
European Review for Medical and Pharmacological Sciences

1364

Abstract. – OBJECTIVE: A combination of com-
parative analysis of gene expression profiles be-
tween normal tissue samples and small cell lung
cancer (SCLC) samples and network analysis was
performed to identify key genes in SCLC.

MATERIALS AND METHODS: Microarray data
set GSE43346 was downloaded from Gene Ex-
pression Omnibus (GEO), including 42 normal tis-
sue samples and 23 clinical SCLC samples. Differ-
entially expressed genes (DEGs) were screened
out with t-test. Coexpression network and gene
regulatory network were then constructed for the
DEGs. GO enrichment analysis as well as KEGG
pathway were performed with DAVID online tools
to reveal over-represented biological processes.

RESULTS: A total of 457 DEGs were obtained in
SCLC, 259 up-regulated and 198 down-regulated.
Some of them exhibited enzyme inhibitor activity
and chemokine activity. A coexpression network
including 457 nodes was constructed, from which
a functional module was extracted. Genes in the
modules were closely related with cell cycle. Top
10 nodes in the regulatory network were acquired
and their sub-networks were extracted from the
whole network. Genes in these sub-networks were
related to cell cycle, apoptosis and transcription.
A network comprising 43 microRNAs (miRNAs)
and their target genes (also DEGs) were also con-
structed. Regulation of cell proliferation, cell cycle
and regulation of programmed cell death were
over-represented in these genes.

CONCLUSIONS: A range of DEGs were re-
vealed in SCLC, which could enhance the under-
standings about the pathogenesis of this dis-
ease and provide potential molecular targets for
diagnosis as well as treatment.

Key Words:
Small cell lung cancer, Microarray data, Differential-

ly expressed genes, Functional enrichment analysis,
Co-expression network, Gene regulatory network.

Introduction

Small cell lung cancer (SCLC) is an aggres-
sive form of lung cancer that is strongly associat-
ed with cigarette smoking1. It grows quickly and
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often metastasizes to other parts of the body, in-
cluding the brain, liver, and bone. Because of the
high propensity of SCLC to metastasize early,
surgery has a limited role as primary therapy. Al-
though the disease is highly sensitive to
chemotherapy and radiation, cure is difficult to
achieve2.

Microarray technology is a useful tool to glob-
ally investigate the alterations in gene expression
during tumorigenesis. Bhattacharjee et al3 report
that integration of expression profile data with
clinical parameters could aid in diagnosis of lung
cancer patients. The study by Beer et al4 shows
that gene-expression profiles based on microarray
analysis can be used to predict patient survival in
early-stage lung adenocarcinomas. Lu et al5 also
report a gene expression signature that can predict
survival of patients with stage I non-small cell
lung cancer. Identification of deregulated path-
ways not only advances the understandings about
the pathogenesis of cancer, but also serves as a
guide to targeted therapies6. Using this technolo-
gy, Kim et al7 reveal the altered apoptotic balance
in SCLC and suggest that MYC family genes
might affect oncogenesis through distinct sets of
targets. Radioresistance is a big challenge in treat-
ment of cancers. Guo et al8 carry out a microarray
analysis to identify differentially expressed genes
(DEGs) contributing to radioresistance in lung
cancer cells. Bangur et al9 adopt a combination of
suppression subtractive hybridization and cDNA
microarray to discover differentially over-ex-
pressed genes in SCLC.

Several potential diagnostic and therapeutic
targets have been uncovered. Kijima et al10 report
that CXCR4 and c-Kit mediate the regulation of
cellular proliferation, cytoskeletal function, and
signal transduction in SCLC. Takamizawa et al11
find that reduced expression of the let-7 microR-
NAs is associated with shortened postoperative
survival. Tang et al12 find that EPHB subgroup
receptor kinases may modulate the biological be-
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havior of SCLC through autocrine and/or jux-
tacrine activation by ephrin-B ligands.

In order to better understand this disease and
improve the outcomes of patients, more research-
es are necessary. Therefore, in this study, a com-
parative analysis of transcriptome between nor-
mal tissue samples and SCLC samples was per-
formed, combined with network analysis and
functional enrichment analysis, to identify im-
portant biological pathways as well as key genes
disturbed in SCLC.

