Butorphanol attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis in mice

L.-H. HUANG¹, J. LI², J.-P. GU³, M.-X. QU³, J. YU³, Z.-Y. WANG³

¹Heart Function Examination Room, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
²Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
³Department of Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China

Lihong Huang and Jun Li contributed equally to this work

Abstract. – OBJECTIVE: To investigate the role of the opioid receptors agonist butorphanol on mice myocardial ischemia reperfusion (I/R) injury.

MATERIALS AND METHODS: The left anterior descending of coronary artery was ligatured for 30 min and then reperfusion for 6 h was performed to mimic the mouse myocardial I/R injury. All mice were randomly divided into three groups: sham group, I/R group and I/R + butorphanol group. Blood samples were collected for the measurement of cardiac troponin I (CTnI) and creatine kinase MB (CK-MB) levels. The infarct size was stained by triphenyltetrazolium chloride. The mitochondria morphology was observed by electron microscopy. The expressions of cleaved caspase-9 and -3, p38, ERK and JNK were detected by Western blot.

RESULTS: The myocardial infarct size, serum CK-MB and CTnI levels, expression of cleaved caspase-9 and -3, phosphorylation of p38 and JNK were all increased in the I/R group compared with the sham group (all $p < 0.01$). Butorphanol reduced the myocardial infarct size, serum CTnI and CK-MB levels, expression of cleaved caspase-9 and -3, and phosphorylation levels of p38 and JNK (all $p < 0.01$). The number of mitochondria and the individual mitochondrial cross-sectional areas were decreased in the I/R mice compared with the sham-operated mice (all $p < 0.01$). Butorphanol reversed these changes in mitochondrial morphology (all $p < 0.01$).

CONCLUSIONS: Butorphanol attenuates myocardial I/R injury through reducing cardiomyocyte apoptosis by inhibiting mitochondria-mediated apoptotic pathway, and blockage of p38 and JNK phosphorylation.

Key Words: Butorphanol, Ischemia reperfusion injury, Apoptosis, Mitochondria, Mitogen-activated protein kinase.

Introduction

Ischemic heart diseases, such as coronary artery disease and acute coronary syndrome, have been the leading cause of cardiovascular morbidity and mortality. Cardiac myocyte apoptosis plays a key role in myocardial ischemia/reperfusion (I/R) injury. In contrast, inhibition of apoptosis has a powerful effect on cardioprotective. Activation of opioid receptor has been reported to be significantly associated with myocardial protection. The opioid receptor family consists of three members: κ, δ, and μ. Many studies have revealed that κ- and δ-, but not μ-receptors, are expressed in cardiomyocytes, and the activation of κ- and δ-receptors can attenuate myocardial I/R injury. Butorphanol is a novel opioid receptor agonist, which possesses a high affinity for κ-receptor and partially activation on δ-receptor. Pharmacological research demonstrated that the administration of butorphanol has the effect of analgesia and relaxation. However, to date, there are few reports focused on butorphanol-induced cardioprotective in myocardial I/R injury. Recently, Wu et al. reported that butorphanol post-conditioning could attenuate myocardial I/R injury through activating κ-receptor in rats. However, the molecular mechanism involved in butorphanol-induced cardioprotective in myocardial I/R injury has not yet been fully elucidated.
Thus, we created a myocardial I/R mouse model to investigate the role and molecular mechanism of butorphanol in myocardial protection.

Materials and Methods

Reagents

Butorphanol injection was obtained from Hengrui Medicine Co., Ltd., (Lianyungang, China). Serum cardiac troponin I (CTnI) and creatine kinase MB (CK-MB) detection kits were obtained from Jiancheng Bioengineering Research (Nanjing, China). All antibodies were provided by Cell Signaling Technology (CST, Danvers, MA, USA). Total protein extraction kits were provided by KeyGen Biotechnology (Nanjing, China).

Ethics Statements

8-10 weeks old and 20-30 g body weight male C57BL/6 mice were provided by the Experimental Animal Center of Jiangsu Province (Nanjing, China). Animal experiments followed the Guide for Laboratory Animals published by the NIH. Mice were fed with standard mouse food and water, and were kept under 12:12 hour light/dark cycles with 22°C. This study was approved by the Animal Ethics Committee of Dalian Medical University Animal Center.

Mice Model of Myocardial Ischemia/Reperfusion Injury

The mice were anesthetized by pentobarbital (50 mg/kg, intraperitoneal injection), intubated and ventilated. A left horizontal incision was made at the third intercostal space. To achieve I/R injury, a 8-0 silk suture was tied around both the left anterior descending (LAD) and a silicon tube. Myocardial ischemia was measured by the electrocardiograph performance (ST elevated). The sham-operated mice underwent an identical surgical procedure without ligature. After ischemia for 30 min, the silicon tube was removed to achieve reperfusion for 6 h. There were three groups: (1) sham group; (2) I/R group, sodium chloride was injected intramuscularly at the start of reperfusion; (3) I/R + butorphanol (B) group, butorphanol (50 μg/kg) was injected intramuscularly at the start of reperfusion. n = 15 in each group. After reperfusion, the heart samples were harvested and then stored at -70°C.

Assessment of Myocardial Infarct Size

Evans blue dye was perfused into the aorta to demarcate the ischemic area-at-risk. Hearts were excised and sliced. The heart sections were stained with 1% triphenyltetrazolium chloride at 37°C for 20 min and fixed with 4% paraformaldehyde at room temperature for 8 h. Infarcted myocardium was carefully separated from the non-infarcted myocardium and weighed. The infarct size is presented as a percentage of the ischemic area-at-risk.

