2017: 21: 1559-1567

The polymorphism of XRCC1 and coronary artery disease risk: a meta-analysis

S.-J. GUO¹, Y.-T. ZHOU¹, W.-Y. LIU², Q.-N. ZUO¹, X.-H. LI¹

Shujin Guo, Yutian Zhou and Wenyuan Liu contributed equally to this work and are joint first authors

Abstract. – OBJECTIVE: Coronary artery disease (CAD) is a life-threatening disease and is caused by various factors, with genetic variation being an important risk factor. The association between X-ray repair cross-complementing group 1 (XRCC1) polymorphisms and CAD has been extensively studied with conflicting results. We performed a meta-analysis to investigate the overall association between XRCC1 polymorphisms and CAD risk.

MATERIALS AND METHODS: We searched PubMed and Embase databases until October 19, 2016. The total number and distribution of genotypes, genotyping methods, and ethnicity were extracted. Overall and subgroup analyses were performed.

RESULTS: A total of seven publications involving 1.862 subjects and 1.568 controls were included in this meta-analysis. The Arg399Gln and Arg194Trp polymorphisms of XRCC1 were analyzed. The results indicated that the XRCC1 Arg399GIn homozygous GG genotype showed no association with CAD risk [GG vs. GA+AA: odd's ratio (OR) = 0.95, 95% confidence interval (CI) = 0.82-1.11, p = 0.53] both in the overall and subgroups evaluation. However, the XRCC1 Arg194Trp homozygous TT genotype was associated with an increased CAD risk [(TT vs. TC+CC: OR =1.52, 95%CI = 1.16-2.00, p=0.003)]. Subgroup analysis based on ethnicity showed a significant increase in the association of CAD risk and the Arg194Trp gene polymorphism among the Asian population.

conclusions: This meta-analysis suggested that TT genotype in the Arg194Trp polymorphism contributes to the CAD susceptibility, particularly in the Asian population.

Key Words

X-ray repair cross-complementing group 1 (XRCC1), Coronary artery disease, Polymorphism, Meta-analysis.

Introduction

Coronary artery disease (CAD) is universally acknowledged as the leading cause of morbidity and mortality, especially in the elderly¹. Hypertension, smoking, diabetes mellitus, and hypercholesterolemia are identified as risk factors. While the exact cause of CAD is still unknown², there is a consensus that CAD results from environmental and genetic factors^{3,4}. A large number of CAD susceptible genes have been identified in genome-wide association study (GWAS) and genetic association studies⁵⁻⁸. X-ray repair cross-complementing group 1 (XRCC1) is one of the genes identified and studied.

Deoxyribonucleic acid (DNA) damage could cause gene mutations that contribute to CAD pathogenesis⁹. To ameliorate the unrepaired damage, repair mechanisms are deployed to maintain the integrity of the genetic blueprint^{10,11}. XRCC1 plays an important role in the base-excision repair (BER) pathway, which is a part of DNA repair. Studies on XRCC1 polymorphisms Arg-399Gln (rs25487) at codon 399 and Arg194Trp (rs199782) at codon 194 suggested a potential association with risk of cancers. The gene conserved site at codon 399 in exon 10 leads to a G→A substitution and the amino acid alteration of arginine (Arg) to glutamine (Gln), whereas codon 194 in exon 6 leads to a C→T substitution and the alteration of Arg to tryptophan (Trp). The 399Gln and 194Trp alleles were significantly associated with a higher level of DNA adducts, chromosomal damage, and prolonged DNA repair, which could affect the BER pathway¹². The association between XRCC1 polymorphisms and CAD risk had been studied with conflicting

¹The Affiliated Hospital of University of Electronic Science and Technology of China, Internal Medicine of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China

²The East Ward of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China

results reported. Hence, we conducted a meta-analysis to investigate the association between XRCCI and CAD risk.

