Correlations of mouse lymphoma xenografts with the expressions of MMP-9 and Bcl-2

C.-L. SHI, X.-Y. ZHANG, Y. LI, L.-L. SONG, L. WANG

Department of Hematology, Qingdao Center Hospital, Qingdao, Shandong, P.R. China

Abstract. – OBJECTIVE: To establish a mouse lymphoma xenograft model so as to investigate the correlation between the expression of matrix metalloproteinase-9 (MMP-9) and that of B-cell lymphoma 2 (Bcl-2) in lymphomas.

MATERIALS AND METHODS: Diffuse large Bcl (DLBCL) cells were cultured, and a mouse lymphoma xenograft model was established via the subcutaneous injection. Mouse lymphoma tissues were extracted, and the expressions of MMP-9 and Bcl-2 messenger ribonucleic acids (mRNAs) in the xenograft tumor were detected using Real-time polymerase chain reaction (PCR). Immunohistochemistry was used to detect the expression levels of MMP-9 and Bcl-2 proteins in lymphoma tissues and tumor-adjacent tissues. The consistency of MMP-9 expression and Bcl-2 expression was analyzed via Spearman’s rank correlation analysis.

RESULTS: The expressions of MMP-9 and Bcl-2 in lymphoma tissues were increased. The expression levels of MMP-9 and Bcl-2 proteins in lymphoma tissues were higher than those in tumor-adjacent tissues. The expression levels of MMP-9 and Bcl-2 were correlated with the body weight loss degree of mice, and the expression of MMP-9 was positively associated with that of BCL-2 in lymphomas.

CONCLUSIONS: MMP-9 and Bcl-2 are associated with the onset of DLBCL, and they are potential impact factors affecting the prognosis.

Key Words: Lymphoma, MMP-9, Bcl-2.

Introduction

Human malignant Non-Hodgkin's Lymphoma (NHL) is a heterogeneous tumor with a significant difference between clinical and pathophysiological manifestations. In recent years, the incidence rate of NHL has been increased year by year, especially for the aggressive and highly aggressive NHL1. Diffuse large b-cell lymphoma (DLBCL) is the most common NHL in the Western Hemisphere and China. According to the Revised European American Lymphoma (REAL) and the World Health Organization (WHO) classifications, DLBCL accounts for about 30-40% of adult NHL cases3. The histopathological type, location, stage and other prognostic factors of lymphomas are the basis for developing individualized treatment regimens for patients5. At present, R-CHOP regimen is taken as the treatment standard for patients with DLBCL, and the cure rate is about 70%. However, R-CHOP-based regimens do not result in satisfactory curative effects for about 40% of patients. The manageability of DLBCL has been influenced by risk factors including age, high international prognostic index (IPI), nongerminatal centromere phenotype, and dual-invasive and dual-protein expression variations5-7. DLBCL is characterized by different pathological subtypes, morphological changes and gene expression profiles. In tissues, there are no abnormally expressed apoptosis inhibitors and proliferation promoting factors. In clinical manifestations, genetic findings, responses to treatments and prognosis, DLBCL has no specific molecular targets. The application of gene expression profiling (GEP) in the study on DLBCL is an important progress in recent years. It further clarifies the heterogeneity of tumors and provides a theoretical basis for grouping patients. Currently, DLBCL cases are divided into germinal center B-cell like (GCB) and activated B-cell like (ABC) subtypes based on their cellular origins in the most prevalent system, yet about 10-15% of cases are unclassified8,9. Therefore, finding an effective driver and prognostic factor for DLBCL is of extremely important significance for the design of a precise medical solution.