Measurement of Serum Myocardial Enzymes

The enzyme-labeled immunosorbent assay was used to measure the serum CK-MB and CTnI levels. After 6 h of reperfusion, blood samples were collected and centrifuged, then transferred to Eppendorf (EP) tubes. The following steps were performed according to the instructions of detection kits.

Electron Microscopy Analysis

The performance of electron microscopy analysis was described as previously. Electron microscopy images of mitochondria were collected for analysis. PhotoshopCS5.0 software was used to analysis the electron microscopy images and to measure both the number and the size of the myocardial mitochondria.

Western Blotting

Western blot analysis was used to determine the expression of protein extracted from the I/R myocardium. Briefly, gel electrophoresis was performed to separate the different molecular weight proteins and then transferred onto polyvinylidene difluoride membranes. These membranes were incubated with anti-cleaved caspase9, anti-cleaved caspase3, anti-p-p38, anti-p38, anti-p-ERK1/2, anti-ERK1/2, anti-p-JNK and anti-JNK for overnight at 4°C. After incubating with these primary antibodies, the membranes were washed in Tris-buffered saline and Tween 20 (TBST-20). After that, they were incubated with horseradish peroxidase (HRP)-conjugated secondary antibody at room temperature for another 2 h. Western blot detection kit and ImageJ software (NIH) were used to measure the blot signal and density.

Statistical Analysis

SPSS 19.0 software (IBM, Armonk, NY, USA) was used for statistical analysis. All results were presented as means ± standard deviations (SD). Differences among different groups were analyzed by one-way analysis of variance. Differ-
Butorphanol attenuates myocardial I/R injury

Differences between two groups were analyzed by Student’s t-test. A value of $p < 0.05$ was considered as statistically significant.

Results

Butorphanol Reduced Myocardial I/R-induced Increase in Infarct Size and Myocardial Enzymes

As shown in Figure 1, compared with the sham group, the myocardial infarct size and serum CTn I and CK-MB levels were significantly increased in I/R group ($p < 0.001; p < 0.001; p < 0.001$, respectively). Butorphanol significantly reduced the myocardial infarct size and serum CTn I and CK-MB levels in contrast to the I/R group ($p < 0.001; p < 0.001; p < 0.001$, respectively).

Butorphanol Inhibited Myocardial I/R-induced Mitochondrial Apoptosis

Myocardial mitochondrial morphology was observed via electron microscopy (Figure 2). Compared with sham group, the mitochondria in the I/R group were smaller and more disor-

Figure 1. Effect of butorphanol on infarct size and myocardial enzymes. CTn I: cardiac troponin I; CK-MB: creatine kinase MB; I/R: ischemia/reperfusion; B: butorphanol. **$p < 0.01$ and ***$p < 0.001$ vs. sham; †$p < 0.05$, ††$p < 0.01$ and †††$p < 0.001$ vs. I/R.

Figure 2. Effect of butorphanol on mitochondrial morphology in I/R myocardium. I/R: ischemia/reperfusion (magnification of 10,000×) (B indicates butorphanol). **$p < 0.01$ and ***$p < 0.001$ vs. sham; **$p < 0.01$ vs. I/R.
ganized. Both the number and size of mitochondria per area were significantly decreased in the I/R group (p < 0.01; p < 0.001, respectively). Butorphanol administration substantially reversed these changes in mitochondrial morphology (p < 0.01; p < 0.01, respectively). The expression of cleaved caspase-9 and -3 was markedly increased in the I/R mice compared with the sham mice (p < 0.001; p < 0.01, respectively). Butorphanol administration significantly decreased the expression of cleaved caspase-9 and -3 in the I/R mice (p < 0.001; p < 0.01, respectively) (Figure 3).

Butorphanol Inhibited Myocardial I/R-induced p38 and JNK Phosphorylation

Compared with the sham group, the phosphorylation levels of p38 and JNK were both significantly increased in the I/R group (p < 0.001; p < 0.001, respectively). However, myocardial I/R did not induce the phosphorylation of ERK1/2 (Figure 4). Butorphanol administration prevented the increases in p38 and JNK phosphorylation induced by I/R injury (p < 0.01; p < 0.01, respectively).

Discussion

We focused on the cardioprotective effect of butorphanol in a mouse myocardial I/R injury model. Our results shown that butorphanol administration markedly attenuated I/R injury, as confirmed by decrease in infarct size and myocardial enzymes levels. This protective effect was associated with the reduction in mitochondrial-mediated apoptosis and the inhibition of p38 and JNK phosphorylation.

It is now known that activation of κ- and δ-receptors are significantly associated with the cardioprotection. Butorphanol is a novel opioid receptor agonist, which possesses a high affinity for κ-receptor and partially activation on δ-receptor. Wu et al. reported that butorphanol post-conditioning could attenuate myocardial I/R injury.
Butorphanol attenuates myocardial I/R injury

The effect of butorphanol on myocardial I/R injury. Overall, butorphanol attenuates myocardial I/R injury through reducing cardiomyocyte apoptosis via inhibition of mitochondria-mediated apoptosis, and blockage of p38 and JNK phosphorylation. The limitation of the current work is the lack of research on the cellular mechanism. Thus, future research is needed to investigate the potential therapeutic target of butorphanol in cardiomyocytes in vitro.

Conflict of Interest
The Authors declare that they have no conflict of interests.

References

5) Peart JN, Gross ER, Reichelt ME, Hsu A, Headrick JP, Gross GJ. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res Cardiol 2008; 103: 454-463.
a delta opioid agonist, partially mediates delayed cardioprotection via a free radical mechanism that is independent of opioid receptor stimulation. J Mol Cell Cardiol 2001; 33: 1455-1465.

21) Fryer RM, Hsu AK, Gross GJ. ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Res Cardiol 2001; 96: 136-142.