Abstract. — OBJECTIVE: Liver cysts are divided into congenital and acquired. Congenital cystic lesions include polycystic liver disease, simple cysts, duct-related and ciliated hepatic foregut cysts. Acquired cystic lesions are divided into infectious and non-infectious. The infectious cysts are the hydatid cyst, the amoebic abscess, and the pyogenic abscess, whereas the non-infectious cysts are neoplastic cysts and false cysts. While modern medicine provides a lot of minimally invasive therapeutic modalities, there has emerged a pressing need for understanding the various types of liver cysts, the possible minimal therapeutic options along with their indications and complications. We aim to clarify the role of minimally invasive techniques in the management of hepatic cysts.

MATERIALS AND METHODS: A literature review was performed using the MEDLINE database. The search terms were: liver cyst, minimally invasive, laparoscopic, percutaneous, drainage and fenestration. We reviewed 82 English language publications, published until October 2017.

RESULTS: Minimally invasive management of liver LC is an emerging field including many therapeutic modalities ranging from the percutaneous aspiration of pyogenic abscesses to laparoscopic hepatectomy for hepatic cystadenomas. The most used techniques are percutaneous drainage, laparoscopic fenestration, and laparoscopic hepatectomy.

CONCLUSIONS: The application of the various minimally invasive approaches, as well as their indication and complications, depend on the type of the cystic lesion, its size and its position in the liver. Percutaneous drainage is mostly used in simple cysts, hydatid cysts, pyogenic abscesses and bilomas. Laparoscopic fenestration is mostly used in simple cysts and polycystic liver disease. Finally, laparoscopic hepatectomy is mostly used in polycystic liver disease, hydatid cysts, and cystadenomas.

Key Words: Liver, Cyst, Minimally, Invasive, Laparoscopic, Percutaneous, Drainage, Fenestration.

Introduction

Nowadays, technological advances, lower cost, and increasing medical experience have led to a widespread use of imaging modalities, especially of ultrasonography. Not only are they used for abdominal symptoms screening but also for preventive and follow up purposes. As a result, cystic lesions of the liver are diagnosed more frequently and inevitably, posing questions about their differential diagnosis and their appropriate management. Moreover, in the setting of modern medicine where minimally invasive techniques are evolving, the choice of the most effective management is much more in question. Liver cysts (LC) consist of a heterogeneous group of disorders differing in etiology, prevalence, management and clinical manifestations. Yet, a consensus has not been achieved on the definition and classification of hepatic cystic lesions, and considerable controversy exists concerning the best treatment.

Hepatic cystic lesions are divided into two main categories: congenital and acquired. Congenital cystic lesions of the liver include Polycystic Liver Disease (PCLD), simple cysts, duct related and ciliated hepatic foregut cysts. Acquired hepatic cysts are further divided into infectious and non-infectious. There are two kinds of infectious cysts, the parasitic ones (hydatid cysts and amoebic abscesses) and non-parasitic, in other words, pyogenic liver abscesses. The non-infectious group consists of neoplastic (primary and secon-
D. Vardakostas, C. Damaskos, N. Garmpis, E.A. Antoniou, K. Kontzoglou, G. Kouraklis, D. Dimitroulis

Congenital Cysts

Simple Hepatic Cysts

Ultrasound and computed tomography reveal LC in 2.5% to 5% of the population. Only 15% of these cysts are symptomatic when they are predominantly large (>4 cm). They are usually found in the right lobe and are more common in women and older patients (Figure 2). Asymptomatic simple cysts do not require any treatment or follow-up. Large cysts bigger than 4 cm are advised to be serially checked with imaging modalities and ensure stability. Enlarging cysts become symptomatic due to mass effect, infection, rupture or hemorrhage. In some occasions, there may be more than one cyst, called several solitary cysts. Symptomatic or enlarging cysts require excluding of other diagnoses, especially malignancies. Simple hepatic cysts are treated minimally with laparoscopic unroofing or percutaneous sclerotherapy. Both of these treatments are demonstrated to be equally effective, although percutaneous therapy presents the lower occurrence of complications.

Better results can be achieved with a wide excision of the cystic wall and use of argon beam coagulation. Recurrence is estimated from 0% to 20% with morbidity in 0% to 25%. Good candidates for laparoscopic fenestration are thought to be patients without previous open surgical intervention in the abdomen and have large, symptomatic, superficial, anteriorly seated cysts. Wound infection, bile leak, chest infection, subphrenic hematoma and prolonged drainage have all been reported as post laparoscopic complications.

