Imipenem-resistance in Serratia marcescens is mediated by plasmid expression of KPC-2

W.-Q. SU¹, Y.-Q. ZHU³, N.-M. DENG², L. LI¹

Abstract. – **OBJECTIVE:** Imipenem is a broadspectrum carbapenem antibiotic with applications against severe bacterial infections. Here, we describe the identification of imipenem-resistant *Serratia marcescens* in our hospital and the role of plasmid-mediated KPC-2 expression in imipenem resistance.

MATERIALS AND METHODS: We used the modified Hodge test to detect carbapenemase produced in imipenem-resistant strains.

RESULTS: His resistance can be transferred to *E. coli* in co-culture tests, which implicates the plasmid in imipenem resistance. PCR amplification from the plasmid identified two proconsistent with KPC-2 of 583 and 1050 were also present in *E. coli* after co-culture. The restriction pattern for both plasmids was tical, supporting the transfer from the S. nescens isolate to E. coli. Finally, gene seque ing confirmed KPC-2 in the pla

CONCLUSIONS: Due to the rest of KPC 2 in the imipenem-resistant 5. marc ens, we propose that KPC-2 me and a santit ic resistance in the S. marcescens

Key Words:

Imipenem, Drug sistance, Seri arcescens, Plasmid, KPC-2.

Introduct

of bacteria resistant to carbaacs brir new challenges to the penen stat es indicates that Eschea pneumoniae, and other coli, the main community- and al-acquired pathogenic infections². Drug s³ in our hospital suggest that drug sistance rates of K. pneumoniae to imipenem, penem, and ertapenem are 1.5, 2, and 2.9%, ively. Multiple drug resistance rate to extended spectrum β-lactamase (ESBLs) and Ampc enzyme are 45%. The drug-resistance mechanism is considered to be mediated mainly by the production of papene enzy s that break down the antibiotics of describe the identification of imipenem cant Serratia marce ens a malyze its drug-resistance mechanism, conclude that plasmid-dependent Kleb pneumoniae penemase-2 (KPC-2) and main mediator of a fipenem resistance.

2017: 21: 1690-1694

Mate s and Methods

Source g-Resistant Bacteria

We identified 32 multi-drug-resistant bacteria linical departments of our center after culdrug sensitivity tests. The bacterial identification by Vitek instrument (bioMerieux, Marcy, l'Etoile, France) identified 20 cases of *E. coli*, eight of *K. pneumoniae*, and four of *S. marcescens*. The average minimum inhibitory concentration (MIC) for *S. marcescens* resistance to imipenem was 46.5 + 7.2 g/ml. We used *E. coli* ATCC25922 as quality control bacteria for the drug sensitivity test.

Detection of Carbapenemase Produced by Modified Hodge test

E. coli ATCC25922 suspension was diluted to 0.5 McF with sterile saline (1:10 dilution) and inoculated into MH agar plates and dried for 5 min. Three strains were inoculated into plates containing 10 μg imipenem paper with a 1 μl inoculating loop. Then, at least 20 mm lines were drawn from the center. The plate was incubated at 35°C for 20 hr. E. coli rapid growth near the tested strains indicates the production of carbapenemase. We used as positive control K. pneumoniae strains that produce KPC-2 and as negative control K. pneumoniae ATCC700603.

Co-culture

E. coli EC600 (rifampicin, MIC> 1000 μg/ml) was inoculated into 5 ml Luria-Bertani broth with

1690

¹Department of Laboratory, Qingdao Municipal Hospital, Qingdao, China

²Department of Hospital Infection Management, Qinqdao Municipal Hospital Management, Qinqdao Municipal Management, Qi

³Affiliated Hospital of Qingdao University, Qingdao, China

imipenem-resistant *S. marcescens*. The mixture was shaken overnight. Then, 200 μl of donor strain, 100 μl of recipient strain and 600 μl of fresh LB broth were mixed together in 1.5 ml centrifuge tubes, and incubated at 35°C for 4 hr. A small volume, mixed and without the mix, was transferred on Mueller-Hinton agar plates (cefotaxime 2.0 μg/ml, rifampin 512 μg/ml), and incubated at 35°C for 24 hr. Single colonies were picked and incubated at 35°C for 4 hr. VITEK bacterial identification was used for the biochemical identification of trans-conjugants and drug sensitivity test was carried out to detect the MIC of mixed and non-mixed *E. coli*.

