Artificial intelligence assistance in radiographic detection and classification of knee osteoarthritis and its severity: a cross-sectional diagnostic study

N. PONGSAKONPRUTTIKUL¹, C. ANGTHONG¹, V. KITTICHAI¹, S. CHUWONGIN², P. PUENGPIPATTRAKUL¹, P. THONGPAT¹, S. BOONSANG³, T. TONGLOY²

¹Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
²College of Advanced Manufacturing Innovation, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
³Department of Electrical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

Abstract. – OBJECTIVE: Radiographic interpretation suffers from an ever-increasing workload in orthopedic and radiology departments. The present study applied and assessed the performance of a convolutional neural network designed to assist orthopedists and radiologists in the detection and classification of knee osteoarthritis from early to severe degrees in accordance with the Kellgren-Lawrence (KL) classification system.

MATERIALS AND METHODS: In total, 1650 knee joint radiographs (anteroposterior view) were collected from the Osteoarthritis Initiative public resource. Two models were developed: one distinguished normal (KL 0-I) from osteoarthritic knees (KL II-IV), and the other classified the severity as normal (KL 0-I), non-severe (KL II), or severe (KL III-IV). The regions of interest were labeled under the supervision of experts. Our artificial intelligence (AI) models were trained using the You Only Look Once version 3 (YOLOv3) detection algorithm.

RESULTS: Our first AI model using YOLOv3 tiny could detect and classify normal and osteoarthritic knees on plain knee joint radiographs with 85% accuracy and 81% mean average precision. The second AI model for classifying severity achieved a total accuracy of 86.7% and mean average precision of 70.6%.

CONCLUSIONS: Our proposed deep learning models provided high accuracy and satisfactory precision for the detection and classification of early to severe knee osteoarthritis on anteroposterior radiographs. These models may be used as diagnostic aids by interpreting knee radiographs and guiding the treatment options via each osteoarthritic stage for related physicians and specialists.

Key Words: Artificial intelligence, Knee osteoarthritis, Radiograph, Deep learning.

Introduction

Knee osteoarthritis (OA) has a detrimental effect on the quality of life of people worldwide. It is characterized by progressive destruction of the articular cartilage and formation of osteophytes, subchondral cysts, and subchondral sclerosis of the synovial joints, which can ultimately lead to functional disability. Many patients with knee OA require early diagnosis and treatment. Healthcare providers can diagnose knee OA based on clinical evaluations and imaging investigations. The first-line investigation conventionally used in the diagnosis is plain radiography of the knee. However, because there are usually many patients with knee OA in daily practice, radiographic interpretation in orthopedic and radiology departments requires an ever-increasing workload. Approximately 15% of cases of early knee OA are reportedly missed in routine practice. In addition, the diagnostic accuracy is highly dependent on the physician’s knowledge and experience. Thus, OA detection can be missed by a less experienced reader. Multiple previous studies have shown highly inconsistent sensitivity and specificity ranging from 3.0% to 95.0% and from 60.0% to 98.0%, respectively, in detecting knee OA on posteroanterior standing knee X-ray images. These are issues for...
which artificial intelligence (AI) may play an integral role in assisting orthopedists, radiologists, and related specialists in interpreting radiographs in a shorter time and with higher accuracy. However, minimal information is available regarding the role of AI in the diagnosis of knee OA via radiography. The application of AI has been emerging in the field of medical imaging, especially using deep learning approaches. Previous studies have applied both shallow machine learning and deep learning algorithms for the detection and classification of knee OA. Brahim et al. applied a shallow machine learning algorithm that included native Bayes and random forest classifiers to detect early knee OA based on the Kellgren-Lawrence (KL) classification. They achieved an accuracy rate of approximately 83% with their model using 1024 knee X-ray images from the public database of the Osteoarthritis Initiative (OAI). Tiulpin et al. adopted a deep Siamese convolutional neural network (CNN) to automatically classify knee OA severity based on the KL classification. Their model patchied the medial and lateral sides of the knee joint, with a convolutional network applied to each side. Each output was concatenated and used in the final fully connected layer to make a prediction. This model produced a multiclass accuracy of 66.7%. Thomas et al. used DenseNet, a 169-layer CNN with a dense convolutional network architecture, to propose a model that could predict the KL grading scale using the OAI dataset with an average accuracy of 0.71.