In selected cases, before the laparoscopy, aspiration under US or CT guidance can be performed in order to assess whether symptoms are really referred to the cyst. Sclerosis is less invasive and associated with lower rates of complications, but first, it is crucial to exclude biliary communication to avoid irreversible sclerosing cholangitis. On the other hand, laparoscopy is effective and provi-
Minimally invasive management of hepatic cysts: indications and complications

The opportunity to directly examine the interior of the cyst, thus ruling out other etiologies.

Polycystic Liver Disease

The polycystic liver disease is an inherited autosomal dominant disease. Most patients are asymptomatic. Symptomatic PCLD patients should be offered a tailored surgical therapy in relation with the extent of disease (laparoscopic or open fenestration, hepatic resection or orthotopic liver transplantation). Intervventional therapy aims to reduce the volume of the polycystic liver offering a long-term relief of symptoms without compromising hepatic function. Gigot et al. have suggested a classification system for polycystic liver disease (Table I) based on pre-operative CT imaging offering a good platform to decide the appropriate therapy. Que et al. and Chen et al. reported the symptoms and complications that are the indications for interventional therapy.

These indications include early satiety, abdominal distention and pain, supine dyspnea, fatigue, infected cysts, bile duct obstruction, ascites, dialysis hypotension and uterine prolapse. Barahona-Garrido et al support that occurrence of symptoms is not associated to the cyst diameter but to the number of cysts and the liver volume occupied by them. After studying liver function variables, they observed a significant correlation between elevated ALP (>132 mg/dL) and requirement of intervention.

Reports of laparoscopic fenestration of PCLD steadily increase in number demonstrating that when applied in the appropriate population, it has about the same mortality and morbidity as the open fenestration. Gigot et al. polycystic livers, with a relatively limited number of large cysts seated in the anterior segments and in the left lobe, are ideal for laparoscopic fenestration. Occasions with difficulties in the adequate fenestration of all cysts, such as deeply seated cysts or cysts in segments VI, VII,

Table I. Gigot’s classification for polycystic liver disease.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Presence of less than 10 large hepatic cysts measuring more than 10cm in maximum diameter</td>
</tr>
<tr>
<td>II</td>
<td>Diffuse involvement of liver parenchyma by multiple cysts with remaining large areas of non-cystic liver parenchyma</td>
</tr>
<tr>
<td>III</td>
<td>Presence of diffuse involvement of liver parenchyma by small and medium-sized liver cysts with only a few areas of normal liver parenchyma</td>
</tr>
</tbody>
</table>

Figure 2. Computed tomography (CT) describing a large simple hepatic cyst of a 64-year-old woman.

Figure 3. The laparoscopic approach for managing a liver cyst. A-B, Laparoscopic pericystectomy for a 10 cm simple hepatic cyst of a 41-year-old woman.
and VIII, tend to have a higher recurrence rate after laparoscopic fenestration19,20,22. Koperna et al18 concluded that laparoscopic fenestration could safely replace open fenestration given that in the appropriate PCLD patients it has similar rates of success along with similar overall recurrence (open vs. lap: 13% and 11%, respectively), similar morbidity and mortality rates. The most common morbidity was post-operative ascites. In other case series recurrence rates were reported from 0% to 71\%16,17,20,23-25 and morbidity from 0% to 54\%17,25. Percutaneous aspiration and sclerosis of cysts is a wise option in high-risk patients with a large dominant cyst. However, it is associated with higher recurrence rates and probably does not provide definitive therapy26-29.

Duct Related Cysts

Caroli disease is a rare disorder with multiple segmental intrahepatic cystic dilations which communicate with the biliary tree. Recurrent cholangitis, intrahepatic lithiasis, and cholecystolithiasis are common clinical presentations. Peribiliary cysts are located along common bile duct or within portal tracts. They arise from cystic enlargement of peribiliary glands, and they are usually small and asymptomatic.

Ciliated hepatic foregut cysts come from the foregut since the embryonic period. For all these diseases, no minimally invasive therapy has been reported.

