2015; 19: 1845-1851

A study on lesion pattern of bilateral cerebellar infarct

P.-Q. WANG¹, Z.-G. DING¹, G.-B. ZHANG¹, Y. WANG², J.-Z. LIU²

Puqing Wang and Zhigang Ding contributed equally to this work

Abstract. – OBJECTIVE: To explore the lesion patterns and stroke mechanism of the acute bilateral cerebellar infarct.

PATIENTS AND METHODS: Patients admitted to Xiangyang Hospital with acute cerebellar infarcts, confirmed by diffusion-weighted imaging (DWI), were investigated. Patients were divided into two groups by lesions: unilateral cerebellar infarct (UCI) and bilateral cerebellar infarct (BCI). The demographic features, involved territories and concomitant lesions outside the cerebellum (CLOC). The causes were analyzed.

RESULTS: Amongst the 115 patients hospitalized with posterior circulation cerebral infarct due to acute stroke, 56 patients had cerebellar infarct. There were 36 (64.3%) cases of unilateral cerebellar infarct and 20 (35.7%) cases of the BCI. The baseline information shows that stroke history (p = 0.002), fibrinogen (p = 0.036) and admission NIHSS score (M) (p = 0.001) for the BCI group are higher than the unilateral cerebellar infarct group. The incidence rate of cerebellar infarct in a posterior inferior cerebellar artery (PICA) blood supplying territory is the highest by divisions of vascular distribution. Unilateral cerebellar infarct occurs more often (p = 0.006); BCI is more common in PICA+SCA blood supplying territory (p = 0.004). The incidence rate of BCI merged with CLOC is much higher than the unilateral cerebellar infarct (p = 0.002). Merged infratentorial lesions are more common (p =0.022) than BCI with atherosclerosis (p = 0.041). Offending artery diseases are mainly in the V4 segment of the vertebral artery, and in the severe stenosis or occlusion of V4 and BA junc-

CONCLUSIONS: BCI was frequently involved in the PICA + SCA territory. Our results support the fact that embolism resulted from large artery atherosclerosis is the important stroke mechanism in the BCI.

Key Words:

Cerebellar infarct, Artery atherosclerosis, Cerebral infarction mode.

Abbreviations

NIHSS = National Institute of Health Stroke Scale; PI-CA = posterior inferior cerebellar artery; SCA = Superior cerebellar artery; posterior inferior cerebellar artery; BA = basilar artery; TOAST = Trial of Org 10172 in Acute Stroke Treatment; VBA = vertebrobasilar artery.

Introduction

The acute cerebellar infarct manifests itself as vertigo and clinical ataxia¹⁻³. Previous studies focus on the unilateral cerebellar infarct, as cases of bilateral cerebellar infarct (BCI) are relatively rare. Studies on the features of BCI are rare and have limitations⁴⁻⁶. In order to define the clinic features of the cerebellar infarct, we compare the demographic characteristics, vascular distribution, concomitant lesion outside the cerebellum and the pathogeny and mechanism of cerebellar infarct between unilateral and BCI.

Patients and Methods

Selecting and Grouping of Study Objects

Patients hospitalized for acute cerebral infarct or TIA episode and declared in the acute phase infarct within 48h after MRI DWI from January 2009 to January 2011 were selected to participate in this study. Cerebrovascular imaging, blood chemistry, electrocardiogram and cardiac ultrasound inspections were conducted on all patients. Those who were found to have no acute phase infarct by magnetic resonance imaging (DWI), whose inspections were incomplete or who had cerebral hemorrhage are excluded.

Patients were divided into unilateral and BCI group⁷ combined with DWI. Unilateral cerebellar

¹Department of Neurology, Xiangyang Hospital Affiliated to to Hubei University of Medicine, Xiangyang, Hubei, China

²CT Room, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei, China

infarct (UCI) is the appearance of one or more acute phase concomitant lesions on one cerebellar hemisphere and BCI is the appearance of an acute phase of concomitant lesions on two cerebellar hemispheres.