Multiple-step deep learning approaches were also formulated in previous studies. In 2017, Antony et al. proposed a combination of object detection and classification techniques to classify the severity of knee OA. A fully CNN combined with a fine-tuned CNN with four convolutional layers and one fully connected layer was trained on 4446 and 2920 knee X-ray images from the OAI and MOST datasets. Detection of the knee joint was performed by the fully CNN, whereby the fine-tuned CNN with four convolutional layers and one fully connected layer was used to classify the severity according to the KL classification. A multiclass classification accuracy of 63.4% was achieved using this approach. Later, Chen et al. adopted a similar protocol by first using the You Only Look Once version 2 (YOLO v2) algorithm for knee joint detection. Various renowned CNN models were then used to classify the severity. The best performing combination was YOLO v2 with the fine-tuned VGG-19 model, which achieved a classification accuracy of 69.7%.

In this paper, we propose an object detection method using a modern state-of-the-art object detection CNN architecture called YOLOv3 tiny. We developed two models: one was used to automatically distinguish a normal knee from knee OA, and the other classified the severity based on further grouping by the KL classification. This CNN model is designed to assist orthopedists, radiologists, and related specialists by automatically detecting and classifying knee OA from early to severe degrees in accordance with the KL classification.

Materials and Methods

Dataset and Preprocessing

In total, 1650 cropped right and left knee radiographs (anteroposterior view) with a resolution of 224 x 224 pixels were collected from public resources distributed by Chen in that author’s “Knee Osteoarthritis Severity Grading Dataset” and published article. This dataset was taken from the OAI and modified by cropping only the areas of the knee joint that are split into right and left joints. The OAI is a multicenter, longitudinal, prospective observational study of knee OA funded by the US National Institutes of Health. It provides a publicly accessible database of the natural history of knee OA, containing resources such as knee X-rays and magnetic resonance images. The present study involved 4796 men and women ranging in age from 45 to 79 years. Only trained and certified readers in each participating medical center were involved in classifying the radiographic images. The patients’ radiographic manifestations were described mainly according to the following features in accordance with the KL classification:

- **Grade 0**: no radiological findings of OA
- **Grade I**: doubtful narrowing of the joint space and possible osteophytic lipping
- **Grade II**: definite osteophytes and possible narrowing of the joint space
- **Grade III**: moderate multiple osteophytes, definite narrowing of the joint space, small pseudocystic areas with sclerotic walls, and possible bone contour deformity
- **Grade IV**: large osteophytes, marked narrowing of the joint space, severe sclerosis, and definite deformity of the bone contour

The OAI database also includes other radiographic features such as subchondral bone sclerosis and subchondral bone cysts. The KL classification is defined as follows:

- **Grade 0**: no radiological findings of OA
- **Grade I**: doubtful narrowing of the joint space and possible osteophytic lipping
- **Grade II**: definite osteophytes and possible narrowing of the joint space
- **Grade III**: moderate multiple osteophytes, definite narrowing of the joint space, small pseudocystic areas with sclerotic walls, and possible bone contour deformity
- **Grade IV**: large osteophytes, marked narrowing of the joint space, severe sclerosis, and definite deformity of the bone contour
AI assistance in radiographic detection and classification of knee osteoarthritis

Because of the ambiguity of the KL classification, its intra-rater reliability is relatively unreliable, ranging only from 0.67 to 0.73.14,18. Two systems with which to categorize the subgroups of radiographic findings using the KL classification have been suggested. The first system divides all KL grades into two subgroups, where KL grade 0 to I is considered "normal" and KL grade ≥II is designated "definite OA."1,10,19. The second system divides all KL grades into three subgroups of the severity of osteoarthritic changes, where KL grade 0 is "normal," KL grade I to II indicates "non-severe OA," and KL grade III to IV is considered "severe OA."20. We propose a modified system in which KL grade 0 indicates that the knee joint is "normal," KL grade 0 to I indicates "non-severe OA," and KL grade III to IV indicates "severe OA." The logic behind this classification is based on the cutoff point of OA being KL grade ≥II in the original study and various other studies.1,10,19 and the response to treatment.18,21. In this study, the first system and our proposed classification system were adopted, resulting in two datasets as shown in Table I.

