TGF_β1 protects myocardium from apoptosis and oxidative damage after ischemia reperfusion

Y.-F. LIU¹, Y.-Y. CHU², X.-Z. ZHANG², M. ZHANG¹, F.-G. XIE², M. ZHOU¹, H.-H. WEN², A.-H. SHU¹

¹Department of Anesthesiology, Three Gorges University People's Hospital, The First People's Hospital of Yichang, Yichang, Hubei, China

²Department of Emergency, Three Gorges University People's Hospital, The First People's Hospital of Yichang, Yichang, Hubei, China

Yifei Liu and Yunyun Chu contributed equally to this work

Abstract. – **OBJECTIVE:** Myocardial apoptosis is an important pathologic basis of ischemia-reperfusion injury (I/R). Transforming growth factor β 1 (TGF β 1) participates in the regulation of oxidative damage and apoptosis. TG-F β 1 is upregulated in the repair process of I/R injury. It is speculated that TGF β 1 over-expression is involved in the endogenous protective mechanism of I/R injury. This study explores the significance of TGF β 1 in myocardial cell apoptosis after I/R.

MATERIALS AND METHODS: Rat myocardial I/R injury model was established. Left ventricular ejection fraction (LVEF) and Left ventricular fractional shortening (LVFS) were detected by ultrasonic cardiogram. TGF β 1 expression in the myocardium was tested. H9C2 cells were cultured under ischemic hypoxic condition for 6 h, and then were treated by reoxygenation for 6 h to simulate I/R model. H9C2 cells were divided into three groups, including I/R+pIRES2-Blank, I/R+pIRES2 TGF β 1, and I/R+pIRES2-TGF β 1+LY364947. TGF β 1 mRNA and protein levels were evaluated. Cell apoptosis and reactive oxygen species (ROS) were determined by flow cytometry.

RESULTS: LVEF and LVFS significantly decreased in I/R group compared with Sham group. TGF β 1 mRNA and protein expressions in myocardium from I/R group up-regulated than the control. I/R treatment markedly elevated TG-F β 1 mRNA and protein levels, increased ROS content, and enhanced cell apoptosis in H9C2 cells. Over-expression of TGF β 1 significantly weakened ROS production and apoptosis in H9C2 cells after I/R. TGF β receptor inhibitor LY364947 restrained ROS production and apoptosis attenuation in H9C2 cells treated by TGF β .

CONCLUSIONS: TGF β 1 alleviates myocardial cell apoptosis after I/R. Blocking TGF β 1 attenuates the protective effect of TGF β 1 on I/R injury.

Key Words: TGFβ1, I/R, Myocardial cell, Apoptosis, ROS.

Introduction

Acute myocardial infarction (AMI) refers to myocardial necrosis caused by the acute and persistent ischemia-hypoxia of the coronary artery. In the clinic, it is mainly presented as fierce and permanent retrosternal pain, which can be complicated with cardiac arrhythmia, shock, or heart failure¹. Coronary artery reperfusion after AMI is the most effective method to save ischemic myocardium, protect heart function, and rescue patient life². At present, the most efficient way on AMI is to recover the blood supply in the myocardium in the clinic, thus to achieve the reperfusion. The commonly used methods include intravenous coronary thrombolysis (IVCT), coronary artery bypass grafting (CABG), and percutaneous transluminal coronary angioplasty (PTCA), which can achieve the goal of saving ischemic myocardium and rescuing the patient life via restoring the blood supply of the ischemic myocardium after AMI³. However, blood reperfusion inevitably induces ischemia-reperfusion (I/R) injury, seriously restricting the clinical curative effect⁴. Myocardial cell apoptosis and necrosis are the main pathophysiological processes of I/R injury. Cell apoptosis occurs earlier and almost sustains throughout the whole process of I/R injury, thus is also the main form of myocardial cell injury⁵. I/R injury may aggravate the structure and function of ischemic myocardium after AMI, resulting in deterioration of ventricular remodeling, cardiac function deterioration, and continuous cardiac dysfunction after AMI⁶. Transforming growth factor $\beta 1$ (TGF $\beta 1$) is a kind of protein peptide with a variety of functions, such as regulating cell growth⁷, differentiation, apoptosis⁸, and anti-oxidation⁹. TGFβ1 is found to be upregulated in the I/R injury repair of heart, brain, kidney, intestine, and other organs, suggesting that TGF^{β1} elevation may be involved in the endogenous protection of I/R injury¹⁰⁻¹³. Therefore, the over-expression of TGF^{β1} may protect the organ from I/R injury. This study discussed the significance of TGF β in inducing myocardial cell apoptosis in myocardial ischemia-reperfusion model.