Matrix metalloproteinases (MMPs) are a group of zinc and calcium-dependent endotheinins that play a crucial role in the degradation of extracellular matrix collagens. MMPs and their tissue inhibitors of metalloproteinases (TIMPs) play important roles in the pathophysiology and
Correlations of mouse lymphoma xenografts with the expressions of MMP-9 and Bcl-2

clinical manifestations of human NHL. Among them, MMP-9 and TIMP-1 are the most important members of the MMP and TIMP families, and their overexpression is associated with poor clinical outcomes in NHL patients. Studies have shown that the high invasiveness and metastasis of NHL cells may be related to the expressions of MMP-9 and MMP-2 by NHL cells, the degradation of the extracellular matrix and basement membrane, and the assistance in the tumor cell diffusion to the extracellular matrix at the primary site. However, whether MMP-9 and MMP-2 are potential targets for the treatment of NHL remains to be further studied.

Bcl-2 is one of the most important oncogenes in the study on apoptosis. The intracellular apoptotic pathway is mediated by the Bcl-2 family proteins. Proteins in the Bcl-2 family control cell death primarily through the direct binding, and regulate mitochondrial outer membrane permeabilization (MOMP), thus leading to the irreversible release of space proteins in the membrane, which in turn activates apoptotic processes. The affinity and relative abundance of Bcl-2 family proteins determine the dominant roles in regulating the anti-apoptotic and pro-apoptotic Bcl-2 family proteins that regulate MOMP. Disorders in these proteins not only impair normal development, but also lead to tumor development and drug resistance. Although there are a large number of reports on the expressions of MMP-9 and Bcl-2 in various malignant tumors and their relationships with the occurrence, development and invasion of the tumor, the current research on them in NHL is rare. In this study, the expression levels of MMP-9 and Bcl-2 in DLBCL were studied by establishing a mouse lymphoma xenograft model, and the possible related mechanisms of their influences on the occurrence, treatment and prognosis of DLBCL were explored, thus providing bases for their clinical applications in lymphomas so as to bring greater survival benefits to patients.

Materials and Methods

Cell Culture

DLBCL cell line SU-DHL-4 cells were purchased from the Cell Bank of Chinese Academy of Sciences (Wuhan, China), cultured in Roswell Park Memorial Institute (RPMI)-1640 medium containing 10% fetal bovine serum (FBS), and supplemented with 100 μg/ml streptomycin and 100 IU/ml penicillin. Cell culture flasks were placed in an incubator with 5% CO$_2$ and 95% humidity at 37°C.

Feeding, Processing and Grouping of Animals

Female severe combined immunodeficiency (SCID) mice aged 6-8 weeks old with the uniform body weight were purchased from Shanghai SLAC Laboratory Animal Co., Ltd., Chinese Academy of Sciences (Shanghai, China). The mice were fed in an animal laminar flow room with barrier facilities at the feeding temperature of 25-26°C, the daily temperature difference of 2°C and the relative humidity of 40-60%. Artificial lamination was adopted indoor, and the feed was sterilized. One week later, the mice were randomly divided into the lymphoma group (n=12) and the control group (n=12). This study was approved by the Animal Ethics Committee of Qingdao Center Hospital (Qingdao, China).

Establishment of a Mouse Lymphoma Xenograft Model

DLBCL cell line SU-DHL-4 cells were cultured, and cells in the logarithmic growth phase were taken after passage and amplification. The cell density was adjusted to 6×106 mL, and the cells were collected by centrifugation and resuspended using serum-free Roswell Park Memorial Institute (RPMI)-1640 medium. 0.2 mL cell suspension was injected subcutaneously into the back of mice. The long and short diameters of the tumor were measured once every 3 days, and the volume was calculated. After the volume reached 150 mm3, the cells were used for subsequent experiments.

Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Gene sequences of the target gene and β-actin were obtained by GenBank. The design software Primer-Blast on the National Center for the Biotechnology Information (NCBI) website was applied for designing primers. The primers were synthesized by Sangon Biotech Service Co., Ltd., (Shanghai, China). The specific primer sequences are as follows: Bcl-2: forward: 5’-AGGAGCAG-GTGCCCTACAAGA-3’ and reverse: 5’-GCATT-TCCCACCACACTGTCT-3’, and MMP-9: forward: 5’-GCTGGACTCGGTCTTTGAGGATC-3’ and reverse: 5’-TTAGAGCCTTCTTGACTGA-TGG-3’. The reaction system was 25 μL and the reaction conditions are as follows: pre-denaturation at 95°C for 2 min, followed by 40 cycles, including 95°C for 20 s and sequential reaction at
60°C for 60 s. After template denaturation, annealing, primer extension and other stages, deoxyribonucleic acids (DNAs) were synthesized into the single-stranded chain complementary to the template chain, and the semi-retained replication could magnify genes to be amplified millions of times. After the reaction, the melting curve was a single peak curve, indicating the specificity of qPCR products. After the amplification of genes was complete, the amplification curve reached the plateau. The relative messenger ribonucleic acid (mRNA) expression level was calculated as follows: \(2^{-\Delta Ct} \) \(\Delta Ct = Ct (\beta\text{-actin}) \), and the fold change in different treatments was calculated using \(2^{-\Delta\Delta CT} \) where \(\Delta\Delta CT = \Delta CT \) (experimental group) - \(\Delta CT \) (control group).

Detection via Western Blotting

Mouse lymphoma tissues were sheared and homogenized, and then the lysate was added, followed by centrifugation at 20,000 g in ice for 30 min at 4°C. The total protein concentration was determined using the bicinchoninic acid assay (BCA) Protein Assay Kit (Pierce Biotechnology, Waltham, MA, USA). Next, the samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and membranes were transferred onto a polyvinylidene difluoride (PVDF) membrane. Next, bands were incubated with Bcl-2 monoclonal antibody, MMP-9 monoclonal antibody and rabbit primary antibody glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (diluted at 1:2,000, Article No.: sc-32233, Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C, respectively. After that, the bands were incubated with horseradish peroxidase (HRP)-conjugated secondary antibody (Shanghai Yinhai Biotechnology Co., Ltd., Shanghai, China) after washing for 1 h, and the band images of the enhanced chemiluminescence (ECL) mixture was obtained via fluorescence imaging technique.

Immunohistochemistry

Lymphoma tissues and the corresponding tumor-adjacent normal tissues were fixed with formaldehyde and embedded in paraffin. Bcl-2 monoclonal antibody (purchased from Abcam, Cambridge, MA, USA, diluted at 1:200) and MMP-9 monoclonal antibody (purchased from Zhongshan Biotech Co., Ltd., Zhongshan, Guangdong, China, diluted at 1:200) were stained using immunohistochemical streptavidin-peroxidase (SP) method. Positive control: the detection showed that tissues containing test antigens could be strongly positively expressed according to the official websites of Abcam (Cambridge, MA, USA) and Zhongshan Biotech Co., Ltd., (Zhongshan, Guangdong, China). Negative control: the primary antibody was replaced by phosphate-buffered saline (PBS) solution, and the results were negative. Positive signals were yellow, pale brown or medium brown. Five high-magnification fields (10×40) were randomly observed under an electron microscope. The proportion of positive cells with yellow, brown or tan signals and the intensity of signals were taken as criteria for determination.

Statistical Analysis

Statistical Product and Service Solutions (SPSS) 22.0 (IBM, Armonk, NY, USA) was used for statistical analysis. All test methods were bi-sected, and \(p<0.05 \) represented that the difference was statistically significant.

Results

Establishment of a Mouse Lymphoma Xenograft Model

Two weeks after the injection of SU-DHL-4 cells, mice gradually developed a stagnant body weight gain and showed states of emaciation, energielos, vertical hair and sluggish activity. At 10.7 (9.5±11.2) days after injection, the mice suffered from paralysis of both hindlimbs, so they had to crawl relying on the forelimbs on both sides. Their emaciation was obvious, the average body weight was decreased to (15.1±0.7) g, and they died at about 7.5 days after paralysis. After the onset, the mice were sacrificed and dissected, and the infiltration appeared in a large number of lymphoma cells in the mice bone marrow (Figure 1).