Materials and Methods

Study Identification and Selection

Studies investigating the association between XRCC1 polymorphisms and CAD risk were searched in Pubmed and Embase databases updated on October 19, 2016 by two authors. The language was limited to English. The search terms used were as follows: "coronary artery disease" in combination with "polymorphism or variant or mutation" and "XRCC1." The inclusion criteria were as follows: (1) studies that evaluated the association between XRCC1 polymorphism and CAD risk; (2) genetic association case-control studies; (3) genotype distributions for cases and controls must be available to estimate an odd's ratio (OR) with 95% confidence interval (CI). Studies were excluded if one of the following were satisfied: (1) genotype frequency was not reported; (2) abstracts, letters, and reviews only; (3) repeated and overlapping data were involved, and the study with the largest participants was included.

Data Extraction

Two reviewers independently checked all relevant studies and reached a consensus on all items. Author, year of publication, ethnicity, genotyping methods, total number and distribution of genotypes, case definition (by coronary angiography as having ≥50% luminal stenosis), and source of controls were extracted.

Statistical Analysis

Hardy-Weinberg equilibrium (HWE) was tested using Pearson's χ^2 -test (p<0.05 indicates deviation from HWE). The strength of the association between XRCC1 polymorphisms at codon 399 and codon 194 and CAD risk were assessed by OR with the corresponding 95% CI. Heterogeneity was assessed by a χ^2 -based Q statistic, with p<0.10 considered to be statistically significant. The recessive genetic model was used to evaluate the pooled OR of each polymorphism (GG vs. AG+AA for codon 399 and TT vs. TC+CC for codon 194). Dominant genetic models (GG+AG vs. AA and TT+TC vs. CC), codominant models (GG vs. AA and TT vs. CC),

and allele models (G vs. A and T vs. C) were also used to assess the association of each genotype with the risk of CAD. OR was calculated using a random-effects or fixed-effects model according to the heterogeneity. For a p < 0.10, the pooled OR was calculated using random-effects model; otherwise, a fixed-effects model was used. Z-test was performed to evaluate the significance of the pooled OR, and p < 0.05 was considered to be statistically significant. Subgroup analyses were performed for accordance with HWE, case definition, and ethnic group. Publication bias was analyzed using Begg's funnel plots and Egger's test. Sensitivity was analyzed to identify the potential influence of the individual data set to the pooled OR. Revman 5.0 software (Review Manager, Version 5.0, the Nordic Cochrane Centre, the Cochrane Collaboration, Copenhagen, 2008) and STATA 12.0 software (Statistical Software, Release 12.0, College Station, TX: Stata Corp LP, American, 2009) were used for all statistical tests.

Results

Characteristics of Included Studies

A total of 43 articles were identified after an initial search of the Pubmed and Embase databases (Figure 1). Eight studies evaluating the association between XRCC1 polymorphisms and CAD risk were included in the meta-analysis¹³⁻²⁰. One study was excluded because it evaluated the rs3213245 single nucleotide polymorphisms (SNP) in XRCC1 and CAD²⁰. A total of 1.862 subjects and 1.568 controls were included in the data analysis from six studies related to codon 399 and four studies related to codon 194. Genotypes in the control groups were tested for accordance with HWE; one study on codon 399 and two studies on codon 194 deviated from HWE. The characteristics of each case-control study are summarized in Table I, and genotype and allele distributions are listed in Table II.