Materials and Methods

Materials and Reagents

Healthy adult male Wistar rats at 6-8 weeks old and 220-250 g weighted were purchased from Three Gorges University (Hubei, China). Rat myocardial cell line H9C2 was bought from ScienCell Co. Ltd. (Carlsbad, CA, USA). DMEM medium was got from Hyclone (Logan, UT, USA). FBS was bought from Biological Industries (Beit Haemek, Israel). Trizol was obtained from Invitrogen/ Life Technologies (Carlsbad, CA, USA). Prime-Script[™] RT reagent Kit and SYBR Green were purchased from TaKaRa (Dalian, China). Rabbit anti TGF^{β1} antibody was got from Abcam Biotech (Catalogue No. ab92486; 1:3000; Cambridge, MA, USA). Mouse anti β-actin antibody was bought from Cell Signaling Technology (Catalogue No. 3700; 1:2000; Beverly, MA, USA). TUNEL apoptosis detection kit, Annexin V-FITC/PI kit, and DCFH-DA probe were obtained from Beyotime (Beijing, China). The horse radish peroxidase (HRP) labeled secondary antibody was bought from Jackson ImmunoResearch (West Grove, PA, USA). TGF^β receptor inhibitor LY364947 was from MedChemExpress (Princeton, NJ, USA).

Rats were used for all experiments, and all procedures were approved by the Animal Ethics Committee of Three Gorges University People's Hospital.

Rat I/R Model Establishment

The rat was anesthetized by chloral hydrate intraperitoneal injection. The limbs were con-

nected to the electrocardiogram, and the endotracheal intubation was connected animal breathing machine. The chest was opened on the left 4th intercostal space, and the left anterior descending coronary artery was identified between pulmonary arterial cone and aorta. Next, the artery was ligated with 6-0 suture. AMI modeling success was judged as ST segment arch lift 0.1 mV on Q lead or T wave high amplitude, myocardial color wanning, and pulse weakened. The blood supply was restored after blocking for 60 min. Sham group was selected as control. The rats in the test group were divided into three subgroups with six in each subgroup, including postoperative 6 h, 12 h, and 24 h, respectively.

TUNEL Assay

The rats were killed at postoperative 6 h, 12 h, and 24 h. The myocardium tissue was collected to prepare frozen section. The section was fixed in 4% paraformaldehyde at room temperature for 60 min and treated by 0.1% Triton X-100 on ice for 2 min. Next, the section was washed by phosphate buffered saline (PBS) for twice and incubated in 50 μ l TUNEL at 37°C for 60 min. At last, the section was observed under the fluorescence microscope.

Ultrasonic Cardiogram

The rats were anesthetized by 10% chloral hydrate at 24 h after operation. Ultrasonic cardiogram was performed through the chest. The left ventricular end systolic and diastolic diameters were recorded through the anterior papillary muscle level of the mitral valve. The left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were automatically calculated.

H9C2 Cell Transfection and I/R Treatment

Rat myocardial cells H9C2 were routinely cultured in DMEM medium containing 10% fetal bovine serum (FBS) and maintained at 37°C and 5% CO2. The cells in logarithmic phase were transfected by TGF β 1 over-expression vector pIRES2-TGF β 1 or empty vector Pires2-Blank. The cells were further treated by I/R at 72 h after transfection. For I/R treatment, the cells were cultured in low glucose serum free DMEM to simulate ischemic condition. Next, the cells were maintained in an incubator with 5% CO2 and 95% N2 to simulate hypoxic condition. The cells were changed to routine medium after 6 h and further cultured in normal condition for 6 h. H9C2 cells were divided into three groups, including I/R+pI-RES2-Blank, I/R+pIRES2 TGF β 1, and I/R+pI-RES2-TGF β 1+LY364947. LY364947 was used to treat cells after transfection at 50 nmol/L.