Detection of the Expression Levels of MMP-9 and Bcl-2 in Xenografts by Reverse Transcription (RT)-PCR

The mRNA levels of MMP-9 and BCL-2 in tumor tissues of lymphoma mice and control mice were quantitatively detected via RT-PCR. The results revealed that the mRNA levels of MMP-9 and Bcl-2 in the lymphoma group were significantly increased compared with those in the control group \((p<0.05) \), and the differences in the mean value were 4.75 times and 2.09 times, respectively \((p<0.05) \) (Figure 2).
Correlations of mouse lymphoma xenografts with the expressions of MMP-9 and Bcl-2

Detection of the Expression Levels of MMP-9 and Bcl-2 Proteins Using Immunohistochemistry

MMP-9 and Bcl-2 were all expressed in the cytoplasm, manifested as yellow, pale brown or medium brown signals. In the lymphoma group, MMP-9 was highly expressed in the paraffin-embedded tissue sections in 9 out of 12 cases, with a positive rate of 75%. In the control group, MMP-9 was highly expressed in the paraffin-embedded tissue sections in 1 out of 12 cases, with a positive rate of 8.3% (Table I). In the lymphoma group, Bcl-2 was highly expressed in paraffin-embedded tissue sections in 2 out of 12 cases, with a positive rate of 66.7%. In the control group, Bcl-2 was highly expressed in the paraffin-embedded tissue sections in 1 out of 12 cases, with a positive rate of 16.7% (Table II). Wilcoxon rank-sum test demonstrated that the differences in the expressions of MMP-9 and Bcl-2 in lymphoma tissues and tumor-adjacent tissues were statistically significant (Figure 3).

Correlations of MMP-9 and Bcl-2 with the Body Weight of Mice

The expression levels of MMP-9 and Bcl-2 were correlated with the degree of body weight

Table I. Expression levels of MMP-9 protein in lymphoma tissues and tumor-adjacent tissues.

<table>
<thead>
<tr>
<th>MMP-9 protein expression</th>
<th>Low expression [n (%)]</th>
<th>High expression [n (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoma tissues</td>
<td>3 (25)</td>
<td>9 (75)</td>
<td>0.011</td>
</tr>
<tr>
<td>Tumor-adjacent tissues</td>
<td>11 (91.7)</td>
<td>1 (8.3)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Table II. Expression levels of Bcl-2 protein in lymphoma tissues and tumor-adjacent tissues.

<table>
<thead>
<tr>
<th>Bcl-2 protein expression</th>
<th>Low expression [n (%)]</th>
<th>High expression [n (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoma tissues</td>
<td>4 (33.3)</td>
<td>8 (66.7)</td>
<td>0.003</td>
</tr>
<tr>
<td>Tumor-adjacent tissues</td>
<td>10 (83.3)</td>
<td>2 (16.7)</td>
<td></td>
</tr>
</tbody>
</table>
loss in mice. The body weight loss of mice with the high expressions of MMP-9 and Bcl-2 was faster than that of mice with the low expressions of MMP-9 and Bcl-2. Besides, the body weight loss was the most obvious in mice at about 10 days after the injection of tumor cells (Figure 4).

Figure 2. The expression levels of MMP-9 and Bcl-2 in the lymphoma group and the control group.

Figure 3. Low and high expressions of MMP-9 and Bcl-2 proteins in lymphoma tissues.