Plasmid purification

Plasmid Extraction Kit (Axygen, Union City, CA, USA) was used according to the instructions manual. Isoelectric focusing electrophoresis: we used a polyacrylamide gel pH 3.5-9.5 (Pharmacia co., Kalamazoo, MI, USA) in a PhastSystem electrophoresis instrument and isoelectric focusing electrophoresis, DYY-II electrophoresis instrument (Beijing Six One Instrument Factory). The ultrasonic crushing method was use plasmid extraction, and Nitrocefin (Oxo was used as a substrate. In addition, cond on should follow reference⁵. The enzyme P known β-lactamase TEM-1 (5.4), SIIV-1 (7.6) SIIV-5 (8.2) PI were compared ols.

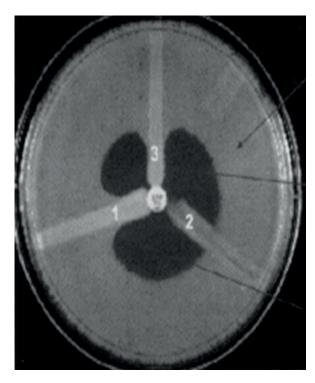
Plasmid Analysis: PCR a DNA Sequencing

BlaKPC and blaO with specific prime Table 1) reaction volume was: 50 µl 1 x PCR concentration buffer, Mg2+ dNTPs 2 h 1/L,500mol/L primer, aq 0.2. zyme and 2 mu l tem-CR System Geneplate). For e PCR, we us NY, USA). The Amp 9 (ABI co., Oyster parameters were 94°C 7 min, 94°C 45 sec. Apperature was adjusted based on the primers, and could be extended to 72°C 1 min, 30 cycles, and at last 72°C 10 min. Amplified products were resolved by 1.2% gel electrophoresis, EB staining, and photographed under the ging system. PCR products were pur ding to Purification Test Kit Manua om Shan-Technology. ghai Shenergy gaming Biologic Purified products were sent to Ha biosune Biotechnology for sequenci ncing results were compared in Bank to ia corresponding β-lactar genes.

NA m Analysis of plasm The plash d DNA was extracted by lysis, and was S. mcarried out by refere escens ealt with and Escherich oli plasmid 2 hr. Oria restriction clease at 3) mid fragment dealt by reginal plast d and striction enzyme wer led with a 0.8% agarose romide gel, ethi rophoresed at 85 V cant voltage for 75 m., and observed under light.

Stical Analis

19.0 st dical software (SPSS Inc., Chicago, 1997) was used for statistical analysis and data was expressed as mean \pm standard deviation comparison between groups was made p<0.05 was considered to be statistically significant.


Result

Results of the Improved Hodge Test

The Hodge test allows identifying bacterial strains that produce carbapenemases because they permit the growth of carbapenem-sensitive strains towards the antibiotic disc in the center of the plate (Figure 1). Imipenem creates an inhibition zone around the central disc that prevents the growth of *E. coli* ATCC25922. We identified four cases of *S. marcescens* that allow the growth of

PC. St se dees.

G	Primers	Sequence(5'-3')	Size(bp)
1	KPC-A KPC-B	TCTAAGTTACCGCGCTGAGG CCAGACGACCCCATACTCAT	583
	KPC-F KPC-R	GCTACACCTAGCTCCACCTTC TCAGTGCTCTACAGAAAACC	1050
bla _{OXA-1}	OXA-1-S OXA-1-AS	ACCCCTTAAAATTAAGCCC CTTGATTGAAGGGTTGGGCG	908

Figure 1. Improved Hodge test to detect carbapenem. 1, *Zuckerberg pneumonia* strains producing KPC-2 typeneumonia strain ATCC700603. 3, Experimental be identified).

E. coli ATCC25922, creating a leaf indetation in the inhibition area test indicates that the S. me escens ates can produce carbapenemase.

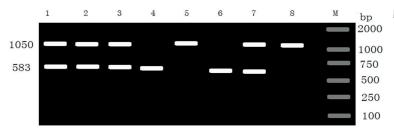
Co-culture Experient

The co-cultur the S. marc isolates E. coli EC6 and imipenem roduced of for S. marcescens similar resistance spe at the imiper (Table II) esistance rate and coli EC600 increa coli EC600 increa markedly (Table se results further support the production MIC fo II). by the S. marcescens isolates of gnificant nefits for *E. coli* EC600. that re

Figure 2. It periment and the focusing electrophore 1, rescens. 2, Jo. carbapenem. 3, Known βphe olic amb. 4-1.

R and DNA Sequencing

ollowing co ture and isoelectric focusing ophoresis. found a common pattern scens and E. coli, with two bet at 6.5 and 6.7 (Figure 2). PCR ambands lification from the purified plasmid produced two s of 583 and 1050 bp. The products isom E. coli after co-culture were the same as those purified from S. marcescens, but without blaOXA-1 and other fragments (Figure 3). Plasmid analysis showed that the plasmids isolated from S. marcescens and E. coli after co-culture had the same size, about 60 Kb and showed the same EcoRI restriction map. Gene sequencing of the PCR products confirmed the presence of the KPC-2 gene (SEO ID NO AY034847) in both S. marcescens isolates and E. coli after co-culture.