Cell Apoptosis Detection

The cells were digested by the enzyme and washed by precooled PBS. Then, the cells were suspended in 500 μ l Binding Buffer and incubated in 5 μ l Annexin V-FITC avoid of light at room temperature for 15 min. Next, the cells were stained by 5 μ l PI and tested on flow cytometry.

DCFH-DA Probe Detection of ROS Content

DCFH-DA was diluted by serum free medium at 1:1000 to make the final concentration at 10 μ mol/L. The cells were added with DCFH-DA and incubated at 37°C for 20 min. After washed with serum free medium for three times, the cells were resuspended in 500 μ l PBS and tested on flow cytometry at 488 nm.

qRT-PCR

Total RNA was extracted using Trizol and reverse transcribed to cDNA using PrimeScriptTM RT reagent Kit. The cDNA was used as the template for PCR amplification. The primers used were as follows. TGF β 1PF:5'-TGAGTGGCTGTCTTTT-GACG-3', TGF β 1PR:5'-ACTTCCAACCCAG-GTCCTTC-3'; β -actinPF:5'-TGGGACGATAT-GGAGAAGAT-3', β -actinPR:5'-ATTGCCGA-TAGTGATGACCT-3'. The total reaction system contained 5 μ l 2×SYBR Green Mixture 5.0 μ L, 0.5 μ l positive and reverse primers, 1 μ l cDNA, and ddH2O. The reaction was performed at 95°C for 5 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min on ABI ViiA7.

Western Blot

Total protein was extracted and separated by SDS-PAGE. Then the protein was transferred to polyvinylidene fluoride (PVDF) membrane (Amersham Biosciences, Piscataway, New Jersey, USA) and blocked with 5% skim milk at room temperature for 60 min. Next, the membrane was incubated with primary antibody (TGF β 1 at 1:3200, β -actin at 1:500) at 4°C overnight and secondary antibody at 1:5000 at room temperature for 60 min. At last, the membrane was developed by enhanced chemiluminescence (ECL, Amersham Biosciences, Piscataway, NJ, USA) and scanned.

Statistical Analysis

All data analyses were performed by SPSS 18.0 software (SPSS Inc., Chicago, IL, USA). The measurement data were presented as mean \pm standard deviation and compared by t-test. Between-group difference was tested by using Tukey's post hoc test. *p*<0.05 was considered as statistical significance.

Results

Cardiac Function Reduced, while Myocardial Cell Apoptosis Enhanced After I/R Injury

Echocardiography showed that LVFS exhibited no changes in Sham group, while it was significantly decreased in I/R group with time dependence (Figure 1A). LVEF showed no statistical changes in Sham group, whereas it obviously declined in I/R group with time dependence (Figure 1B). Flow cytometry revealed that myocardial cell apoptosis rate at each time point in I/R group was markedly higher than that in Sham group (Figure 1C). It demonstrated that I/R weakened myocardial function and induced cell apoptosis.

TGFβ1 Unregulated in Myocardium After I/R

qRT-PCR showed that TGF β 1 mRNA expression significantly elevated in myocardium from I/R tissue compared with Sham group (Figure 2A). Western blot revealed that TGF β 1 protein level obviously enhanced in I/R group compared with Sham (Figure 2B).

I/R Treatment Promoted TGF^{β 1} *Expression and Apoptosis of H9C2 Cells*

Compared with control, I/R treatment markedly increased TGF β 1 mRNA and protein expressions in H9C2 cells (Figure 3A and B). Flow cytometry detection demonstrated that I/R treatment induced ROS production in H9C2 cells (Figure 3C). Moreover, TUNEL assay showed that I/R treatment elevated H9C2 cell apoptosis (Figure 3D).