Quantitative Synthesis

To select the most suitable calculation model for the XRCC1 Arg399Gln polymorphism, we analyzed the heterogeneity of GG vs. AG+AA in all six studies. The χ^2 value was 6.39 with 5 degrees of freedom (p=0.27); hence, we choose the fixed-effects model to synthesize the data. Overall OR was 0.95 (95% CI = 0.82-1.11), and

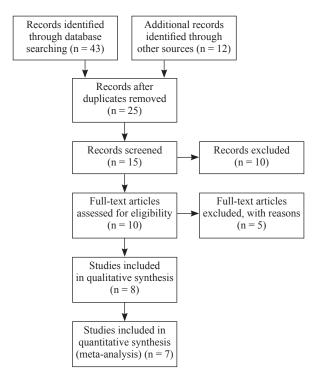


Figure 1. The flow diagram of included and excluded studies.

overall effect Z value was 0.64 (p=0.53) for the GG vs. GA +AA model, which showed no association with CAD risk. Also, the I-square value, which is another index of heterogeneity, was 22%, suggesting an absence of heterogeneity. Subgroups analyses were performed for ethnicity, case definition, and accordance with HWE (Figure 2); all results showed no association with CAD risk. A summary of other genetic comparisons is listed in Table III.

For the XRCC1 Arg194Trp polymorphism, we analyzed the heterogeneity of TT vs. TC+CC in all four studies. The χ^2 value was 1.74 with 3 degrees of freedom (p=0.63) in a fixed-effects model. Additionally, the I-square value was 0%, suggesting an absence of heterogeneity. Thus, we choose the fixed-effects model for data analysis. The pooled OR was 1.47 (1.13-1.93), and the effect Z value was 2.83 (p=0.005). Subgroup analysis of TT vs. TC+CC based on ethnicity showed an OR of 1.52 (95% CI = 1.16-2.00, p=0.003) in the Asian population. Both results suggested an increased CAD risk with the TT genotype. In accordance with the HWE subgroup analysis, no association was found between the XRCC1 Arg194Trp gene polymorphism and CAD (Figure 3). Genetic comparisons are summarized in Table III.

Table 1. Characteristics of case-control studies included in the present meta-analysis.

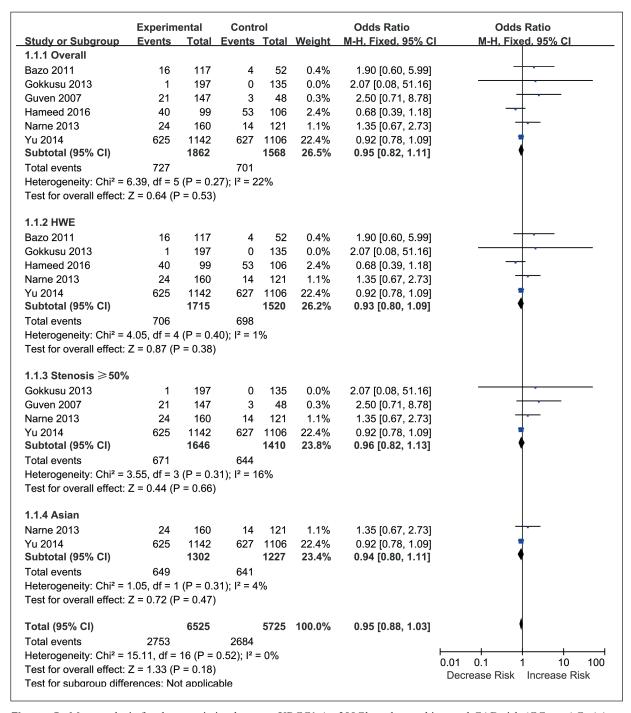
Genotype	Author	Year	Country	Ethnicity	Case	Control	Genotyping method	HWE	Coronary angiography	Stenosis
rs25487	Bazo	2011	Brazil	Latin	117	52	PCR-RFLP	Yes	Yes	>20%
(codon399)	Gokkusu	2013	Turkey	Unknown	197	135	PCR-RFLP	Yes	Yes	>20%
,	Guven	2007	Turkey	Turkish	147	48	PCR-RFLP	No	Yes	>20%
	Hameed	2016	Pakistan	Mixed	66	106	PCR-RFLP	Yes	Not mentioned	Not mentioned
	Narne	2013	India	Asian	160	121	PCR-RFLP	Yes	Yes	>20%
	Yu	2014	China	Asian	1142	1106	PCR-LDR	Yes	Yes	>50%
rs1799782	Bazo	2011	Brazil	Latin	46	39	PCR-RFLP	Yes	Yes	>20%
(codon194)	Hameed	2016	Pakistan	Mixed	66	106	PCR-RFLP	Yes	Not mentioned	Not mentioned
	Pahlavanneshan	2015	Iran	Asian	203	203	PCR-RFLP	No	Yes	Not mentioned
	Yu	2014	China	Asian	1142	1106	PCR-LDR	No	Yes	>20%

PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism. HEW: Hardy-Weinberg equilibrium. PCR-LDR: polymerase chain reaction-ligase detection

 Table II. Distributions of CRCC1 genotype and allele among CAD patients and controls.

Genotype Author	Author	Year		Case			Control		۲	Case	Col	Control	Case	Control
			¥	AG	gg	*	AG	99	<	ט	∢	ט		
rs25487	Bazo	2011	25	92	16	20	28	4	126	108	89	36	117	52
(codon399)	Gokkusu	2013	169	27	-	119	16	0	365	29	254	16	197	135
,	Guven	2007	50	92	21	12	33	B	176	118	57	39	147	48
	Hameed	2016	31	28	40	23	30	53	06	108	9/	136	66	106
	Narne	2013	52	84	24	58	49	14	188	132	165	77	160	121
	Yu	2014	80	437	625	09	419	627	297	1687	539	1673	1142	1106
rs1799782	Bazo	2011	40	9	0	28	10	_	98	9	99	12	46	39
(codon194)	Hameed	2016	94	33	7	66	4	n	191	7	202	10	66	106
,	Pahlavanneshar	n 2015	155	44	4	182	18	B	354	52	382	24	203	203
	Yu	2014	517	486	139	483	531	92	1520	764	1497	715	1142	1106

Sensitivity Analysis and Publication Bias


Sensitivity analysis was assessed to evaluate the stability of the individual data to the pooled OR (GG vs. AG+AA and TT vs. TC+CC). After sequentially excluding each study, the results suggested stable meta-analysis both in XRCC1 Arg399Gln and Arg194Trp SNPs.

Publication bias was assessed by Begg's funnel plots and Egger's test using STATA 12.0 software. The shape of the funnel plots appeared symmetrical in the GG vs. AG+AA comparison model of the XRCC1 Arg399Gln polymorphism, suggesting the absence of publication bias (Figure 4). The Egger's test was performed to provide statistical evidence of funnel plot asymmetry. The *p*-value was 0.817 for codon 399, indicating an absence of publication bias. From the four articles regarding Arg194Trp, the shape of the funnel plots appeared symmetrical in the TT vs. TC+CC model, and the Egger's test *p*-value was 0.122, showing no publication bias.

Discussion

CAD is caused by a combination of genetic and environmental factors. Differences in individual susceptibility to CAD exist when exposed to the same environment²¹. Gene variants may play a vital function in the pathogenesis of CAD, especially in the young generation²²; hence, increasing numbers of studies regarding SNP and the pathogenesis of CAD are published every year^{23,24}. GWAS is a crucial method to identify susceptible genes for CAD, and many candidate genes have been identified in different ethnic populations to date. Mutations in the CDKN2A/2B/ ANRIL gene cluster, PHACTR1, NHGRI, and KCNE2 were thought to be CAD genetic risk factor²⁵. Numerous studies on XRCC1 polymorphisms have found that SNPs are associated with CAD risk. Four of the included studies¹⁶⁻¹⁹ suggested a significant association between XRCC1 polymorphisms and CAD, whereas other papers showed no association¹³⁻¹⁵. Hence, we performed this meta-analysis to comprehensively assess the association of XRCC1 and CAD.