Discussion

So far, 11 isoforms of KPC enzymes have been identified, KPC-1 to 11⁶. Despite this diversity, the

Tal. Results co-culture.

	Drug rate to imipenem (%)		MIC (μg/ml)	
	before	after	before	after
E. 2C600	92.4±5.5 3.7±0.5 42.615	90.5±6.2 86.6±7.3# 0.439	46.5±7.2 1.7±0.6 38.652	45.2±6.9 42.3±5.8# 0.538
p	< 0.001	0.626	< 0.001	0.714

Notes: #comparison of E. coli EC600 engagement, p<0.05.

Figure 3. DNA blaKPC gene amplification. 1-4, *S. Marcescens*. 5-8, Joint carbapenem.

enterobacteriaceae of clinical relevance in China mainly produce KPC-27. Rasheed and other American scholars isolated Citrobacter freundii and Klebsiella oxytoca from two patients that also produce the same KPC-2 isoform⁸. Sequencing the flanking sequence around KPC-2 from K. pneumoniae isolated by Naas and cols9, confirmed that it is the exact same gene as in KPC-2 from American Salmonella enterica. The presence of the exact same KPC-2 gene in the plasmids from two different bacteria is due to plasmid transfer, a phenomenon known as bacterial conjugation. KPC-2 is almost identical to KPC-1 except for a Ser to Gly substitution at position 174 (S174G)¹⁰. The imipenem resistance of S. marcesco mainly due to the production of β-lac (KPCs), which can hydrolyze the carbapen tibiotics IMP-1, Imp-6, VIM-2, sme-1, and 2. This resistance is also associated with red levels of penicillin binding prot RP) com ned with the loss or decrease thich ar critical for the transport of biotics

eded by The modified Hodge recor CLSI to detect the car riaceae. The test s uvity for enem is higher than for n em. The enem and false positive be due to lack of the ESBL outer membra rotein or the too large all four cases of inocula¹¹ r conclusion duce carbapeneclay Se na bacteria isolate. onjugation experiments conferred \hat{E} . coli mas EC drug resistance spectrum of S. After the culture, we found the marce . marcescens and E. coli, same om previous results¹³. PCR is di solated the same products from ication a. rcescens isolates and E. coli co-cultures, aced blaOXA-1 and other fragmensimilar to previous reports¹⁴. Gene sequencing rmed the presence of KPC-2 in S. marcesolates and E. coli co-cultures, supporting the role of *KPC-2* in the imipenem resistance.

At present, the infections caused by KPC-positive strains are rare and the number of effective antibacte-

rial drugs is very limited chough the drug vity results show resist to carb nem antiba cs and other kinds of and ch as qui lones f the re and aminoglyco s, the e ement antibiotic is le an ideal15. and development a mase inhibit ng hope for uce KPC. NxL104, LK-157 treating st. 1s tha and BLI-489 are still development, but preli-104 can recover the min ilts show that acterial activity of va. ous β-lactam antibioto strains producing KPC¹⁶. Also, the tricyclic apenem LK has inhibitory activity for A and C¹⁷. BLI-489 is a bicyclic mase in cl ale with inhibitory activity over car o-lactamase¹⁸. various

Conclusions

We suggest that the mechanism mediating *S. marcescens* resistance to imipenem requires plasmid-mediated KPC-2 expression.

Acknowledgements

This work was done with support from the Qingdao Municipal Science and Technology Bureau of public Domain Technology Support Program 2012-1-3-1-(18)-nsh.

Conflict of interest

The authors declare no conflicts of interest.

References

- DHAR S, MARTIN ET, LEPHART PR, McROBERTS JP, CHOPRA T, BURGER TT, TAL-JASPER R, HAYAKAWA K, OFER-FRIEDMAN H, LAZAROVITCH T, ZAIDENSTEIN R, PEREZ F, BONOMO RA, KAYE KS, MARCHAIM D. Risk factors and outcomes for carbapenem-resistant klebsiella pneumoniae isolation, stratified by its multilocus sequence typing: ST258 versus non-ST258. Open Forum Infect Dis 2016; 3: ofv213.
- AKTURK H, SUTCU M, SOMER A, AYDIN D, CIHAN R, OZ-DEMIR A, COBAN A, INCE Z, CITAK A, SALMAN N. Carbapenem-resistant Klebsiella pneumoniae coloniza-