TGFβ1 Overexpression Alleviated ROS Production and Apoptosis of H9C2 Cells After I/R

Compared with H9C2 cells transfected by pI-RES2-Blank, TGF β 1 protein significantly increased in H9C2 cells transfected by pIRES2-TGF β 1, suggesting successful TGF β 1 over-expression (Figure 4A). Flow cytometry revealed that H9C2

Figure 1. Cardiac function reduced, while myocardial cell apoptosis enhanced after I/R injury. (A) ultrasonic cardiogram detection of LVFS; (B) ultrasonic cardiogram detection of LVEF; (C) TUNEL assay detection of cell apoptosis. a p<0.05, compared with Sham group. b, p<0.05, compared with 6 h.

cell apoptosis rate after I/R was obviously declined after transfected by TGF β 1 plasmid, while LY364947 treatment increased cell apoptosis (Figure 4B). DCFH-DA probe staining demonstrated that TGF β 1 over-expression markedly reduced ROS production in H9C2 cells after I/R, whereas LY364947 attenuated ROS reduction (Figure 4C).

Discussion

AMI is a common cardiovascular disease that is one of the most usual causes of heart failure¹⁴. AMI is characterized as a variety of inducements, complicated pathogenesis, and in critical condition. Timely and effectively treatment is the key to save the life and reduce the complications¹⁵. Following the increase of elderly population proportion, speeding up of life rhythm, diet change, and the enhancement of psychological pressure, the incidence of AMI keeps rising in our country. AMI caused by ischemia hypoxia is usually treated by thrombolysis, coronary artery dilatation, and coronary artery bypass surgery in the clinic to restore the blood reperfusion. However, myocardial I/R does not make the myocardium back to the normal physiological environment, but causes more serious I/R injury at the same time¹⁶. Therefore, exploration of the mechanism of I/R injury to restore blood supply and reduce the I/R injury is of great significance to improve AMI treatment effect and prognosis¹⁷. Cell apoptosis is the characteristic change of I/R injury, which determines the degree of I/R injury. Also, the degree of myocardial cell apoptosis affects the AMI treatment effects and the prognosis. Myocardial apoptosis plays an important role in the process of cardiac remodeling pathological physiology after I/R. The attenuation of myocardial cell apoptosis can improve myocardial function after ischemia and delay myocardial remodeling process¹⁸.

TGF β is a kind of superfamily protein polypeptide with similar structure and hormone activity. Up to now, there are more than 30 kinds of TGF β

Figure 2. TGF β 1 uregulated in myocardium after I/R. (A) qRT-PCR detection of TGF β 1 mRNA expression; (B) Western blot detection of TGF β 1 protein expression. a p<0.05, compared with Sham group.

protein were found¹⁹. Almost all normal and cancerous tissues and cells can express some TGF β and TGF β receptor. TGF β superfamily contained at least 6 kinds of TGF β , while three types were identified from mammalian, including TGF β 1, TGFβ2, and TGFβ3. TGFβ1 showed the highest content and strongest activity⁸. TGFβ1 is a type of protein peptide with multiple functions. It involves in cell proliferation⁷, differentiation, apoptosis⁸, anti-oxidation damage⁹, and other biological

Figure 3. I/R treatment promoted TGF β 1 expression and apoptosis of H9C2 cells. (A) qRT-PCR detection of TGF β 1 mRNA expression; (B) Western blot detection of TGF β 1 protein expression; (C) Flow cytometry detection of ROS; (D) Flow cytometry detection of cell apoptosis. * p<0.05, compared with control.