The meta-analysis involved seven articles (six reports related to codon 399 and four studies related to codon 194) involving 1.862 subjects and 1.568 controls. Overall, there was no association between the XRCC1 Arg399Gln polymorphism and risk of CAD. Subgroup analysis was performed based on ethnicity, case definition, and

Figure 2. Meta-analysis for the association between XRCC1 Arg399Gln polymorphism and CAD risk (GG vs. AG+AA, fixed-effects model).

accordance with HWE. Ethnicity has been shown to be an important factor in the pathogenesis of CAD, and SNPs can be used to distinguish among different ethnic populations. Also, case definition can influence the result of the meta-analysis. In this study, five studies demonstrated

accordance with HWE analysis, with no association between XRCC1 Arg399Gln polymorphism and CAD risk shown. Cases were defined as having ≥50% luminal stenosis after angiography in four studies^{13, 15-17}, and the assessment showed the absence of an association between XRCC1

Table III. Summary	of results from	different com	parative ;	genetic models.

rs25487		GG vs. AG+AA	GG+AG vs. AA	GG vs. AA	G vs. A
(codon399)	No.	OR (95%CI) P	OR (95%CI) P	OR (95%CI) P	OR (95%CI) <i>p</i>
Total By HWE By stenosis ≥509 Asian	6 5 % 4 2	0.95 [0.82-1.11] 0.5 0.93 [0.80-1.09] 0.3 0.96 [0.82-1.13] 0.6 0.94 [0.80-1.11] 0.4	38 1.18 [0.72-1.94] 0.52 66 1.05 [0.63-1.74] 0.85	1.11 [0.60-2.04] 0.74 1.20 [0.62-2.29] 0.59	1.08 [0.83-1.04] 0.58 1.10 [0.81-1.50] 0.54 1.10 [0.83-1.46] 0.50 1.14 [0.70-1.86] 0.60
rs1799782		TT vs. TC+CC	TT+TC vs. CC	TT vs. CC	T vs. C
rs1799782 (codon194)	No.	TT vs. TC+CC OR (95%CI) p		TT vs. CC OR (95%CI) p	Τ vs. C OR (95%CI) ρ

Arg399Gln polymorphism and CAD risk. For the ethnicity analysis, which included only two Asian studies, no association appeared to be modified. More studies are needed for further validation of

the association between the XRCC1 Arg399Gln polymorphism and CAD risk, especially for different ethnicities, such as Caucasian, Latin, and African populations.

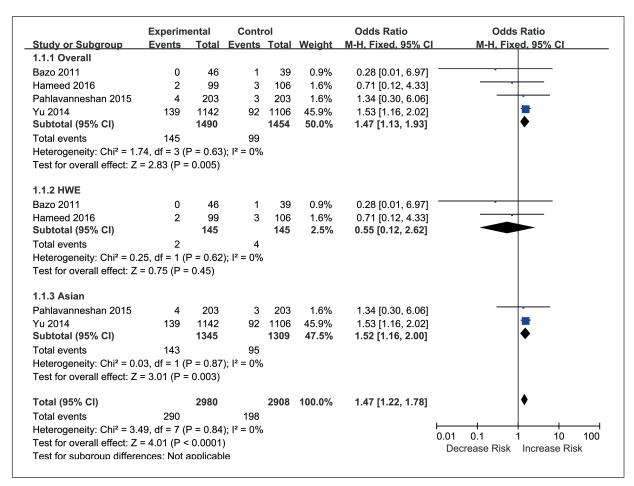
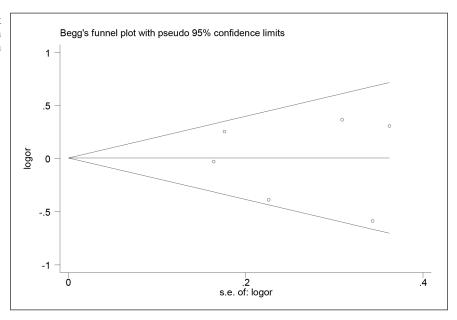



Figure 3. Meta-analysis for the association between XRCC1 Arg194Trp polymorphism and CAD risk (TT vs. TC+CC fixed- effects model).