Radiographic Evaluation

The MRI examination was conducted using the 1.5T NOVUS magnetic resonance image scanner produced by Siemens (Erlangen, Germany). The scanning parameters were as follows: collimation was 5 mm, interval was 1 mm, matrix was 256×256 ; the SE-EPI axis view was TR 3400 ms, TE 98 ms of DWI and the single-shot echo planar imaging to exert diffusion sensitive gradient pulse was applied in the X, Y, Z directions. The diffusion sensitive coefficient (the value of b) is 0 and 1000 s/mm² respectively.

Computed tomography angiography (CTA) examination was conducted as follows: Apply the CT with 64 rows produced by GE (Fairfield, CT, USA), head and neck joint CTA (the superior border of aortic arch reaches calvarium). Postprocessing techniques include volume reappearance, VR; dimensions-multiplanar reconstruction, 3D-MPR; curved planar reconstruction, CPR and three dimensions-maximum intensity projection, 3D-MIP. Combine the original axial images to observe features such as stenosis degree and occlusion of the coronary artery and conduct quantitative measurement on the tracheal constriction⁸⁻¹¹.

Image Analysis

The MRI and CTA images were measured and evaluated by two associate chief physicians of imaging department respectively with the application of double-blind methods. It is subject to jointly confirmed diagnosis. The positioning of MRI-DWI lesions was referred to in the literature¹². According to North American Symptomatic Carotid Endarterectomy Trial (NASCET)¹³ count the artery stenosis rate [degree of stenosis] = (the diameter of the original tube-the left diameter of tube in the narrow area)/the diameter of the original tube \times 100%]. If the stenosis rate is more than 50%, it is designated as collusive disease. The division of territories for blood supplying is referred to methods of Vuillier: (1) The PI-CA gives out two branches: inferior vermis of blood supplying and the down-back of cerebellar hemispheres; (2) Anterior inferior cerebellar artery(AICA) is a single feeding leaf, upper leaf and front of the inferior semilunar lobule and

flocculus and cerebellar peduncle; (3) Superior cerebellar artery can be divided into medium-ramus external, the upper half of cerebellar hemispheres for blood supplying to part of the vermis and dental nucleus.

To analyze the concomitant lesions outside cerebrum, divide the lesions into three anatomic levels: (1) Subtentorial (brainstem); (2) Supratentorial (dorsal thalamus, blood supplying territory of posterior cerebral artery, infarct lesions of anterior circulation); (3) Both.

Types of Stoke Causes and Mechanisms

The causes of disease were diagnosed by clinical and auxiliary examination data with reference to the TOAST classification and reported literature¹⁴. The judging criteria for the causes of cerebral infarct were. As follows: (1) Large artery atherosclerosis (LAA) with a clinical manifestation of disordered brain function. The image showed that the corresponding atherosclerotic stenosis ≥50% or had occlusion, but excluded cardiac disease. (2) Small vessel disease (SVD) with a risk factor of cerebrovascular disease, the largest diameter of lesion is < 1.5 cm; there is no atherosclerotic stenosis, excluding the source of cardiac embolus; (3) Cardio embolism (CE), there is no atherosclerotic stenosis, and there is a possibility that there exists a potential source of cardiac embolus in the patient; (4) Other causes, including aortic dissection, Moya moya disease, arterial aneurysm, arteritis, ischemia and other specific vascular diseases; (5) Unclear causes, after comprehensive inspection, no possible causes are found; (6) Two or more than two causes (≥ 2E). If the patient has two or more than two cause of stroke, and after evaluation by two neurologists, no agreement can be reached about the cause, it can be divided into this type; (7) Dysplasia of vertebral artery

