The role of postoperative radiotherapy in eccrine porocarcinoma: a multidisciplinary systematic review

B. FIONDA1, A. DI STEFANI2, V. LANCELLOTTA1, S. GENTILESCHI3,4, A.A. CARETTO4, C. CASÀ1, F. FEDERICO5,6, A. REMBIEŁAK7,8, E. ROSSI9, A.G. MORGANTI10, G. SCHINZARI9,11, K. PERIS2,12, L. TAGLIAFERRI1

Abstract. – OBJECTIVE: Eccrine porocarcinoma (EPC) is a malignant adnexal tumor accounting for about 0.005% of skin tumors. The standard treatment of EPC is the complete surgical excision of the primary lesion and of the clinically involved lymph nodes. There is limited evidence regarding the role of radiotherapy (RT) in managing EPC after surgery. Therefore, the aim of this multidisciplinary systematic review is to analyze the available evidence about postoperative RT in the curative treatment of EPC.

MATERIALS AND METHODS: A systematic search strategy was launched through the main scientific databases including PubMed, Scopus and Cochrane. An additional manual search and a chain citation were performed about potentially relevant papers. The key words used for the search included “eccrine porocarcinoma”, “porocarcinoma”, “radiotherapy”, “radiation therapy”, “adjuvant radiotherapy” and “postoperative radiotherapy”.

RESULTS: A total of 104 publications were identified and 14 papers were included in the final analysis. The only articles found on adjuvant RT in EPC were case reports published between 1996 and 2019. There was a slight female prevalence (57% female/43% male) with a mean age of 65 years (range 37-85). Head-and-neck region was the most frequently involved anatomical site followed by legs.

CONCLUSIONS: Adjuvant radiotherapy after surgical removal of EPC could be considered in cases with positive or close margins and in cases with unfavorable histological features. In view of limited literature data and the rarity of EPC the best treatment sequence should always be discussed within the frame of a multidisciplinary setting. Advances in knowledge: adjuvant radiotherapy after surgical removal of EPC could be considered in cases with positive or close margins and in cases with unfavorable histological features.

Key Words: Porocarcinoma, Eccrine porocarcinoma, Radiotherapy, Radiation therapy, Adjuvant radiotherapy, Postoperative radiotherapy, Systematic review, Radical treatment.

Introduction

Eccrine porocarcinoma (EPC) is a malignant adnexal tumor which was first described...
by Pinkus and Mehregan⁰ in 1963 and defined as “epidermotropic eccrine carcinoma”. A few years later, Mishima and Morikoa¹ used for the first time the term “eccrine porocarcinoma”, although it is now also named as “malignant eccrine poroma”.

EPC is a rare adnexal tumor accounting for about 0.005% of skin tumors with a mean age varying from 61.5 to 73 years and no sex predilection as reported in the 2018 WHO classification³,⁴.

EPC is clinically characterized by a nodular, polypoid or plaque, often ulcerated and rarely pigmented lesion⁵. The most frequent site is the lower limbs followed by the trunk, head/scalp, and upper limbs. Histopathological examination shows a dermal proliferation of atypical and pleomorphic poroid cells with an intraepidermal component. Moreover, areas of a pre-existing poroma can sometimes be identified.

In fact, EPC may present with at least two different pathways of cancerogenesis: i) de novo generation or ii) transform from a benign pre-existing poroma, as highlighted by some studies with long term follow-up⁶. Crucial issues about EPC are the frequently challenging clinical diagnosis and the high risk of being overlooked or misinterpreted, more frequently as squamous or even as basal cell carcinomas⁷.

EPC may be subdivided into three different subtypes according to the margins pattern: pushing, infiltrative and pagetoid. These latter are associated with the lowest, intermediate, and highest probability of relapse, respectively⁸. Both local recurrence and involvement of regional lymph nodes may occur in 20% of cases, while distant metastasis develop in 10% of patients⁹. Histopathological features correlated with more aggressive biological behavior are: larger size, tumor depth > 7 mm, infiltrating margins, and high mitotic index¹⁰.