Figure 4. TGF β 1 overexpression alleviated ROS production and apoptosis of H9C2 cells after I/R. (A) Western blot detection of TGF β 1 protein expression; (B) Flow cytometry detection of cell apoptosis; (C) Flow cytometry detection of ROS content.

processes. Numerous studies¹⁰⁻¹³ demonstrated that TGFB1 upregulated in heart, brain, and kidney during I/R. TGF^{β1} changes during I/R injury suggested it may be involved in the repair process of injury. On the contrary, endogenous TGFB1 deficiency may be related to or aggravate I/R injury^{10,11}. TGF_{β1} is mainly produced by myocardial cells and cardiac fibroblasts. It was found that TGF β 1 expressive abundance was low in the normal myocardium, while it exhibited certain elevation during ischemia hypoxia or I/R^{10,11}. It is speculated that TGF^{β1} upregulation may participate in the endogenous protective mechanism of the myocardial cell I/R injury. Thus, increasing TGF β 1 expression may alleviate I/R injury. This study explored the significance of TGFB in myocardial cell apoptosis induced by I/R.

Echocardiography showed that LVFS and LVEF exhibited no changes in Sham group, while they were significantly decreased in I/R group with time dependence. It indicated the successful establishment of rat I/R model. Flow cytometry revealed that myocardial cell apoptosis rate at each time point in I/R group was markedly higher than that in Sham group, which was similar to the report of Jian et al²⁰ and Zhang et al²¹. Our findings demonstrated that TGFB1 expression in myocardium from I/R rat was markedly higher than the Sham group. Mortazavi-Haghighat et al²² reported that I/R treatment apparently elevated TGF_{β1} expression in a blood vessel and skin fibroblast. Yang et al¹⁰ and Chen et al¹¹ showed that TGF^{β1} increased in the myocardium during I/R injury. Our study was similar to Mortazavi-Haghighat et al²², Yang et al¹⁰, and Chen et al¹¹. Nevertheless, I/R treatment significantly upregulated TGFβ1 level in H9C2 cells cultured *in vitro*. It also suggested that TGFβ1 elevation may be involved in the endogenous protective mechanism of myocardial cells during I/R injury. Further analysis exhibited that TGF^{β1} overexpression significantly alleviated ROS production and apoptosis of H9C2 cells after I/R injury. TGFB receptor inhibitor LY364947 reduced the declination of ROS production and cell apoptosis, indicating that enhancing TGFB and suppressing TGFB activity may alleviate and aggravate myocardial cell injury after I/R, respectively. Chen et al¹¹ showed that TGFβ1 pretreatment can significantly decline MMP-1 production in myocardial cells after I/R and attenuate I/R induced myocardial cell injury. Grunenfelder et al²³ demonstrated that TGF^β1 over-expression can reduce I/R injury of donor's heart in heart transplantation. Vivar et al²⁴ reported that I/R treatment-induced cardiac fibroblasts apoptosis, while TGFβ1 pretreatment obviously declined cell apoptosis induced by I/R. Its specific mechanism of apoptosis inhibition was based on activation of canonical TGFB/Smad3 and noncanonical TGFβ/EKR/Akt signaling pathways. Kim et al²⁵ suggested that the application of neutralizing antibody to block the bioactivity of TGF β 1 apparently enhanced I/R treatment induced intestinal membrane injury. Lee et al²⁶ showed that sevoflurane can protect I/R renal injury through TGF β 1, whereas blocking TGF β 1 weakened the protective effect of sevoflurane. All of these studies confirmed the protective role of TGF β 1 on I/R induced injury, which was in accordance with our results. Specifically, TGF^{β1} may reduce cell apoptosis via upregulating anti-apoptotic gene Bcl-2 expression^{10,23,27}, decline nitric oxide synthase translation, NO synthesis, and decrease nitrogenous free radical production^{28,29}. This study indicated that TGF^{β1} exhibited protective role on myocardial cell apoptosis induced by I/R injury. while the specific mechanism was still unclear. Further in-depth investigation is needed.

Conclusions

We observed that TGF β 1 alleviates myocardial cell apoptosis after I/R. Blocking TGF β 1 attenuates the protective effect of TGF β 1 on I/R injury.

Conflict of interest

The authors declare no conflicts of interest.

References

- GONG XJ, SONG XY, WEI H, WANG J, NIU M. Serum S100A4 levels as a novel biomarker for detection of acute myocardial infarction. Eur Rev Med Pharmacol Sci 2015; 19: 2221-2225.
- CHEN S, HUA F, LU J, JIANG Y, TANG Y, TAO L, ZOU B, WU O. Effect of dexmedetomidine on myocardial

ischemia-reperfusion injury. Int J Clin Exp Med 2015; 8: 21166-21172.