All regions of interest with features in accordance with the first and our proposed systems were manually labeled with rectangular bounding boxes to create ground truth via CiRA-CORE, an in-house deep learning platform (https://git.cira-lab.com/cira/cira-core), under the guidance of experts (Figure 1). Each class of each system was then randomly split into a training set and testing set at a ratio of 9:1 to train and test the model, respectively. After splitting, the testing set for validation contained 1500 knee X-ray images with 500 images in each class for both datasets.

Data Augmentation

Prior to training the model, multiple data augmentation techniques were implemented to improve the generalization capabilities of the model. This was conducted to increase the variation of the dataset in an attempt to imitate the real-life scenario in which the qualities and parameters, such as exposure and orientation, are not consistent. The techniques applied were as follows:

- Rotation of the image with the value ranging from −3 to 3 degrees, varying at every 45 degrees
- Adjustment of the brightness and contrast by multiplying all pixel red, green, and blue values by seven steps ranging from 0.6 to 1.0

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Classification</th>
<th>Training set (Knee X-ray images)</th>
<th>Testing set (Knee X-ray images)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal (KL 0-I)</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>OA (KL II-IV)</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>II</td>
<td>Normal (KL 0-I)</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Non-severe (KL II)</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Severe (KL III-IV)</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Dataset I contains Normal (KL 0-I) and OA (KL II-IV) classes with 500 training and 50 testing samples each. Dataset II contains Normal (KL 0-I), Non-severe (KL II), and Severe (KL II-IV) classes with 500 training and 50 testing samples each. Abbreviations: OA, osteoarthritis; KL, Kellgren-Lawrence.

Figure 1. ROI labeling. ROIs are shown in X-rays of a (A) normal knee, (B) knee with OA, (C) knee with non-severe OA, and (D) knee with severe OA. Abbreviations: ROI, region of interest; OA, osteoarthritis

Table I. Two datasets used in the present study.
Deep Learning Model Configuration and Training

Modified YOLO algorithms were employed under the CiRA-CORE platform22,23 as the proposed methodology for developing models to detect and classify knee OA. These models were then assessed and evaluated based on their performance in detecting and classifying knee OA using relevant learning methods. Introduced earlier, YOLO is a state-of-the-art object detector that combines object detection and classification via a deep CNN. It uses features from the whole image to predict and split the image into multiple bounding boxes and then predicts the classification24. YOLO is well known for its balance of speed and accuracy, especially for real-time detection, and for processing 45 to 155 frames per second22,24; these features make it suitable for on-demand detection in the clinical setting. Furthermore, previous studies have suggested that YOLO exhibits impressive performance in detecting small objects25, which is critical in detecting small lesions such as miniature osteophytes in non-severe OA. However, some versions of YOLO, such as YOLOv3, require a high level of computing power. For this reason, we employed a more simplified and optimized version dubbed the “tiny” variant of YOLO. This version requires less computing power for comparable accuracy and is suitable as an embedded AI detector system26.

We fed 1000 labeled knee X-ray images, with 500 annotated as “Normal” and 500 as “Osteoarthritis,” into the model to test the first system. We then fed 1500 labeled knee X-ray images, with 500 annotated as “Normal,” 500 as “Non-severe,” and 500 as “Severe,” into the model to test the second system. This study was performed using a dedicated deep learning server with a 64-bit Ubuntu 16.04 operating system and a library based on the CUDA 10.1 toolkit and cuDNN v7.5.0. All experiments were conducted on a server with the following configuration: CPU i7-8700 (3.70 GHz), RAM 16 × 2 GB, GPU NVIDIA GTX 1070Ti (8 GB), and the C++ programming language. A modified version of YOLOv3 tiny was employed under CiRA-CORE with a mini-batch size of 64 and 8 subdivisions, while the momentum and decay were set at 0.9 and 0.0005, respectively. The model learning rate was 0.001.