Statistical Analysis

Apply SPSS18.0 software (SPSS Inc., Chicago, IL, USA) to describe and analyze data. The statistical description of the two groups of measurement data: if it meets the conditions of normal distribution, use $\bar{x} \pm \text{SD}$ to represent; if it does not meet the conditions, use median (M, 25%-75% percentile) to represent. Hypothesis testing for two groups of measurement data: if it meets the conditions of normal distribution and homoscedasticity, use the *t*-test. If there is the heterogeneity of variance for the normal distrib-

ution, use the *t*-test. If it meets neither, use the Manne Whitney U test. Use frequency to represent the statistical description for the two groups of enumeration data. Hypothesis testing for two groups of enumeration data: if theoretical frequency ≥ 5 , use Mann-Whitney U test; if $1 \leq$ theoretical frequency < 5, use Mann-Whitney U correction test; if the theoretical frequency < 1, use Fisher's exact test. All statistics tests were two-sided. The *p*-value was < 0.05 showing that the difference was statistically significant.

Results

Comparison of Two Groups on Demographic Baseline Information (Table I)

Amongst the 115 hospitalized patients with posterior circulation cerebral infarct due to acute stoke, there were 56 patients (48.7%) that had cerebellar infarct with infarcts of other sites. There were 46 male patients, and the average age was 60. 83 ± 12 . 34; and ten female patients with an average age of 65.2 ± 10.8 . There were 36 (64.3%) cases of UCI, 20 (35.7%) cases of the BCI. The baseline information shows that stroke history (p = 0.002), fibrinogen (p = 0.036) and admission NIHSS score (M) (p = 0.001) for group of BCI are much higher that those for group of UCI.

Distribution Pattern of Lesions on Cerebellum and Concomitant Lesions Outside Cerebellum (Table II)

The incidence rate of cerebellar infarct in the PICA blood supplying territory is the highest by divisions of vascular distribution and UCI occurs more often (p = 0.006); BCI is more common in the PICA+SCA blood supplying territory (p = 0.012). There is no difference in other blood supplying territories between the two groups.

The incidence rate of the BCI merged with CLOC is much higher than UCI (p = 0.002). Also, the merged infratentorial lesions are more common (p = 0.022).

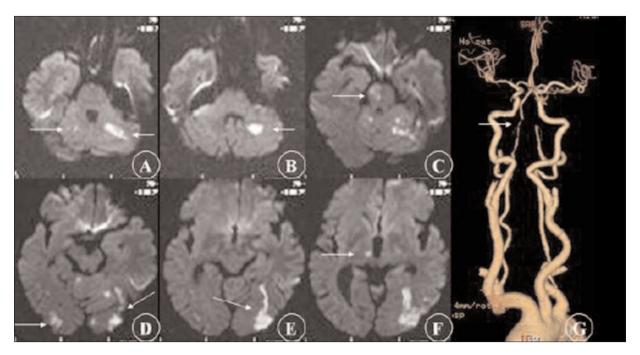
Analysis of the Causes of BCI

Bilateral cerebellar infarct with LAA is common (p = 0.041). Offending artery diseases are mainly in the V4 segment of the vertebral artery, and in the severe stenosis or occlusion of V4 and BA junction.

In LAA, the most common artery distribution areas of BCI are PICA + SCA (8/17), followed by the SCA (6/17), and in the UCI group. The most common artery distribution area is the PICA (10/21).

Figure 1 shows one case of a 66-year-old male patient. He was hospitalized due to sudden dizziness with limb weakness. After a physical examination, we found out that he got ataxia, with vi-

Table I. Demographic baseline information of cerebellar infarct.