Figure 4. Begg's funnel plot for publication bias in selection of studies on XRCC1 Arg399Gln polymorphism (GG vs. AG+AA).

For the XRCC1 Arg194Trp polymorphism, four studies involving 1.490 cases and 1.454 controls were analyzed. In this meta-analysis, the TT genotype showed increased risk for CAD in the overall and ethnic evaluations, and no association was found by HWE analysis. Additional studies including multi-center and multi-ethnic data are needed to further assess the association of XRCC1 Arg194Trp polymorphism and CAD risk.

Heterogeneity was a key factor in determining the reliability of results in the meta-analysis. Significant heterogeneity was absence for overall comparisons in both recessive genetic models, indicating homogeneity of the included studies for the XRCC1 Arg399Gln and Arg194Trp SNPs.

Publication bias is another important factor to evaluate the reliability of results, and publication bias along with the study quality is vital for conducting a meta-analysis. Publication bias was analyzed using Begg's funnel plots and Egger's test in our study. No significant publication bias was detected, indicating the reliability of our results. Sensitivity analysis suggested similar results. Furthermore, selection bias was diminished by strict inclusion and exclusion criteria.

While this is an up-to-date meta-analysis, some limitations are present. Firstly, as we only searched selected databases in this meta-analysis, publication restriction may exist. It is possible that some unpublished studies with unidentified null results were excluded in these databases. Secondly, the included studies only consisted of Asian, Turkish, and Latin populations; the results may not be applicable to other

ethnic populations. Hence, more studies are warranted, especially for different ethnicities. Thirdly, our search only included studies published in English. Nevertheless, the advantages of this meta-analysis include the comprehensive assessment of XRCC1 polymorphisms and CAD risk, which could strengthen the power to evaluate associations compared with a single study. Also, the methodological issues, such as heterogeneity, publication bias, and sensitivity analysis were investigated in this study.

Conclusions

Till date, this is the first meta-analysis to investigate the association of XRCC1 polymorphisms (codon 399 and codon 194) and CAD risk. Our results indicated that the XRCC1 Arg399Gln polymorphism was not associated with CAD risk, whereas the XRCC1 Arg194Trp TT genotype could increase CAD risk in the overall and Asian populations. The results suggest that the XRCC1 Arg194Trp polymorphism could be a susceptibility marker for CAD. Further case-control investigations are required to validate our data.

Acknowledgements

This work was funded by Grant ZYGX2015J127 from the University of Electronic Science and Technology of China and Grant 16PJ416 from the Health and Family Planning Commission of Sichuan Province to Dr Shujin Guo. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors contribution

Shujin Guo, Yutian Zhou, Wenyuan Liu contribute equally to the study design, data collection and analysis. Qiunan Zuo and Xiaohui Li contribute to the statistical analysis. Shujin Guo writes and revises the manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest for this article