Acquired Cysts

Infectious Cysts

Parasitic cysts

Hydatid cysts

Laparoscopic approach. The laparoscopic approach for managing Liver Hydatid Cysts (LHC) was first reported in 199230. Since then, laparoscopy has been combined with different surgical techniques, such as partial cystectomy, cystectomy, marsupialization, puncture with evacuation and hepatectomy. Some of these techniques are thought to be radical and the rest conservative.

Radical treatment refers to pericystectomy and liver resection. Reduced occurrence of local or distal recurrence, no need of protoscolicidals postoperatively, better management of cystobiliary communications and cavity-related complications are the advantages of radical laparoscopic methods. Among these, total pericystectomy remains the treatment of choice due to the fact that there is no hepatic tissue resection to compromise the liver function. Laparoscopic hepatectomy requires a highly experienced team, and cysts bigger than 5 cm are not technically suitable31. Moreover, increased morbidity and mortality are related with radical methods, and their use is questionable in a benign disease32,33.

Conservative techniques, including simple drainage and laparoscopic partial pericystectomy with evacuation, sterilization or omentoplasty, are suitable for almost every LHC34. These procedures are technically less demanding but require the use of drug therapy along with protoscolicidals.

The laparoscopic approach is indicated for all LHC except patients with deep intraparenchymal cysts, dense adhesions covering the cyst, inaccessible posterior cyst, more than three cysts, disease insulating other organs, calcified irremovable cyst, secondary hydatidosis and huge Gharbi III, IV, and V cysts (Table II)35,36. LHC located anteriorly bear the best indication for laparoscopic evacuation or radical excision, usually without complications.

Difficult location of the cyst and bleeding were the main reasons for converting laparoscopy to open surgery. Conversion percentages range from 0-66.66\% (4.92\% is the percentage of all conversions totally). The main cause of conversion to open was inaccessible locations/anatomical limitations (35.56\% of conversions, 1.75\% of all patients). Other reported causes included hemorrhage, adhesions, inappropriate cystic stage, inability to identify the cyst, inadequate evacuation, close proximity to the major vessels, risk of rupture, iatrogenic liver injury or hematoma. The complication rate is referred between 0 to 16\%37-41. A recurrence rate of 3.6\% was reported by Khoury et al38 after performing marsupialization. Surgical complications include port-site infection, hernia, subphrenic abscess and small bowel perforation. General complications include fever of undetermined origin, subcutaneous hematoma, pneumonia, pleural effusion/empyema, atelectasis,

Table II. Classification by Gharbi et al for hydatid cysts.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Pure fluid collection (similar to simple liver cyst)</td>
</tr>
<tr>
<td>II</td>
<td>Fluid collection with a detached membrane</td>
</tr>
<tr>
<td>III</td>
<td>Fluid collection with multiple septa and/or daughter cysts</td>
</tr>
<tr>
<td>IV</td>
<td>Hyperechoic with internal echoes</td>
</tr>
<tr>
<td>V</td>
<td>Cyst with reflecting, calcified, thick wall</td>
</tr>
</tbody>
</table>
Minimally invasive management of hepatic cysts: indications and complications

Table III. Minimal interventions.

<table>
<thead>
<tr>
<th>Cyst</th>
<th>Possible minimal intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple cyst</td>
<td>Laparoscopic fenestration, percutaneous sclerotherapy</td>
</tr>
<tr>
<td>Polycystic Liver Disease</td>
<td>Laparoscopic fenestration, percutaneous sclerotherapy</td>
</tr>
<tr>
<td>Duct related cyst</td>
<td>No option</td>
</tr>
<tr>
<td>Hydatid cyst</td>
<td>Laparoscopic partial cystectomy, cystectomy, marsupialization, evacuation, hepatectomy, PAIR</td>
</tr>
<tr>
<td>Amebic abscess</td>
<td>US/CT guided aspiration, percutaneous catheter, laparoscopic drainage, ERCP guided drainage</td>
</tr>
<tr>
<td>Non-parasitic Infectious cyst</td>
<td>Percutaneous needle aspiration, percutaneous catheter, laparoscopic drainage, ERCP guided drainage</td>
</tr>
<tr>
<td>False cyst</td>
<td>Percutaneous drainage</td>
</tr>
<tr>
<td>Cystadenoma</td>
<td>Laparoscopic liver resection</td>
</tr>
<tr>
<td>Cystadenocarcinoma</td>
<td>No option</td>
</tr>
<tr>
<td>Cystic metastases</td>
<td>No option</td>
</tr>
</tbody>
</table>

PAIR: percutaneous aspiration, injection, reaspiration; US: ultrasound; CT: computed tomography; ERCP: endoscopic retrograde cholangiopancreatography.

drug-induced fever. Complications happen more frequently after laparoscopic cystectomy compared to radical liver resections and pericystectomy.