	UCI (n = 36)	BCI (n = 20)	p
Age $(x \pm s)$	61.28 ± 13.02	62.20 ± 10.54	0.79a
Male (n, %)	29 (80.6)	17 (85)	0.96^{b}
Risk factors (n, %)			
Hypertension	25 (69.4)	14 (70.0)	0.97^{c}
Diabetes mellitus	8 (22.2)	4 (20.0)	1.00^{b}
Hyperlipidaemia	8 (22.2)	8 (40.0)	0.16^{c}
Stroke history	10 (27.8)	14 (70.0)	0.00°
Smoking	12 (33.3)	7 (35.0)	0.90°
Drinking	10 (27.8	4 (20.0)	0.52°
Cardiac source of embolus	3 (8.3)	2 (10.0)	$1.00^{\rm b}$
Low density lipoprotein	2.78 ± 0.77	3.14 ± 0.63	0.15^{a}
Fibrinogen	2.55 ± 0.62	3.29 ± 1.09	0.04^{e}
Fasting blood glucose	5.52 (4.62-7.61)	6.92 (5.79-8.36)	0.14^{d}
Admission NIHSS score (M) (M, 25%-75% percentile)	2 (2-2)	22 (3-34)	$0.00^{\rm d}$

Note: UCI means unilateral cerebellar infarct; BCI means bilateral cerebellar infarct. a means test of two independent samples; b means Pearson χ^2 correction test; c means Pearson²-test; d means Mann-Whitney U test and e means *t*-test. Fasting blood glucose (normal reference value: 3.89-6.11 mmoL/L); Low-density lipoprotein (normal reference value: 1.2-3.6 mmoL/L); Fibrinogen (normal reference value: 2-4 g/L).

Table II. Comparison of the distribution of feeding arteries, combined lesions and the causes of infarcts between the two groups.

	UCI	BCI n = 36	<i>p</i> n = 20
Arterial territories			
PICA	19 (52.8)	3 (15.0)	0.01^{c}
AICA	4 (11.1)	0 (0)	$0.29^{\rm f}$
SCA	6 (16.7)	8 (40.0)	0.05^{c}
PICA+SCA	3 (8.3)	8 (40.0)	0.01^{b}
PICA+AICA	1 (2.8)	0 (0)	$1.00^{\rm f}$
AICA+SCA	1 (2.8)	0 (0)	$1.00^{\rm f}$
PICA+AICA+SCA	2 (5.6)	1 (5.0)	1.00^{b}
Concomitant lesions outside cerebellum			
Null	21 (58.3)	3 (15.0)	0.00^{c}
Infratentorial (brainstem)	6 (16.7)	9 (45.0)	0.02^{c}
Supratentorial	7 (19.4)	5 (25.0)	0.88^{b}
Infratentorial + supratentorial	2 (5.6)	3 (15.0)	0.49^{b}
Causes of stroke			
Disease of main artery	21 (58.3)	17 (85.0)	0.04^{c}
Cardio embolus	4 (11.1)	2 (10.0)	$1.00^{\rm b}$
Disease of arterioles	4 (11.1)	0 (0)	$0.29^{\rm f}$
Other types of clear causes	1 (2.8)	0 (0)	$1.00^{\rm f}$
Types of unclear causes	2 (5.6)	1 (5.0)	1.00^{b}
≥ two causes	1 (2.8)	0 (0)	$1.00^{\rm f}$
Dysplasia of VA	3 (8.3)	0 (0)	$0.55^{\rm f}$

Note: ^bMeans Pearson Chi-square correction test; ^cMeans Pearson Chi-square test; ^fMeans Fisher's exact test.

Figure 1. The arrows in *A*, *B*, shows the BCI; *C*, *D*, *E*, *F*, arrows are right pons, bilateral occipital lobes, and right thalamus infarct merged outside the cerebellum; G is CTA map, and the arrows refer to the V4 segment of the vertebral artery and the BA beginning part of narrow occlusion.

sual field defects and hemiplegia on left limbs. The MRI of his head showed multiple cerebral infarcts. The stenosis of the offending artery was shown in the CTA images.