The standard treatment of EPC is the complete surgical excision of the primary lesion and of the clinically involved lymph nodes. The recommended safety surgical margin should be at least 2 cm¹¹. Regarding the nodal management in clinically negative with adverse histological features, currently, there are no formal criteria for sentinel node biopsy even though some authors support this approach¹².

There is limited evidence regarding the role of radiotherapy (RT) in managing EPC after surgery. In particular, there is a lack of systematic reviews of the literature on this topic. Therefore, the aim of this multidisciplinary systematic review is to analyze the available evidence about postoperative RT in the curative treatment of EPC.

Materials and Methods

A systematic search strategy was launched through the main scientific databases including PubMed, Scopus and Cochrane. An additional manual search and a chain citation were performed about potentially relevant papers. The key words used for the search included “eccrine porocarcinoma”, “porocarcinoma”, “radiotherapy”, “radiation therapy”, “adjuvant radiotherapy” and “postoperative radiotherapy”.

A first team composed by one radiation oncologist, one dermatopathologist and one plastic surgeon (BF, ADS, SG) performed the initial literature search. A second team composed by another radiation oncologist and a plastic surgeon resolved disputes about the inclusion of the single studies (VL, AAC). A third team composed by four researchers including one radiation oncologist, one pathologist and two medical oncologists (CC, FF, RE, GS) performed the manuscript drafting. Finally, a committee composed by four seniors’ researchers including radiation oncologists and dermatologists gave the final approval to the manuscript (AR, AGM, LT, KP).

The search strategy followed the PRISMA 2020 statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses: an updated guideline for reporting systematic reviews) as shown in Figure 1¹³. There were no time restrictions and only papers published in English were considered. The inclusion criteria was: original papers on adjuvant RT in EPC. Commentaries, letters and reviews were not included.

Results

A total of 104 publications were identified. After removing duplicates, 73 papers were screened and 13 were excluded having been written in languages other than English. Sixty records were assessed and 14 papers were included in the final analysis after removing reviews, commentaries and reports in which RT was not used at all or delivered with palliative purpose¹⁴-²⁷.

Collected data were year of publication, age, sex, site of primary lesion, lymph node involvement, information about surgery (lesion removal
The role of postoperative radiotherapy in eccrine porocarcinoma

 +/- lymphadenectomy or lymph nodes excision), RT (volume, dose, technique), combined medical treatments, local control, locoregional control, distant metastases, and follow-up time.

Furthermore, only articles found on adjuvant RT in EPC were case reports published between 1996 and 2019.

Overall, there was a slight female prevalence (57% female/43% male) with a mean age of 65 years (range 37-85). Head-and-neck region was the most frequently involved anatomical site followed by legs.

Overall, in 12 out of the 14 cases some data was retrievable about pathological adverse features and/or subtype which led to the clinical decision for adjuvant RT. In particular, regarding the pathological adverse features, the most commonly reported included primary tumor with largest diameter (in 10 papers), post-operative margin status (in 5 papers), depth of invasion (in 3 papers), mitotic index (in 2 papers) and subtype (in 2 papers). A detailed summary of all findings is reported in Table I.

Discussion

A recent review by Salih et al.\(^2^8\) identified only fewer than 500 EPC cases reported in literature. Adjuvant RT could theoretically be useful in patients with lymph nodes involvement, perineural invasion, nodal extracapsular extension, positive surgical margins, high-grade histology, multi-focal disease and/or recurrent disease.\(^2^9\) However, a large retrospective analysis on 203 EPC patients from the SEER database did not report significantly improved OS in a small subgroup (4.4%) of patients treated with adjuvant RT after surgery.\(^3^0\) Currently, the available evidence on RT-treated EPC is based only on case-reports. Nevertheless, the results of our review deserve some comments.