The most troublesome complication is intrabiliary rupture, and the reported occurrence of CBCs varies from 2.6% to 28.6%. Most cases of postoperative bile leakage healed spontaneously, and the rest were further managed with endobiliary stenting and sphincterotomy. When infection of residual cystic cavity or abscess was reported, it was mainly managed with percutaneous drainage and/or antibiotics and rarely with laparotomy.

So far, perioperative mortality after laparoscopic treatment is almost 0%. Shorter hospital stay along with lower incidence of wound infection and less postoperative pain are the advantages of laparoscopic approach over open surgery. The disadvantages are limitations in accessing cysts in difficult locations, an increased risk of spillage into the peritoneal cavity with cyst content and difficulty in aspirating the viscous cystic contents. Unfortunately, there is no randomized study to evaluate the laparoscopic treatment of LHC while most of the published studies are non-comparative. The most important studies concerning laparoscopy of LHC conclude that a laparoscopic approach is safe, with proven low conversion rates and no mortality.

Percutaneous aspiration, injection, re-aspiration. Mueller et al. first described the minimally invasive method of percutaneous aspiration, injection, re-aspiration (PAIR). Candidates for this technique include patients with hypoechoic, not calcified and with no biliary communication hepatic cysts in order to avoid sclerosing cholangitis and anaphylaxis. Percutaneous treatment is indicated for cysts type I and II, some groups of type III with drainable solid content, subtypes of type IV (Table II), suspected fluid collections and infected hydatid cysts. Percutaneous treatment should also be suggested to patients at high surgical risk, pregnant patients, and patients with multiple or disseminated cysts. The World Health Organization Informal Working Group on Echinococcosis reported a large multicenter study demonstrating that the method is very effective. 765 patients were primarily submitted for PAIR with a complication rate of 14.7% while the recurrence rate was 1.57% (54). The perioperative mortality varies from 0% to 0.9%, and the reported occurrence of CBCs varies from 2.6% to 28.6%. Most cases of postoperative bile leakage healed spontaneously, and the rest were further managed with endobiliary stenting and sphincterotomy. When infection of residual cystic cavity or abscess was reported, it was mainly managed with percutaneous drainage and/or antibiotics and rarely with laparotomy.

So far, perioperative mortality after laparoscopic treatment is almost 0%. Shorter hospital stay along with lower incidence of wound infection and less postoperative pain are the advantages of laparoscopic approach over open surgery. The disadvantages are limitations in accessing cysts in difficult locations, an increased risk of spillage into the peritoneal cavity with cyst content and difficulty in aspirating the viscous cystic contents. Unfortunately, there is no randomized study to evaluate the laparoscopic treatment of LHC while most of the published studies are non-comparative. The most important studies concerning laparoscopy of LHC conclude that a laparoscopic approach is safe, with proven low conversion rates and no mortality.

Amebic abscess. An amebic liver abscess is the most common extraintestinal manifestation of amebiasis, an infection caused by the protozoan *Entamoeba histolytica*. In developed countries, it is presented mainly on travelers returning from an endemic area who complaint for upper quadrant pain, abdominal symptoms, and fever. Basically, amebic liver abscess is managed with antibiotics, a tissue...
agent, and a luminal agent. US or CT guided aspiration is not routinely required but it can be used at high risk of rupture (particularly in the left lobe), in cases with no response to empiric therapy and for therapeutic or diagnostic purposes.

Non Parasitic Infectious Cysts

A pyogenic liver abscess is a potentially lethal disease. The main therapy is the intravenous administration of antimicrobial drugs. When the disease resists a four-weeks treatment or the abscess is bigger than 5cm, then a kind of drainage is required. Drainage can be done via percutaneous needle aspiration, percutaneous catheter, open or laparoscopic approach.