Materials and Methods

Gene Expression Profiles
Microarray data set GSE43346 was down-

loaded from Gene Expression Omnibus (GEO)13,
including 42 normal tissue samples [whole brain
(cerebral cortex, hippocampus, diencephalon,
pons, hypothalamus, cerebellum), skeletal muscle,
heart, skin, tongue, esophagus, stomach, small in-
testine, colon, pancreas, liver, gallbladder, kidney,
adrenal gland, bladder, salivary glands, tonsils,
thyroid, thymus, trachea, lung, spleen, lymph
nodes, adipose artery, vein, bone marrow, periph-
eral blood, monocytes, macrophages, testis,
prostate, seminal vesicle, breast, uterus, ovary]
and 23 clinical SCLC samples. The platform was
Affymetrix Human Genome U133 Plus 2.0 Array.
Annotation file was also acquired.

Raw Data Pretreatment and
Screening of DEGs

Original CEL format was converted into ex-
pression matrix using function rma from package
affy14. Probes were mapped to genes according to
the annotation file with R. Average expression
level was calculated for the probes corresponding
to the same gene.

DEGs between normal tissue samples from
non-SCLC individuals were removed through
the goodness of fit test. If a gene was not differ-
entially expressed, it should subject to the aver-
age distribution. We checked whether the statis-
tic T subject to the chi-square distribution with
degree of k-1 (k=42). Xi was the expression
level of a gene in tissue i. p value < 0.05 was set
as the cut-off.

Package limma was adopted for the differen-
tial analysis. |logFC| (fold change) >1.5 and p
value < 0.05 were set as the criteria to screen out
DEGs between normal tissue samples and SCLC
samples.

Bioinformatic Analysis on the DEGs
GO (Gene Ontology) enrichment analysis and

KEGG (kyoto encyclopedia of genes and
genomes) pathway enrichment analysis were per-
formed for the DEGs using the DAVID (data-
base for annotation, visualization, and integrated
discovery) online tools15.

Previous study has indicated that genes shar-
ing the same pathway or similar biological func-
tions show similar gene expression pattern under
same physical conditions16. Therefore, construct-
ing the gene coexpression network could help to
identify gene sets implicated in specific path-
ways or biological processes. In this study, Pear-
son correlation coefficient was used as a measure
of gene coexpression. Coexpression with the co-
efficient > 0.85 and p value < 0.05 was retained.

With information from USUC (a database of
transcription factors)17 and miRBase (a database
of miRNAs)18, regulatory relationships between
the DEGs and these factors were filtered out and
then networks were constructed. Modules in the
whole network were mined with MCODE from
Cytoscape19 and then functional enrichment analy-
sis was applied on the genes in the modules.

Results

DEGs in SCLC
A total of 19944 gene expression values were

obtained from 65 samples after raw data pre-
treatment. Gene expression data before and af-
ter normalization are shown in Figure 1 which
presented a good performance of normalization
(Figure 1).

No DEGs were detected among normal tissue
samples from non-SCLC individuals according
to the goodness of fit test. A total of 457 DEGs
were revealed by comparing 42 gene expression
profiles from normal tissue and 23 profiles from
SCLC, 259 up-regulated and 198 down-regulated
in SCLC. Heat map for expression of DEGs
across samples is shown in Figure 2.

Functional Enrichment Analysis Results
GO enrichment analysis and KEGG pathway

enrichment analysis were performed for the DEGs
to reveal molecular functions and biological path-
ways (Tables I and II). Eight molecular functions
and four KEGG pathways were over-represented
in all the DEGs, such as enzyme inhibitor activity,
chemokine activity, chemokine signaling pathway
and cytokine-cytokine receptor interaction.
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Figure 1. Box plots for gene expression data before (top) and after normalization (bottom). The medians (black lines) are al-
most at the same level, indicating a good performance of normalization.

Figure 2. Heat map for expression of differentially ex-
pressed genes across the samples.

from which a functional module was identified
with MCODE. According to the GO enrichment
analysis using DAVID, genes in this functional
module were enriched in cell cycle, mitosis as well
as relevant biological processes (Table III).

Gene Regulatory Network
The gene regulatory network was constructed

with information from miRecords and UCSC.
Degree was calculated for each node with pack-
age igraph of R. Top 10 nodes were selected out
and then corresponding sub-networks were ex-
tracted from the whole network. Over-represent-
ed biological functions were revealed for each
group of genes (Table IV). Similar to the above
findings, these genes were enriched in cell cycle,
cell proliferation and apoptosis (Figure 4).

A total of 43 miRNAs were included in the
regulatory network and the corresponding sub-
network is in Figure 5. Top 5 biological process-
es over-represented in the target genes of these
43 miRNAs are shown in Table V, including
regulation of cell proliferation, response to or-
ganic substance, regulation of RNA metabolic
process, cell cycle and regulation of programmed
cell death. Several processes were closely asso-
ciated with tumorigenesis, suggesting important
roles for these DEGs and miRNAs (Figure 5).