Figure 1. Search strategy.
<table>
<thead>
<tr>
<th>Author and Year</th>
<th>Age</th>
<th>Sex</th>
<th>Location</th>
<th>Lymph nodes involvement</th>
<th>Extension and timing of surgery (T and/or N)</th>
<th>Histopathological features and/or subtype</th>
<th>Irradiated site</th>
<th>Total dose</th>
<th>Radiotherapy technique</th>
<th>Other medical therapy</th>
<th>Local control</th>
<th>Locoregional control</th>
<th>Distant metastases</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shen et al 2019</td>
<td>37 M</td>
<td>Posterior scalp</td>
<td>None</td>
<td>3 times</td>
<td>n.a.</td>
<td>Tumor Bed</td>
<td>24 Gy in 12 fx</td>
<td>n.a.</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>Lee et al 2019</td>
<td>67 F</td>
<td>Left lower limb</td>
<td>Left inguinal and pelvic</td>
<td>Both T and N</td>
<td>Pagetoid subtype</td>
<td>Lymph node drainage</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Sequential chemotherapy and immunotherapy (pembrolizumab)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>84 months</td>
<td></td>
</tr>
<tr>
<td>Seo et al 2019</td>
<td>85 M</td>
<td>Left cheek</td>
<td>Left laterocervical</td>
<td>Only T</td>
<td>T largest diameter (10 mm) Post-operative margin (5 mm)</td>
<td>Lymph node drainage</td>
<td>70 Gy in 35 fx</td>
<td>n.a.</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>14 months</td>
<td></td>
</tr>
<tr>
<td>Godillot et al 2017</td>
<td>64 F</td>
<td>Pubic</td>
<td>Bilateral inguinal</td>
<td>1 time for T and 2 times for N</td>
<td>T largest diameter (50 mm) Depth of invasion (39 mm) 12 mitoses/mm²</td>
<td>Lymph node drainage</td>
<td>57.5 Gy</td>
<td>n.a.</td>
<td>Sequential chemotherapy and biological therapy (cetuximab)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>24 months</td>
<td></td>
</tr>
<tr>
<td>Wang et al 2017</td>
<td>74 F</td>
<td>Scalp</td>
<td>Yes</td>
<td>Yes (but type not specified)</td>
<td>n.a.</td>
<td>Tumor Bed and lymph node drainage</td>
<td>60 Gy to T and 50 to N</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Yes</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Fujimine-Sato et al 2016</td>
<td>54 F</td>
<td>Vulva</td>
<td>None</td>
<td>Both T and N</td>
<td>T largest diameter (31 mm) Depth of invasion (~20 mm)</td>
<td>Tumor Bed and lymph node drainage</td>
<td>50.4 Gy in 28 fx</td>
<td>n.a.</td>
<td>Concomitant and sequential chemotherapy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>Melgandi et al 2016</td>
<td>42 M</td>
<td>Right occipital scalp</td>
<td>Right laterocervical</td>
<td>Only T</td>
<td>T largest diameter (50 mm) Post-operative margin (involved)</td>
<td>Tumor Bed and lymph node drainage</td>
<td>64 Gy</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Mishra et al 2016</td>
<td>75 F</td>
<td>Vulva</td>
<td>Bilateral inguinal</td>
<td>Both T and N</td>
<td>T largest diameter (30 mm)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fujimura et al 2014</td>
<td>85 F</td>
<td>Right cheek</td>
<td>Right laterocervical</td>
<td>Only T</td>
<td>T largest diameter (20 mm) Post-operative margin (20 mm)</td>
<td>Lymph node drainage</td>
<td>50 Gy in 5 fx</td>
<td>Cyberknife</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>Kurashige et al 2014</td>
<td>47 M</td>
<td>Right thigh</td>
<td>None</td>
<td>Yes (but type not specified)</td>
<td>Tumor Bed</td>
<td>Infiltrative subtype Depth of invasion (14 mm) 1.3/10 HPF</td>
<td>50 Gy</td>
<td>n.a.</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>48 months</td>
<td></td>
</tr>
<tr>
<td>Vleugels et al 2012</td>
<td>59 F</td>
<td>Left forearm</td>
<td>Right axillary</td>
<td>Both T and N</td>
<td>Post-operative margin (free)</td>
<td>Tumor Bed</td>
<td>54 Gy in 28 fx</td>
<td>n.a.</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>Zeidan et al 2010</td>
<td>76 M</td>
<td>Left temporal</td>
<td>None</td>
<td>Only T for 2 times</td>
<td>T largest diameter (20 mm)</td>
<td>Tumor Bed</td>
<td>60 Gy in 30 fx</td>
<td>IMRT</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>10 months</td>
<td></td>
</tr>
<tr>
<td>Gonzalez-Lopez et al 2003</td>
<td>71 M</td>
<td>Right thigh</td>
<td>Bilateral inguinal</td>
<td>Both T and N</td>
<td>T largest diameter (40 mm)</td>
<td>Tumor Bed and lymph node drainage</td>
<td>55 Gy</td>
<td>Electrons</td>
<td>Concomitant and sequential chemotherapy</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Yes</td>
<td>66 months</td>
<td></td>
</tr>
<tr>
<td>Katsanis et al 1996</td>
<td>75 F</td>
<td>Vulva</td>
<td>Inguinal</td>
<td>Both T and N</td>
<td>T largest diameter (20 mm) Post-operative margin (free)</td>
<td>Tumor Bed and lymph node drainage</td>
<td>60 Gy in 30 fx</td>
<td>n.a.</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>19 months</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations used. M: Male; F: Female; T: Primary tumour; N: Nodal involvement; n.a.: Not available.
The role of postoperative radiotherapy in eccrine porocarcinoma