- tion in pediatric and neonatal intensive care units: risk factors for progression to infection. Braz J Infect Dis 2016; 8: 10-11.
- Meletis G, Oustas E, Botziori C, Kakasi E, Koteli A. Containment of carbapenem resistance rates of Klebsiella pneumoniae and Acinetobacter baumannii in a Greek hospital with a concomitant increase in colistin, gentamicin and tigecycline resistance. New Microbiol 2015; 38: 417-421.
- LÜBBERT C, BECKER-RUX D, RODLOFF AC, LAUDI S, BUSCH T, BARTELS M, KAISERS UX. Colonization of liver transplant recipients with KPC-producing Klebsiella pneumoniae is associated with high infection rates and excess mortality: a case-control analysis. Infection 2014; 42: 309-316.
- Matthew M, Harris AM. Identification of beta-lactamases by analytical isoelectric focusing: correlation with bacterical taxonomy. J Gen Microbiol 1976; 94: 55-67.
- 6) Gong L, Xu L, Diao M, Guo F, Bian FF, Min J, Liu R, Zhang CL. Clinical effect of treating secondary asthma attacks of children Mycoplasma pneumoniae with combined therapy of montelukast and azithromycin. Eur Rev Med Pharmacol Sci 2016; 20: 5256.
- 7) CHENG L, CAO XL, ZHANG ZF, NING MZ, XU XJ, ZHOU W, CHEN JH, ZHANG JH, SHEN H, ZHANG K. Clonal dissemination of KPC-2 producing Klebsiella pneumoniae ST11 clone with high prevaled oqxAB and rmtB in a tertiary hospital in the results from a 3-year period. Ann Clin Marchinicrob 2016; 15: 1.
- 8) RASHEED JK, BIDDLE JW, ANDERSON KF, WASHER L, NOWETH C, PERRIN J, NEWTON DW, PETT JB. Detect of the Klebsiella pneumonia penemal type-2 carbapenem-hydrology general in clinical isolates of Citrobact eundii a c. Oxytoca carrying a common mid. J C. Microbiol 2008; 46: 2066-2069
- 9) NAAS T, NORDMANN LEDEL G, Plasmid-mediated carbape (hydrolyzing mase KPC in a Klebsie moniae isolation france.

 Antimicrol gent amother 200s 49: 4423-4424.
- 10) PIAZZ CALTAGIRONE M, I, NUCLEO E, SPALLA M, SATO E, D'ANGELO R, L, MIGLIAVACCA R. Gence of Escherichia oli sequence Type (ST13) d ST3948 with KPC-2, KPC-3 and

- KPC-8 carbapenemases from a long-term care and rehabilitation facility (LTCRF) in northern Italy. Adv Exp Med Biol 2016; 26: 2-4.
- 11) Мотауо ВО, Акілриті РА, Ареуакіли FA, Окевелтидва РО, Nwanze JC, Олон СС, Inno-HC, Околко IO. Antibiogram and provided preling of carbapenemase and external spectrum. Beta-lactamase (ESBL) produce Escherichia coli and Klebsiella pneumon Abeokuta, Southwestern Nigeria. Afr He
- 12) McGettigan SE, Andred to K, Edelstein Cificity of ertapener acceptibility screening detection of Kleb Sueum ale carbapener mases. J Clin Micros 126 1785-786
- 13) SILVA KE, CAYÓ CARVALH Patussi reia Sac-C, Croda CHI F, RODE s-Costa F, Ra J. GALES ONATTO S. CO on of KPC-2 and arbapenemstant Serratia rom an outbreak in a Brazimarces ens iso lian Teaching Hos Clin Microbiol 2015; 53: 328.
- 1 ISAKRIS A, VOULGARI E, POLCOU A, KIMOULI M, POURNARAS S, RANELLOU K, KOSMOPOULOU O, PETROPOULOU D. In vive equisition of a plasmid-mediated bla(KPC-2) g among clonal isolates of Serramarcesce J Clin Microbiol 2010; 48: 2546-
- 15) Hirst IAM VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases SCs): an emerging cause of multidrug-resistant on. J Antimicrob Chemother 2010; 65: 1119-
- 16) STACHYRA T, LEVASSEUR P, PECHERAU MC, GIRARD AM, CLAUDON M, MIOSSEC C, BLACK MT. In vitro activity of the beta-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 2009; 64: 326-329.
- 17) PAUKNER S, HESSE L, PREZELJ A, SOLMAJER T, URLEB U. In vitro activity of LK-157, a novel tricyclic carbapenem as broad-spetrum beta-lactamase inhibitor. Antimicrob Agents Chemother 2009; 53: 505-511.
- PETERSEN PJ, JONES CH, VENKATESAN AM, BRADFORD PA. Efficacy of piperacillin combined with the penem beta-lactamase inhibitor BLI-489 in murine models of systemic infection. Antimicrob Agents Chemother 2009; 53: 1698-1700.