The model automatically located the knee lesions and regions of interest of each knee in the radiographic images, depicting a rectangular bounding box during the analysis. An intersection of union of 0.5 between the predicted detection and the ground truth was used as the evaluation metric.

![Diagram](image)

Figure 2. In total, 1000 samples and 1500 samples of plain knee radiographs in the first dataset and second dataset, respectively, were labeled and fed to the YOLO algorithm to train the model. After training, images from the test set were used to test and validate the trained YOLO model. Here, the output is a bounding box with a predicted class, such as “Severe.”
and manually labeled bounding box was used as the threshold to determine whether the predicted bounding box represented the actual class. A value less than the threshold was considered a false positive. The workflow of the methodology is shown in Figure 2.

Model Evaluation

To evaluate the performance of our models, we first validated the model using the testing set containing 50 normal and 50 OA knee X-ray images in the first dataset and 50 images each for the normal, non-severe, and severe classes for the second dataset. Next, a performance assessment was carried out by constructing a confusion matrix. Aside from the computation of four performance metrics [sensitivity (recall), specificity, accuracy, and precision (positive predictive value)], the true positive, true negative, false positive, and false negative were also analyzed using the confusion matrix. The formulas used to calculate these parameters are listed in Table II. The other parameter, the F1 score, was calculated using the following formula:

\[
F_1 \text{ score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

Furthermore, we used a precision-recall curve (PRC) to evaluate the object detection model. A PRC is a two-dimensional graph in which the X-axis is the recall (sensitivity) and the y-axis is the precision. It depicts the relationship between the precision and recall at each threshold. Generally, a model is deemed satisfactory if the precision remains at a high level as the recall increases. The area under the curve (AUC) is the area under the PRC that summarizes the model performance in a single number. It is used to measure the usefulness of the tested model; a larger AUC is associated with better performance of the model. The mean average precision (mAP) was also computed.

Results

The present study included varying degrees of OA severity in accordance with the KL classification on the collected images. For the first system, 500 normal radiographs (KL grades 0-I) and 500 radiographs with osteoarthritic findings (KL grades II-IV) were used for training of the deep learning model via YOLOv3 tiny. Testing of the model was performed on 50 normal radiographs (KL grades 0-I) and 50 radiographs with osteoarthritis.
thritic findings (KL grades II-IV). The analytical results of the tested model were promising with respect to the accuracy, sensitivity, and specificity, as shown in Table III. The overall accuracy of the first model using YOLOv3 tiny was 85% in detecting normal and osteoarthritic knee joints, while the overall sensitivity and specificity were the same at 85%. The mAP was also satisfactory at 81%. Individually, as shown in Table IV, similar performance was also observed in classifying normal and osteoarthritic knees (sensitivity of 86% and 84%, respectively). However, specificity of identifying normal knees was slightly lower than that of osteoarthritic knees (84% and 86%, respectively).

For the second proposed model, there were 500 normal radiographs (KL grades 0-I), 500 radiographs with non-severe osteoarthritic findings (KL grade II), and 500 radiographs with severe osteoarthritic findings (KL grades III-IV) using YOLOv3 tiny. Testing of the model was performed using 50 unobserved normal radiographs (KL grade 0), 50 radiographs with non-severe osteoarthritic findings (KL grades I-II), and 50 radiographs with osteoarthritic findings (KL grades III-IV). Using the second system, our second

Table II. Confusion matrix with sensitivity, specificity, precision, negative predictive value, and accuracy calculation.

<table>
<thead>
<tr>
<th>Predicted class</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>Negative</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

- Sensitivity (recall) = \(\frac{TP}{TP + FN} \)
- Specificity = \(\frac{TN}{TN + FP} \)
- Accuracy = \(\frac{TP + TN}{TP + TN + FP + FN} \)
- Precision = \(\frac{TP}{TP + FP} \)
- Negative predictive value = \(\frac{TN}{TN + FN} \)

Abbreviations: TP, true positive; FP, false positive; FN, false negative; TN, true negative.