Discussion

In order to analyze the characteristics of the cerebellar infarct, we divided the cerebellar infarct into the unilateral and BCI, and compared the clinical and radiographic features of the two groups. The results show that amongst the 115 patients hospitalized with posterior circulation cerebral infarct due to acute stroke, 48.7% had cerebellar infarct combined with other parts, in which BCI accounts for 35.7%. Bilateral cerebellar infarct accounts for 17.4% of all ischemic stroke, suggesting that the incidence rate of the BCI is relatively high. In past CT and conventional sequence MRI, the incidence rate of the BCI was no more than 12%¹⁵. Recent MR-DWI studies report that the incidence rate of BCI reaches 23-31% 1-2, 4, which is close to this study's results.

After comparing the baseline data of the two groups, we find that only stroke history, fibrinogen level, and admission NIHSS score for a group of BCI is much higher those for a group of the UCI. This indicates that patients with a history of stroke and increased fibrinogen are more likely to get BCI and patients with BCI becomes sicker on admission. The research results by Hong et al⁷ of 50 patients with BCI show that patients with diabetes mellitus are more likely to have BCI. However, research by Lee et al¹⁶ on the demographics of 591 patients with posterior circulation stroke displays that hypertension is the most common risk factor.

To analyze the correlation between cerebellar infarct and cerebellar infarct artery, we divided the artery distribution area by cerebellar infarct. We found that the incidence rate of the cerebellar infarct was the highest in the PICA supply area. The UCI occurred more often, and the BCI was more common in the PICA + SCA supply area, which is consistent with the literature¹⁷⁻¹⁹.

We further observed that the BCI with large artery atherosclerotic stenosis is more common, followed by cardiogenic embolism. The CTA angiography were further analyzed and we found that the offending artery disease were mainly in the V4 segment of the vertebral artery, and at the junction of the V4 and BA with severe stenosis

or occlusion, which are consistent with the findings of Hong et al⁷. We also found in the LAA, the most common arterial distribution of the BCI was PICA + SCA, followed by the SCA. The most common artery distribution of UCI group was PICA, which suggested that there may be differences in the pathophysiology of stroke. We analyzed and found the reasons may be that atherosclerosis probably causes unilateral infarct, but atherosclerosis of upper-level 20-22 causes the bilateral infarct.

We also analyzed the concomitant lesions distribution outside the cerebellum and found that the incidence rate of a combination of BCI and infarcts outside the cerebellum was significantly higher than the UCI group, and that merged infratentorial lesions were common. These results suggested that, in addition to causing site infarction, atherosclerosis may also be the emboli source of infarct on artery distal site. Cho et al²³⁻²⁶ detected microembolic signals (MES) in the VBA circulating blood in 12.9% patients with acute posterior circulation infarct using TCD, and also found that frequency of MES occurred more often in patients with severe VBA stenosis. The most manifested as multiple infarct modes, further supporting the role arterial embolization played in the cerebellar endogenous infarction.

The concept of acute BCI also includes criticisms, for acute and sub-acute damage on DWI MRI both show high signal. The infarct can not be determined in this short period to have occurred simultaneously or successively, that is, that on DWI bilateral lesions is caused by a plurality of pieces decomposed by emboli²⁷⁻³⁰ or multiple emboli remains unclear. Therefore, the DWI inspection of the selected cases in this study is completed within 48h so as to reduce the proportion of repeated embolization. Meanwhile, the study sample is composed of hospitalized patients, which may not be representative of all patients with atherosclerotic stenosis, needing further studies of large-scale samples.

Conclusions

These results suggest that the BCI is not uncommon. In the infarct mode, UCI mainly occurs in PICA supply area, and BCI is more common in the PICA + SCA supply area. Arterial embolization induced by artery atherosclerosis is one of the important reasons for stroke.

