN IC, KUO PL, LIN CC. Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells. Cancer Lett 2006; 237: 207-214.
- 16) Munagala R, Kausar H, Munjal C, Gupta RC. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 2011; 32: 1697-1705.
- 17) MAITRA R, PORTER MA, HUANG S, GILMOUR BP. Inhibition of NFkappaB by the natural product Withaferin A in cellular models of cystic fibrosis inflammation. J Inflamm (Lond) 2009; 6: 15.
- HISSIN PJ, HILF R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 1976; 74: 214-226.
- CHIPUK JE, BOUCHIER-HAYES L, GREEN DR. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 2006; 13: 1396-1402.
- 20) AZUMA M, TAMATANI T, ASHIDA Y, TAKASHIMA R, HARA-DA K, SATO M. Cisplatin induces apoptosis in oral squamous carcinoma cells by the mitochondria-mediated but not theNF-kappaB-suppressed pathway. Oral Oncol 2003; 39: 282-289.
- YONEDA K, YAMAMOTO T, OSAKI T. p53- and p21-independent apoptosis of squamous cell carcinoma

- cells induced by 5-fluorouracil and radiation. Oral Oncol 1998; 34: 529-537.
- ABAL M, ANDREU JM, BARASOAIN I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Tar 2003; 3: 193-203.
- 23) Ferreira CG, Epping M, Kruyt FA, GIACCONE G. Apoptosis target of cancer therapy. Clin Cancer Res 2002; 8: 2024-2034.
- 24) MALAGUARNERA, L. Implications of apoptosis regulators in tumorigenesis. Cancer Metastasis Rev 2004; 23: 367-387.
- 25) DING H, HAN C, GUO D, CHIN YW, DINGY, KINGHORN AD, D'AMBROSIO SM. Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS-mediated mechanism. Nutr Cancer 2009; 61: 348-356.
- 26) Kowaltowski AJ, DE SOUZA-PINTO NC, CASTILHO RE, Vercesi AE. Mitochondria and reactive oxycles. Free Radic Biol Med 2009; 47: 3 43.
- 27) YAN HC, FANG LS, Xu J, Qiu YY, Lin HUANG HX, HAN QY. The identification of the regical characteristics of human ovarian cancer of cells. Eur Rev Med Pharmacol Sci. 14; 18: 3503.