Figure 4. Precision-recall curve with AUC of the second proposed model using YOLOv3 tiny. The second proposed model using YOLOv3 tiny detected normal knees as KL 0-I, knees with non-severe OA as KL II, and knees with severe OA as KL III-IV with an AUC of 0.66, 0.27, and 0.92, respectively. **Abbreviations:** AUC, area under the curve; OA, osteoarthritis; KL, Kellgren-Lawrence.
AI assistance in radiographic detection and classification of knee osteoarthritis

Table III. Model performance evaluation between two classification systems using YOLO network.

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>F1 score</th>
<th>Mean average precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>First proposed model with YOLOv3 tiny</td>
<td>85.0%</td>
<td>85.0%</td>
<td>85.0%</td>
<td>85.0%</td>
<td>81.0%</td>
</tr>
<tr>
<td>Second proposed model with YOLOv3 tiny</td>
<td>86.7%</td>
<td>55.1%</td>
<td>85.9%</td>
<td>61.1%</td>
<td>70.6%</td>
</tr>
</tbody>
</table>

The first proposed model with YOLOv3 tiny defined the knee joint as normal if KL 0-I and OA if KL II-IV. The second proposed model with YOLOv3 tiny detected normal knees as KL 0-I, non-severe osteoarthritic knees as KL II, and severe osteoarthritic knees as KL III-IV. Abbreviations: KL, Kellgren-Lawrence; OA, osteoarthritis.

Discussion

OA affects more than 250 million people worldwide (approximately 4% of the world population) and is considered one of the 50 most common sequelae of diseases and injuries1,27. By 2010, OA was responsible for approximately 17 million years lost to disability, and knee OA alone constituted 83% of this number1,27. Currently, a combination of clinical presentation and plain radiography is considered the mainstay in the diagnosis of OA. In 1957, Kellgren and Lawrence were among the first to formalize the radiographic classification of OA1,10. The present study highlights the benefits of AI in the interpretation and classification of knee OA findings on radiographs. In the first proposed model, the accuracy, sensitivity, specificity, and mAP were high for the detection of the normal, OA, and overall groups. These levels were higher than the results of interpretation and classification by orthopedic surgeons in a previous study28. Thus, the herein proposed deep learning model may be used to help not only orthopedic surgeons and related specialists but also general practitioners in interpreting radiographic findings and diagnosing OA in daily practice.

For our second proposed deep learning approach, the results demonstrated high accuracy and specificity but only fair sensitivity and mAP in the overall detection. The rationale of this system is related to the recommendation of a treatment option for knee OA that depends on the KL grade. Regarding non-severe OA as KL grade II, several studies20,29,30 have indicated that nonoperative treatments or joint-sparing surgeries could be the first-choice treatments. However, regarding severe OA as KL grades III-IV, joint replacement surgery may be the treatment of choice because of unsatisfactory results of joint-sparing surgeries30,31. The second proposed model in this study provided excellent specificity and accuracy and satisfactory sensitivity for the detection of severe OA (KL grades III-IV).

Table IV. Evaluation results for first proposed model trained with 1000 samples using YOLOv3 tiny.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>OA</th>
<th>Average</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPR (Sen/Rec)</td>
<td>0.860</td>
<td>0.840</td>
<td>0.850</td>
<td>0.850</td>
</tr>
<tr>
<td>FNR</td>
<td>0.140</td>
<td>0.160</td>
<td>0.150</td>
<td>0.150</td>
</tr>
<tr>
<td>TNR (Spec)</td>
<td>0.840</td>
<td>0.860</td>
<td>0.850</td>
<td>0.850</td>
</tr>
<tr>
<td>FPR</td>
<td>0.160</td>
<td>0.140</td>
<td>0.150</td>
<td>0.150</td>
</tr>
<tr>
<td>Precision</td>
<td>0.843</td>
<td>0.857</td>
<td>0.850</td>
<td>0.850</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.850</td>
<td>0.850</td>
<td>0.850</td>
<td>0.850</td>
</tr>
<tr>
<td>Misclassification rate</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
</tr>
<tr>
<td>F1 score</td>
<td>0.851</td>
<td>0.848</td>
<td>0.850</td>
<td>0.850</td>
</tr>
</tbody>
</table>