Percutaneous needle aspiration allows smaller and multiple lesions to be sampled for culture and avoids the catheter placement under circumstances with difficulties. Percutaneous Catheter Drainage (PCD) offers controlled drainage of large abscesses over a period of time with minimal hemodynamic and physiological stress to the patient. It has been established as the first line drainage modality due to being safe, tolerable, and successful. In addition, there is less morbidity and have comparable results (mortality rates) with surgical drainage. Reported complications include inadvertent injuries of intraabdominal organs and surrounding vascular structures, intraperitoneal bleeding, hepatovenous fistula, and needle tract infection. Unfortunately, the failure of PCD can lead to uncontrolled sepsis. Size and multiloculation seem to be predictors for failure of PCD. In such cases and those associated with concomitant biliary pathology, laparoscopic drainage may be useful, not to mention that offers the advantages of minimal stress. Reported complications were associated with general anesthesia (myocardial infarctions) and bile leakage.

An alternative technique, endoscopic retrograde cholangiopancreatography-guided drainage of hepatic abscesses has been proposed by Dull et al. The method is technically challenging and only suitable where there is possible communication of the abscess with the biliary tree. Failure of antibiotic therapy or PCD approach and transmural accessibility are indications for the method. The left lobe of liver (segments II and III) and the caudate lobe usually lie in close proximity to the stomach or duodenum. No procedure-related complications or failure have been reported, probably due to the fact that when a new procedure is attempted, only technically and clinically successful cases are published.

False Cysts

False cysts (traumatic intrahepatic hemorrhage, intrahepatic infarction, intrahepatic biloma) are benign lesions without epithelium. Liver infarction is a rare complication because of its double blood perfusion by the hepatic artery and the portal vein. There is no a widely accepted therapeutic strategy of hepatic infarction. Since hepatic infarction becomes infected, percutaneous or surgical drainage is considered necessary. Stewart et al reported that 11 of 12 patients (92%) with infected hepatic infarctions responded well to percutaneous drainage and survived.

Bile, blood or pus may rupture into or extend to the hepatic subcapsular space. The prevalence of subcapsular collections increases not only due to blunt liver traumas, but also to the increasing use of invasive diagnostic or therapeutic techniques. Such of them are endoscopic retrograde cholangiopancreatography (ERCP), hepatic artery infusion of chemotherapy, microwave coagulation, and high-frequency radioablation of hepatic tumors. Nonsurgical care in stable patients with a limited subcapsular fluid collection is the first option. Invasive measures are indicated in case of fluid expansion or uncontrolled infection. For bilomas, percutaneous drainage is the treatment of choice.

Injury to the biliary tract with biloma formation is unusual in blunt abdominal trauma. Deep parenchymal lacerations resulting in intrahepatic bile duct injury and biloma formation can be dealt with CT-guided percutaneous drainage following hepatorrhaphy. Provided that there is no extrahepatic bile duct obstruction, bile leakage stops spontaneously without further surgery. Alternatively, in a few reported cases, patients with blunt abdominal trauma and bile duct injuries underwent endobiliary stenting.

Finally, cases reporting hemorrhage within a hepatic cyst have been published. The therapeutic options, except simple observation, include percutaneous transhepatic drainage (with or without sclerosing agent), open/laparoscopic unroofing (marsupialization), cyst enucleation, and hepatic resection. Laparoscopic unroofing is getting more widely accepted as it provides a tissue sample for biopsy, relief of symptoms, minimal morbidity, a short hospital stay and low recurrence rates.

Certainly, there is need for further clinical studies so as indications and complications of invasive treatments to be established.
Neoplastic Cysts

Primary Cysts: Cystadenoma and Cystadenocarcinoma

Despite the progress in imaging technology and increasing recognition of biliary CA and CAC, preoperative diagnosis is doubtful. Cystic neoplasms are estimated to be about 5% of cystic liver lesions and 5% of them are malignant. The overall incidence of malignant hepatic tumors is lower than 0.41%77. The histogenesis of CA remains undefined but either a congenital origin or a reactive process to some focal injury is assumed.

Pathological characteristics of CA include stratified or pseudo stratified non-ciliated columnar or cuboidal epithelium with mucous-producing cells, papillary infolding, hypercellular mesenchyme and often ovarian like cells. The pre-malignant progression of CA is characterized histologically by the presence of intestinal metaplasia and numerous goblet cells. CAC can be recognized when epithelial nuclear stratification is lost, and a tubulo-papillary architecture, nuclear pleomorphism, and atypia prevail. Invasion of the stroma confirms the diagnosis of CAC.