Coexpression Network
A co-expression network was established in

1615 pairs of genes (Pearson correlation coeffi-
cient > 0.85, p value < 0.05). The network includ-
ing 457 nodes was then visualized with Cytoscape,
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GO term & molecular function Count p value

GO:0004857–enzyme inhibitor activity 11 4.57E-04
GO:0008009–chemokine activity 5 0.001230956
GO:0042379–chemokine receptor binding 5 0.001560885
GO:0019207–kinase regulator activity 6 0.002645966
GO:0004866–endopeptidase inhibitor activity 7 0.00375787
GO:0030414–peptidase inhibitor activity 7 0.004881871
GO:0019887–protein kinase regulator activity 5 0.009536542

Table I. Significantly over-represented molecular functions in DEGs

KEGG term & pathway Count p value

hsa04062:Chemokine signaling pathway 8 0.010952703
hsa04270:Vascular smooth muscle contraction 6 0.015486143
hsa04060:Cytokine-cytokine receptor interaction 8 0.055432053
hsa04610:Complement and coagulation cascades 4 0.061912514

Table II. Significantly over-represented KEGG pathways in DEGs.

Go terms Count p value FDR

GO:0007049–cell cycle 20 3.61E-15 4.93E-12
GO:0007067–mitosis 14 4.21E-15 5.68E-12
GO:0000280–nuclear division 14 4.21E-15 5.68E-12
GO:0000087–M phase of mitotic cell cycle 14 5.29E-15 7.17E-12
GO:0048285–organelle fission 14 7.12E-15 9.57E-12
GO:0022403–cell cycle phase 16 2.80E-14 3.77E-11
GO:0000279–M phase 15 2.81E-14 3.78E-11
GO:0022402–cell cycle process 17 1.35E-13 1.82E-10
GO:0000278–mitotic cell cycle 15 1.42E-13 1.91E-10
GO:0051301–cell division 14 1.86E-13 2.51E-10

Table III. Top 10 biological processes over-represented in the genes from the module.

Rank Node Degree Main biological functions

1 MIA3 104 Cell cycle, DNA repair, cell division, DNA metabolic process
2 ARNT 104 Cell cycle, cell division, DNA damage stimulus, cell proliferation, cell death
3 SP1 97 Cell cycle, cytoskeleton organization, organelle fission
4 PSG1 97 Cell cycle, cell proliferation, cytoskeleton organization, organelle fission
5 DAND5 97 Cell cycle, cytoskeleton organization, cell proliferation, mitotic cell cycle,

organelle fission
6 AHR 92 DNA metabolic process, cell proliferation, cell cycle, DNA replication
7 E2F3 86 Regulation of transcription, DNA-dependent, regulation of RNA metabolic

process, regulation of transcription
8 PAX5 81 Regulation of programmed cell death, regulation of cell death, cell

proliferation, cell cycle process, regulation of apoptosis
9 EGR3 80 Regulation of transcription from RNA polymerase II promoter, regulation of

RNA metabolic process, regulation of transcription
10 EGR1 78 Regulation of RNA metabolic process, regulation of transcription,

DNA-dependent

Table IV. Top 10 nodes, sub-networks and biological functions.

Count: the number of differentially expressed genes; FDR: false discovery rate obtained by Benjamini-Hochberg multiple cor-
rection; node, protein; degree, the number of interactions.
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Discussion

In this work, a total of 457 DEGs were ob-
tained in SCLC. Genes from the functional mod-
ule of coexpression network were enriched in
cell cycle and relevant pathways. In the sub-net-
works of gene regulatory network, cell cycle, cell
proliferation and apoptosis were over-represent-
ed in these genes. Given the close relationships
between these pathways and cancers, we consid-
ered our method was effective in mining key
genes. Meanwhile, our findings offered a good
guideline for future researches.

Most genes in the functional module were en-
riched in cell cycle and some have been linked to
cancers. Cell division cycle associated 3 (CDCA3),
part of the Skp1-cullin-F-box (SCF) ubiquitin
ligase, refers to a trigger of mitotic entry and me-
diates destruction of the mitosis inhibitory ki-
nase. Uchida et al20 report that overexpression of
CDCA3 promotes oral cancer progression by en-
hancing cell proliferation with prevention of G1
phase arrest. In prostate cancer, CDCA3 can be
up-regulated by HoxB3 and, thus, promotes can-
cer cell progression21. The upregulation of mater-
nal embryonic leucine zipper kinase (MELK) has
been observed in breast cancer22,23 and prostate
cancer24. In breast cancer, dysregulated expres-
sion of MELK is associated with poor progno-
sis22. Cyclin-dependent kinase inhibitor 3 (CD-

KN3) can dephosphorylate CDK2 kinase and,
thus, prevent the activation of CDK2 kinase. It’s
found to be up-regulated in breast cancer25. Over-
expression of cell division cycle 20 (CDC20) is
reported in several cancers, such as oral cancer26.
Kidokoro et al27 indicate it may be a good poten-
tial therapeutic target for a broad spectrum of hu-
man cancer.