References

- 1) Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 2016; 133: e38-360.
- XIE MY, LV Q, WANG J, YIN JB. Assessment of myocardial segmental function with coronary artery stenosis in multi-vessel coronary disease patients with normal wall motion. Eur Rev Med Pharmacol Sci 2016; 20: 1582-1589.
- PJANIC M, MILLER CL, WIRKA R, KIM JB, DIRENZO DM, QUERTERMOUS T. Genetics and genomics of coronary artery disease. Curr Cardiol Rep 2016; 18: 1-10.
- ROBERTS R, STEWART AFR. Genes and coronary artery disease: where are we? J Am Coll Cardiol 2012; 60: 1715-1721
- 5) O'Donnell CJ, Kavousi M, Smith AV, Kardia SL, Fei-TOSA MF, HWANG SJ, SUN YV, PROVINCE MA, ASPELUND T, DEHGHAN A, HOFFMANN U, BIELAK LF, ZHANG Q, EIriksdottir G, van Duijn CM, Fox CS, de Andrade M, Kraja AT, Sigurdsson S, Elias-Smale SE, Murabito JM, LAUNER LJ, VAN DER LUGT A, KATHIRESAN S, KRESTIN GP, HERRINGTON DM, HOWARD TD, LIU Y, POST W, MITCHELL BD, O'CONNELL JR, SHEN H, SHULDINER AR, ALTSHULER D, ELOSUA R, SALOMAA V, SCHWARTZ SM, SISCOVICK DS, VOIGHT BF, BIS JC, GLAZER NL, PSATY BM, BOERWINKLE E, Heiss G, Blankenberg S, Zeller T, Wild PS, Schna-BEL RB, SCHILLERT A, ZIEGLER A, MÜNZEL TF, WHITE CC, ROTTER JI, NALLS M, OUDKERK M, JOHNSON AD, NEW-MAN AB, UITTERLINDEN AG, MASSARO JM, CUNNINGHAM J, Harris TB, Hofman A, Peyser PA, Borecki IB, Cup-PLES LA, GUDNASON V, WITTEMAN JC. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation 2011; 124: 2855-2864.
- 6) LEE JY, LEE BS, SHIN DJ, WOO PK, SHIN YA, JOONG KK, HEO L, YOUNG LJ, KYOUNG K Y, JIN KY, BUM HC, LEE SH, YOON D, JUNG KH, OH IY, KIM BJ, LEE J, PARK SJ, KIM J,

- KAWK HK, LEE JE, PARK HK, LEE JE, NAM HY, PARK HY, SHIN C, YOKOTA M, ASANO H, NAKATOCHI M, MATSUBARA T, KITAJIMA H,YAMAMOTO K, KIM HL, HAN BG, CHO MC, JANG Y, KIM HS, EUY PJ, LEE JY. A genome-wide association study of a coronary artery disease risk variant. J Hum Genet 2013; 58: 120-126.
- MEHTA NN. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Circ Cardiovasc Gene 2011; 4: 327-329
- 8) BASTAMI M, NARIMAN-SALEH-FAM Z, SAADATIAN Z, NARIMAN-SALEH-FAM L, OMRANI MD, GHADERIAN SM, MASOTTI A. The miRNA targetome of coronary artery disease is perturbed by functional polymorphisms identified and prioritized by in-depth bioinformatics analyses exploiting genome-wide association studies. Gene 2016; 594: 74-81.
- BOTTO N, MASETTI S, PETROZZI L, VASSALLE C, MANFREDI S, BIAGINI A, ANDREASSI MG. Elevated levels of oxidative DNA damage in patients with coronary disease. Coronary Artery Dis 2002; 13: 269-274.
- JIN ZL, PEI H, XU YH, YU J, DENG T. The SUMO-specific protease SENP5 controls DNA damage response and promotes tumorigenesis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2016; 20: 3566-3573.
- SIMON AS, CHITHRA V, VIJAYAN A, DINESH RD, VIJAYA-KUMAR T. Altered DNA repair, oxidative stress and antioxidant status in coronary artery disease. J Biosciences 2013; 38: 385-389.
- Qu T, Morii E, Oвокі K, Lu Y, Morimoto K. Micronuclei in EM9 cells expressing polymorphic forms of human XRCC1. Cancer Lett 2005; 221: 91-95.
- 13) GUVEN M, GUVEN GS, OZ E, OZAYDIN A, BATAR B, ULU-TIN T, HACIHANEFI OGLU S, DOMANIC N. DNA repair gene XRCC1 and XPD polymorphisms and their association with coronary artery disease risks and micronucleus frequency. Heart Vessels 2007; 22: 355-360.
- 14) BAZO AP, JR SD, SALVADORI RA, SODRÉ LP, DA SILVA GN, DE CAMARGO EA, RIBEIRO LR, SALVADORI DM. DNA repair gene polymorphism is associated with the genetic basis of atherosclerotic coronary artery disease. Cardiovasc Pathol 2011; 20: 9-15.
- 15) Gokkusu C, Cakmakoglu B, Dasdemir S, Tulubas F, ELITOK A, TAMER S, SECKIN A, UMMAN B. Association between genetic variants of DNA repair genes and coronary artery disease. Genet Test Mol Biomarkers 2013; 17: 307-313.
- 16) NARNE P, PONNALURI KC, SINGH S, SIRAJ M, ISHAO M. Arg399Gln polymorphism of X-ray repair cross-complementing group 1 gene is associated with angiographically documented coronary artery disease in South Indian type 2 diabetic patients. Genet Test Mol Biomarkers 2013; 17: 236-241.
- 17) Yu X, Liu J, Zhu H, Xia Y, Gao L, Dong Y, Jia N, Shen W, Yang Y, Niu W. Synergistic association of DNA repair relevant gene polymorphisms with the risk of coronary artery disease in northeastern Han Chinese. Thromb Res 2014; 133: 229-234.