- RAJALEID K, JANSZKY I, HALLOVIST J. Small birth size, adult overweight, and risk of acute myocardial infraction. Epidemiology 2011; 22: 138-147.
- 4) MUNGRUE IN, ZHAO P, YAO Y, MENG H, RAU C, HAVEL JV, GORGELS TG, BERGEN AA, MACLELLAN WR, DRAKE TA, BOSTROM KI, LUSIS AJ. Abcc6 deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia-reperfusion model. Arterioscler Thromb Vasc Biol 2011; 31: 2806-2812.
- KE ZP, XU P, SHI Y, GAO AM. MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget 2016; 7: 28796-28805.
- YIN RX, LIANG WW, LIU TW, TAO XZ, ZHU LG, AL-GHA-ZALI R. Inhibitory effect of trimetazidine on cardiac myocyte apoptosis in rabbit model of ischemia-reperfusion. Chin Med Sci J 2004; 19: 242.
- 7) ZUO K, LI M, ZHANG X, LU C, WANG S, ZHI K, HE B. MiR-21 suppresses endothelial progenitor cell proliferation by activating the TGFbeta signaling pathway via downregulation of WWP1. Int J Clin Exp Pathol 2015; 8: 414-422.
- DONATI C, CENCETTI F, DE PALMA C, RAPIZZI E, BRUNELLI S, COSSU G, CLEMENTI E, BRUNI P. TGFbeta protects mesoangioblasts from apoptosis via sphingosine kinase-1 regulation. Cell Signal 2009; 21: 228-236.
- 9) PARSA R, LUND H, TOSEVSKI I, ZHANG XM, MALIPIERO U, BECKERVORDERSANDFORTH J, MERKLER D, PRINZ M, GYLLEN-BERG A, JAMES T, WARNECKE A, HILLERT J, ALFREDSSON L, KOCKUM I, OLSSON T, FONTANA A, SUTER T, HARRIS RA. TGFbeta regulates persistent neuroinflammation by controlling Th1 polarization and ROS production via monocyte-derived dendritic cells. Glia 2016; 64: 1925-1937.
- YANG BC, ZANDER DS, MEHTA JL. Hypoxia-reoxygenation-induced apoptosis in cultured adult rat myocytes and the protective effect of platelets and transforming growth factor-beta(1). J Pharmacol Exp Ther 1999; 291: 733-738.
- CHEN H, LI D, SALDEEN T, MEHTA JL. TGF-beta 1 attenuates myocardial ischemia-reperfusion injury via inhibition of upregulation of MMP-1. Am J Physiol Heart Circ Physiol 2003; 284: H1612-1617.
- 12) ALIPANAHZADEH H, SOLEIMANI M, SOLEIMANI ASL S, POURHEYDAR B, NIKKHAH A, MEHDIZADEH M. Transforming growth factor-alpha improves memory impairment and neurogenesis following ischemia reperfusion. Cell J 2014; 16: 315-324.
- GUAN Q, NGUAN CY, DU C. Expression of transforming growth factor-beta1 limits renal ischemia-reperfusion injury. Transplantation 2010;89: 1320-1327.
- 14) TARIO MU, TARIO AM, TAN CD, RODRIGUEZ ER, MENON V. Left ventricular thrombosis can still complicate acute myocardial infarction. Cleve Clin J Med 2016; 83: 819-826.
- 15) MARENZI G, COSENTINO N, BOEDDINGHAUS J, TRINEI M, GIORGIO M, MILAZZO V, MOLTRASIO M, CARDINALE D, SANDRI MT, VEGLIA F, BONOMI A, KAECH M, TWERENBOLD

R, NESTELBERGER T, REICHLIN T, WILDI K, SHRESTHA S, KOZHUHAROV N, SABTI Z, CIPOLLA CM, MUELLER C, BARTO-RELLI AL. Diagnostic and prognostic utility of circulating cytochrome c in acute myocardial infarction. Circ Res 2016; 119: 1339-1346..