Most of the CA remain silent and are discovered incidentally or they appear causing tumor compression abdominal symptoms77. The rate of malignant transformation is low (5%-10%), nevertheless all suspected CA must be excised and a liver resection with clear margins, open or laparoscopically, protects from the possibility of synchronous presence of CAC at the borders of the cyst78,80. Veroux et al81 reported occasions of incidental finding of biliary CA after laparoscopic fenestration of a cystic hepatic lesion. They stated that when a complete laparoscopic enucleation of the cyst may be ensured, a strict clinical, biochemical, and imaging follow-up evaluation should be considered as the definitive treatment.

In the era of less invasive surgery, a laparoscopic biopsy of the cyst wall is feasible but frozen sections cannot surely exclude or confirm the diagnosis of CA, especially of CAC. The current treatment modality is open or laparoscopic liver resection due to the risk of malignancy in all suspected CA78,82. In hepatic CAC there is no place for laparoscopic methods, with formal hepatic resection being the only suggested therapy.

Secondary Cysts: Cystic Metastases

Many kinds of malignant tumors may metastasize to the liver. The list is long including tumors from ovaries, pancreas, colon, kidneys, Gastrointestinal Stromal Tumor (GIST), etc. Metastatic lesions from sarcomas, melanomas or neuroendocrine tumors are rapidly growing hypervascular tumors and appear cystic because of necrosis and degeneration. There is no place for minimally invasive methods in such cases.

Discussion

As we have mentioned before, LC is divided into congenital and acquired. Congenital cystic lesions include PCLD, simple cysts, duct related and ciliated hepatic foregut cysts, while acquired cystic lesion is divided into infectious and non-infectious. The infectious cysts are the LHC, the amoebic abscess, and the pyogenic abscess, whereas the non-infectious cysts are neoplastic cysts and false cysts. Minimally invasive management of LC is an emerging field including many therapeutic modalities ranging from the percutaneous aspiration of pyogenic abscesses to laparoscopic hepatectomy for hepatic CA (Table III). The application of the various minimally invasive approaches depends on the type of the cystic lesion, its size and its position in the liver.

Concerning congenital LC, minimally invasive techniques have been applied mostly in cases of simple cysts and PCLD. Simple liver LC are treated when they are enlarged and symptomatic. The preferred methods are the laparoscopic unroofing and the percutaneous sclerotherapy, which are equally effective, but percutaneous sclerotherapy has fewer complications6. Cysts that are large, superficial and anteriorly seated are the best candidates for laparoscopic fenestration8. Laparoscopic unroofing has also been applied in cases of PCLD, particular in cases of few large cysts located in the anterior segments of the liver7. Percutaneous aspiration and sclerotherapy have also been applied in high-risk patients with PCLD and a large dominant cyst, but with high recurrence rates26-29.

Regarding acquired LC, many studies have been conducted on the application of minimally invasive techniques to hydatid cysts. There is a wide range of treatment modalities. Laparoscopic hepatectomy and pericystectomy are more radical forms of treatment, but are applied usually for cysts larger than 5 cm in diameter41. Conservative approaches, such as simple drainage and laparoscopic partial pericystectomy can be applied in almost all hydatid LC55. However, laparoscopic operations are associated with an increased risk of spillage of cyst content into the peri-
tonal cavity. PAIR is another promising treatment for hydatid cysts that is applied in cysts without calcifications or biliary communications. In regard to other acquired LC, percutaneous drainage is the treatment of choice for pyogenic liver abscesses that are larger than 5 cm in diameter or resistant to antimicrobial drugs and for bilomas. On the other hand, laparoscopic or open hepatectomy is preferred in all suspected CA.

Conclusions

Minimally invasive techniques are feasible and safe alternatives to the open approaches for treating LC. The most used techniques are percutaneous drainage, laparoscopic fenestration, and laparoscopic hepatectomy. However, the exact method that is preferred in each occasion depends on the type of the cystic lesion, its size and its position in the liver. More studies are needed in order to better determine the exact indications and complications of minimally invasive modalities when they are applied in LC.

Conflict of Interest

The Authors declare that they have no conflict of interest.

References

Minimally invasive management of hepatic cysts: indications and complications