Normal: KL 0-I, OA: KL II-IV. Abbreviations: TPR, true positive rate; FNR, false negative rate; TNR, true negative rate; FPR, false positive rate; Sen/Rec, sensitivity/recall; Spec, specificity; KL, Kellgren-Lawrence; OA, osteoarthritis.
In addition, it provided excellent accuracy and specificity, albeit low sensitivity, for the detection of non-severe OA (KL grade II). The low sensitivity, especially in the normal and non-severe groups, might stem from the similarity and minimal differences stated in the KL classification criteria. Although low sensitivity was shown in this approach, it still outperformed orthopedic surgeons in detecting knee OA from plain-film knee X-rays in a previous study. The proposed AI technology could help orthopedic surgeons and related specialists interpret knee radiographs for the diagnosis of knee OA. It can also assist in classifying the disease severity for determining the appropriate treatment option.

Limitations

This study had some limitations. The sample size was relatively small. A larger sample size might improve the overall performances of both models, especially for sensitivity and mAP. Additionally, other classification systems may require testing because the KL classification has been documented as ambiguous, and interpretation may vary based on the reader. However, despite these limitations, these models can aid orthopedic surgeons, related specialists, and even general practitioners in obtaining and differentiating normal findings from pathological findings and assessing the severity of knee OA. This AI assistance may help to develop treatment options that correspond to the severity grade.

Conclusions

Our proposed model provided highly satisfactory to excellent sensitivity, specificity, accuracy, and mAP for the detection and classification of normal (KL 0-I) and osteoarthritic findings (KL II-IV) on anteroposterior radiographs. Furthermore, the second proposed model based on our modified classification system assisted in the differentiation of severe grades (KL III-IV) from a non-severe grade (KL II) or normal findings (KL 0-I). The proposed AI technology could help orthopedic surgeons and related specialists interpret knee radiographs for the diagnosis of knee OA.

Acknowledgements

We thank Angela Morben, DVM, ELS, from Edanz (www.edanz.com/ac) for editing a draft of this manuscript.

Funding

The authors did not receive any financial support for the research, authorship, and publication of this study.

Author Contributions

In this study, Chayanin Anghthon, who is the corresponding author, has provided substantial contributions to the conception and design of the study. He was also responsible for drafting and making critical revision of the manuscript while providing supervision, validation, and the final approval of the version of the article to be published. Napat Pongsakonpruttikul, the first author, has made significant contributions to the study design, data acquisition, data analysis and interpretation of the result of study. He was also largely involved in the drafting of the article, making critical revisions, and producing the final version of manuscript. Furthermore, Veerayuth Kittichai has made great contribution in aiding in the study design, data analysis, result interpretation, and revision of the manuscript. Other authors including Santhad Chuwongin, Paisal Puengpipattrakul, Siridech Boonsang, and Teerawat Tongloy have contributed largely regarding the study’s methodology and data analysis. Lastly, Pongphak Thongpat has contributed greatly to the acquisition and analysis of data in this study.

Conflicts of Interest

The authors declare no conflicts of interest.
AI assistance in radiographic detection and classification of knee osteoarthritis

ORCID ID
Name: Chayanin Angthong, ORCID number: 0000-0002-1104-8945

Data Availability Statement
The original dataset was taken from a public resource distributed by Pingjun Chen15 titled “Knee Osteoarthritis Severity Grading Dataset” Version 1 which was published on 4 Sep 2018 in Mendeley Data accessed via doi: 10.17632/56rmx5bjcr.1 (https://data.mendeley.com/datasets/56rmx5bjcr/1). The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