- 16) SALLOUM FN, HOKE NN, SEROPIAN IM, VARMA A, OWNBY ED, HOUSER JE, VAN TASSELL BW, ABBATE A. Parecoxib inhibits apoptosis in acute myocardial infarction due to permanent coronary ligation but not due to ischemia-reperfusion. J Cardiovasc Pharmacol 2009; 53: 495-498.
- HASHMI S, AL-SALAM S. Acute myocardial infarction and myocardial ischemia-reperfusion injury: a comparison. Int J Clin Exp Pathol 2015; 8: 8786-8796.
- 18) ZENG XC, LI L, WEN H, BI O. MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury-induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator-activated receptor gamma. Mol Med Rep 2016 ;14: 129-136.
- 19) LIU Y, ZHENG WK, GAO WS, SHEN Y, DING WY. Function of TGF-beta and p38 MAKP signaling pathway in osteoblast differentiation from rat adipose-derived stem cells. Eur Rev Med Pharmacl Sci 2013; 17: 1611-1619.
- 20) JIAN J, XUAN F, QIN F, HUANG R. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats. Drug Des Devel Ther 2015; 9: 5933-5945.
- 21) ZHANG WP, ZONG QF, GAO Q, YU Y, GU XY, WANG Y, Li ZH, GE M. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol Med Rep 2016; 14: 3992-3998.
- 22) Mortazavi-Haghighat R, Taghipour-Khiabani K, David S, Kerrigan CL, Philip A. Rapid and dynamic regulation of TGF-beta receptors on blood vessels and

fibroblasts during ischemia-reperfusion injury. Am J Physiol Cell Physiol 2002; 282: C1161-1169.

- 23) GRUNENFELDER J, MINIATI DN, MURATA S, FALK V, HOYT EG, ROBBINS RC. Up-regulation of Bcl-2 through hyperbaric pressure transfection of TGF-beta1 ameliorates ischemia-reperfusion injury in rat cardiac allografts. J Heart Lung Transplant 2002; 21: 244-250.
- 24) VIVAR R, HUMERES C, AYALA P, OLMEDO I, CATALAN M, GARCIA L, LAVANDERO S, DIAZ-ARAYA G. TGF-beta1 prevents simulated ischemia/reperfusion-induced cardiac fibroblast apoptosis by activation of both canonical and non-canonical signaling pathways. Biochim Biophys Acta 2013; 1832: 754-762.
- 25) KIM M, PARK SW, D'AGATI VD, LEE HT. Isoflurane post-conditioning protects against intestinal ischemia-reperfusion injury and multiorgan dysfunction via transforming growth factor-beta1 generation. Ann Surg 2012; 255: 492-503.
- 26) LEE HT, CHEN SW, DOETSCHMAN TC, DENG C, D'AGA-TI VD, KIM M. Sevoflurane protects against renal ischemia and reperfusion injury in mice via the transforming growth factor-beta1 pathway. Am J Physiol Renal Physiol 2008; 295: F128-F136.
- 27) GRUNENFELDER J, MINIATI D, MURATA S, KOWN M, FALK V, HOYT EG, KORANSKY M, ROBBINS R. Upregulation of BCL-2 via hyperbaric pressure transfection of TGF- beta1 ameliorates ischemia/reperfusion injury in rat cardiac allografts. J Heart Lung Transplant 2001; 20: 154.
- 28) LI HX, LIU H, WANG CM, WANG HJ, CHEN J. Artesunate restraining MAPK passage by smad7 to resist pulmonary fibrosis. Eur Rev Med Pharmacol Sci 2014; 18: 3199-3204.
- 29) DIAO OX, ZHANG JZ, ZHAO T, XUE F, GAO F, MA SM, WANG Y. Vitamin E promotes breast cancer cell proliferation by reducing ROS production and p53 expression. Eur Rev Med Pharmacol Sci 2016; 20: 2710-2717.