Correlation Between MMP-9 Expression and Bcl-2 Expression in the Body of Lymphoma

Spearman’s rank correlation analysis showed that there was a good consistency and a positive correlation between MMP-9 expression and BCL-2 expression ($r=0.472, p=0.001$) (Table III).
Correlations of mouse lymphoma xenografts with the expressions of MMP-9 and Bcl-2

Discussion

A large number of genetic mutations in DLBCL are of values, including mutations of MYD88, XCR4, EZH2, CD79A, CD79B and CARD11. These genes are of important significance for the diagnosis of DLBCL and are instructive in the use of novel targeted drug therapies. MMPs are a family of highly conserved zinc-dependent endoproteolytic enzymes that can degrade most of the proteins on the basement membrane and extracellular matrix. In general, all types of MMPs share the following characteristics: 1) a zinc atom is structurally located at the active center of enzymes; 2) MMPs are often synthesized as inactive zymogens, and can become active proteinases after about 80 amino acids at the N-terminal are cleaved; 3) the primary structure often includes two highly conserved regions, namely, the N-terminal propeptide region and the middle of the catalytic structural domain, and the C-terminal structural domain varies greatly; 4) the enzyme activity can be exclusively inhibited by tissue inhibitor of metalloproteinase (TIMP). Studies have confirmed the important roles of the MMP family in solid tumors such as gastric cancer, breast cancer and bladder cancer, which has been considered as a new indicator for invasion, metastasis and prognosis. However, the value of MMP-9 in the lymphoma research field, especially in DLBCL, still needs to be further explored. It was found in this study through the establishment of a mouse lymphoma xenograft model that the expression of MMP-9 was associated with the occurrence and development of lymphomas, thus providing a theoretical basis for follow-up studies.

In the development of malignant tumors, impaired apoptosis plays a central role in understanding the antagonism of Bcl-2 protein family on apoptosis and its structure. Combating a variety of pro-life members by mimicking their natural inhibitors is of great importance for the development of new anticancer drugs. Nearly 30 years ago, it was realized for the first time that anti-apoptotic Bcl-2 not only prevents malignant cells from apoptosis, but also prevents the apoptosis of normal cell lines. This important observation has evolved from simply identifying new members of the Bcl-2 family to understanding how their biochemical reactions trigger the process of cell death and the pharmacological inhibition of anti-apoptotic Bcl-2 function in the disease.

In this report, the mouse lymphoma xenograft model revealed that the expression of Bcl-2 was closely related to the development of lymphomas and was consistent with the expression of MMP-9. This will lay the

Table III. Correlation between MMP-9 expression and Bcl-2 expression in lymphoma tissues and normal tissues.

<table>
<thead>
<tr>
<th>MMP-9</th>
<th>Low expression</th>
<th>High expression</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2 Low expression</td>
<td>7</td>
<td>4</td>
<td>0.472</td>
<td>0.001</td>
</tr>
<tr>
<td>Bcl-2 High expression</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 4](image-url). Correlations of the expression levels of MMP-9 and Bcl-2 with the body weight of mice.
foundation for further exploring how the two factors interact and participate in the occurrence and development of DLBCL.

Conclusions

The discovery and exploration of the driving factors and prognostic factors of lymphomas is the hotspot and difficulty of the current study. The results of this study will provide evidence for follow-up studies in this field and provide new insights into the molecular biology of NHL. MMP-9 and Bcl-2, as new targets for the treatment and efficacy prediction of DLBCL, have potential clinical significance.

Conflict of Interest

The Authors declare that they have no conflict of interest.

Funding

This work was funded by the program “The impact of pre-transplantation PET/CT on non-Hodgkin lymphoma patients undergoing autologous stem cell transplantation” (2013WS0022).

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

CS wrote the manuscript and helped with cell culture. XZ feed and treated the mice. YL established mouse lymphoma xenograft model. LS performed qPCR. LW was responsible for Western blotting. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of Qingdao Center Hospital (Qingdao, China).

References

Correlations of mouse lymphoma xenografts with the expressions of MMP-9 and Bcl-2

17) Chopra A. Cy5.5-Containing matrix metalloproteinase (MMP) activatable peptide conjugated to glycol chitosan (GC)-coated gold nanoparticles (AuNPs). Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013. 2012 Mar 06 [updated 2012 Apr 12].