In the gene regulatory network, most of the
top 10 nodes were also related to cell cycle. Sp1
transcription factor (SP1) is a zinc finger tran-
scription factor that involved in many cellular
processes, including cell differentiation, cell
growth and apoptosis. Dysregulation of p53/sp1
control leads to DNA methyltransferase-1 over-
expression in lung cancer, which subsequently
results in epigenetic alteration of multiple tumor
suppressor genes and ultimately leads to lung tu-
morigenesis and poor prognosis28. It’s also found
to regulate expression of cancer-associated mole-
cule CD147, which plays an important role in the
invasion and metastasis of human lung cancer29.
In accordance with its role in the development of
cancer, Wang et al30 suggest that it’s a significant
predictor of survival in human gastric cancer.
Paired box 5 (PAX5) is a member of the PAX
family of transcription factors. Kanteti et al31 find
that it’s expressed in SCLC and positively regu-
lates c-Met transcription. Loss of endogenous
PAX5 significantly decreases the viability of

Figure 3. The functional mod-
ule extracted from the whole co-
expression network.
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Figure 4. Ten sub-networks ex-
tracted from the whole regulatory
network. Circles represent for differ-
entially expressed genes, arrows for
transcription factors and triangles for
miRNAs. The lines indicate the in-
teraction relationship.
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SCLC cells, so it may be a potential target for
therapy. E2F transcription factor 3 (E2F3) is a
member of a small family of transcription factors
that function through binding of DP interaction
partner proteins32. Cooper et al33 report that high
expression level of nuclear E2F3 is found in al-
most all SCLCs. Besides, early growth response
1 (EGR1) and EGR3 have also been linked to
lung cancer34 and breast cancer35.

MiRNAs are key regulators in the develop-
ment of cancers. In present study, we attempted

to discover important miRNAs using the miR-
NA-target network. c-Myc (MYC) plays an im-
portant role in the phenotypic conversion and
malignant behavior of human lung cancer36. Am-
plification and/or high levels of expression of c-
myc are observed in variant type SCLC lines37.
Zajac-Kaye38 points out that the overexpression
of Myc and the deregulation of the pRB/E2F
pathway promotes the G1 to S transition in paral-
lel by activating cyclinE/cdk2 complexes in lung
cancer cells. According to the network, it’s regu-

Figure 5. The sub-network comprised of miRNAs and target genes. Circles represent for differentially expressed genes and
triangles for miRNAs.

Term Count p value FDR

GO:0042127–regulation of cell proliferation 15 3.35E-06 0.005452577
GO:0010033–response to organic substance 13 6.35E-06 0.010342655
GO:0051252–regulation of RNA metabolic process 13 1.51E-05 0.024561035
GO:0007049–cell cycle 12 2.05E-05 0.033437953
GO:0043067–regulation of programmed cell death 12 3.70E-05 0.06018597

Table V. Top 5 biological processes over-represented in miRNA-target gene network.

Count: the number of differentially expressed genes; FDR: false discovery rate obtained by Benjamini-Hochberg multiple cor-
rection.



lated by several miR-34 members, which can in-
duce apoptosis, cell-cycle arrest or senescence.
In many tumor types the promoters of the miR-
34a and the miR-34b/c genes are subject to inac-
tivation by CpG methylation39. Gallardo et al40
indicate that it’s a prognostic marker of relapse
in surgically resected non-small-cell lung cancer.
Wiggins et al41 even develop a miR34-based
therapy for lung cancer. We also found many
DEGs were regulated by miR-124, which is re-
ported to be an epigenetically silenced tumor-
suppressive miRNA in hepatocellular carcino-
ma42. Moreover, miR-15 and miR-16 are includ-
ed in the network, and they are implicated in
chronic lymphocytic leukemia43 and prostate
cancer44. Therefore, we believed more works on
these miRNAs and target genes might bring in
valuable findings.

Conclusions

Overall, we combined comparative analysis of
transcriptome between SCLC and normal tissue
with network analysis to mine important genes
and pathway in the development of SCLC. Our
findings could promote the understanding about
this disease and also disclose potential targets for
diagnostic and therapeutic usage.
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