Total doses and fractionation varied significantly from 24 Gy in 12 fractions to 70 Gy in 35 fractions. This large inhomogeneity might be due to the different tumour sites, as well as the different RT techniques including electrons beams, intensity modulated RT, and cyberknife.

Interestingly, the most frequent site of primary EPC treated with postoperative RT was the scalp, despite the higher frequency of EPC in the lower limb and trunk. The greater feasibility of wider surgical resections in these latter sites, with consequent lower risk of positive or close margins, may explain the greater use of adjuvant RT in the scalp.

Overall, it can be observed that in the 14 patients included in this systematic review there were no cases of local or regional relapse. On the contrary, distant metastases were recorded in 42.8% of cases. This finding suggests the potential utility of adjuvant systemic treatments, especially in patients with multiple risk factors. In contrast, only two patients were treated with concurrent chemotherapy and only two received sequential biological therapy or immunotherapy within the analysed subjects. Furthermore, these data must be evaluated considering the short observation period of the analysed population. In fact, the duration of the follow-up was > 12 months in only six reports.

This systematic review has some limitations: i) the lack of information on the status of the surgical margins, ii) the lack of detailed description of the histopathological characteristics, and therefore of any risk factors, iii) the short observation period in the majority of patients, iv) the retrospective nature of the analysis, deriving from the design of the analysed studies (all case reports), and leading to the large inhomogeneity of used dose/fractionation. This last aspect prevents us from proposing clear recommendations on the optimal RT modalities in this setting.

Therefore, considering the low level of current evidence in this area, it is impossible to draw clear conclusions on the optimal postoperative management of the resected EPC. Similarly to Rabi et al, we can only suggest discussing these patients, especially in the case of risk factors, within a multidisciplinary tumor board.

Furthermore, considering the rarity of EPC and therefore the impossibility of prospective studies, especially if monocentric, the only possible strategy to optimize the treatment of this tumor seems to collect data from different centers to share real life results, as already implemented by some authors for skin cancers.

Conclusions

Adjuvant radiotherapy after surgical removal of EPC could be considered in cases with positive or close margins and in cases with unfavorable histological features. In view of limited literature data and the rarity of EPC the best treatment sequence should always be discussed within the frame of a multidisciplinary setting.

Conflict of Interest

The authors have declared no conflict of interest.

References