- 18) HAMEED H, FARYAL M, ASLAM MA, AKBAR A, SAAD AB, PASHA MB, LATIF M, SHAIKH RS, ALI M, IOBAL M. Association of polymorphisms (rs 1799782, rs25489 and rs25487) in XRCC1 and (rs 13181) XPD genes with acute coronary artery syndrome in subjects from Multan, Pakistan. Pak J Pharm Sci 2016; 29: 869-876.
- 19) Pahlavanneshan S, Ahmadi A, Boroumand MA, Sade-Ghian S, Behmanesh M. Association of -77T>C and Arg194trp polymorphisms of XRCC1with risk of coronary artery diseases in Iranian population. Iran J Basic Med Sci 2016; 19: 194-200.
- 20) AHMADI A, BEHMANESH M, BOROUMAND MA, TAVALLAEI M. Up-regulation of MSH2, XRCC1 and ATM genes in patients with type 2 diabetes and coronary artery disease. Diabetes Res Clin Pr 2015; 109: 500-506.
- 21) GHASSIBE-SABBAGH M, PLATT DE, YOUHANNA S, ABCHEE AB, STEWART K, BADRO DA, HABER M, SALLOUM AK, DOUAIHY B, EL BAYEH H, OTHMAN R, SHASHA N, KIBBANI S, CHAMMAS E, MILANE A, NEMR R, KAMATANI Y, HAGER J, CAZIER JB, GAUGUIER D, ZALLOUA PA. GENETIC

- and environmental influences on total plasma homocysteine and its role in coronary artery disease risk. Atherosclerosis 2012; 222: 180-186.
- O'Donnell CJ, Nabel EG. Genomics of cardiovascular disease. N Engl J Med 2011; 365: 2098-2109.
- 23) YANG XY, SUN JH, KE HY, CHEN YJ, XU M, LUO GH. Metallothionein 2A genetic polymorphism and its correlation to coronary heart disease. Rev Med Pharmacol 2014; 18: 3747-3753.
- 24) Gong R, Chen MH, Peng LS, Wei SL. Common genes in coronary artery disease from Europe, Asia and North America regardless of race and lifestyle. Eur Rev Med Pharmacol Sci 2015; 19: 1092-1100.
- 25) LIAN J, BA Y, DAI D, CHEN Z, LOU Y, JIANG Q, ZHAO R, SUN L, HUANG X, YE M, WANG Y, MAO H, GUAN H, XU L, GUO J, FANG P, LI J, YE H, CHEN X, PENG P, ZHOU J, DUAN S. A replication study and a meta-analysis of the association between the CDKN2A rs1333049 polymorphism and coronary heart disease. J Atheroscler Thromb 2014; 21: 1109-1120.