Understanding the patterns and causes of BCIion can play an important guiding role in helping clinicians select proper and timely treatment measures. In addition to anticoagulation or antiplatelet, and expanding to improve infusion therapy, intervention treatment is also needed against the main artery stenosis and plaque instability.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- MATSUMOTO H, YOSHIDA Y. Posttraumatic cerebellar infarction after repeated sport-related minor head injuries in a young adult: a case report. Neurol Med Chir 2015; 55: 179-182.
- Kozak HH, Uca AU, Uguz F. Hypomanic episode improved spontaneously after isolated acute cerebellar infarct: a case report. J Stroke Cerebrovasc Dis 2015; 24: e11-3.
- ZHANG Y, ILASLAN H, HUSSAIN MS, BAIN M, BAUER TW. Solitary C1 spinal osteochondroma causing vertebral artery compression and acute cerebellar infarct. Skeletal Radiol 2015; 44: 299-302.
- KANG DW, LEE SH, BAE HJ, HAN MH, YOON BW, ROH JK. Acute bilateral cerebellar infarcts in the territory of posterior inferior cerebellar artery. Neurology 2000; 55: 582-584.
- KIM HA, LEE H, SOHN SI, YI HA, CHO YW, LEE SR, PARK BR. Bilateral infarcts in the territory of the superior cerebellar artery: clinical presentation, presumed cause, and outcome. J Neurol Sci 2006; 246: 103-109.
- Kumral E, Kisabay A, Atac C. Lesion patterns and etiology of ischemia in superior cerebellar artery territory infarcts. Cerebrovasc Dis 2005; 19: 283-290.
- Hong JM, Bang OY, Chung CS, Joo, IS, Huh, K. Frequency and clinical significance of acute bilateral cerebellar infarcts. Cerebrovasc Dis 2008; 26: 541-548.
- Wang P, Wang Y, Wang A, Chao ZH, Song JH, Huang L, Wang SA. Study on the carotid atherosclerotic plaque by 64 slices CT in patients with ischemic cerebrovascular disease. Chin J Arterioscler 2012; 20: 819-823.
- SAI V, RAKOW-PENNER R, YEH BM, COAKLEY FV, WEST-PHALEN AC, WEBB EM, WANG ZJ. Renal cyst pseudoenhancement at 16- and 64-dector row MDCT. Clin Imaging 2013; 37: 520-525.
- MARTILLOTTI J, SILVA N, CHHABRA J, MOLSTROM C, COUGHLIN R, O'LOUGHLIN M, COUGHLIN B. Dose of

- reduced z-axis length of computed tomography angiography (CTA) of the chest for pulmonary embolism using 64-detector rows and adaptive iterative reconstruction techniques. Emerg Radiol 2013; 20: 39-44.
- AKBARZADEH A, AY M, GHADIRI H, SARKAR S, ZAIDI H. A new method for experimental characterisation of scattered radiation in 64-slice CT scanner. Biomed Imaging Interv J 2010; 6: e3.
- Vuillier F, Decavel P, Medeiros de Bustos E, Tatu L, Moulin T. Cerebellar infarction. Rev Neurol 2011; 167: 418-430.
- 13) NORTH AMERICAN SYMPTOMATIC CAROTID ENDARTERECTO-MY TRIAL COLLABORATORS. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991; 325: 445-453.
- 14) VEMMOS KN, SPENGOS K, TSIVGOULIS G, MANIOS E, ZIS V, VASSILOPOULOS D. Aetiopathogenesis and longterm outcome of isolated pontine infarcts. J Neurol 2005; 252: 212-217.
- 15) Tohgi H, Takahashi S, Chiba K, Hirata Y. Cerebellar infarction: clinical and neuroimaging analysis in 293 patients. The Tohoku Cerebellar Infarct Study Group. Stroke 1993; 24: 1697-1701.
- 16) LEE JH, HAN SJ, YUN YH, CHOI HC, JUNG S, CHO SJ, YU KH, LEE SM, HWANG SH, SONG HK, KWON KH, LEE BC. Posterior circulation ischemic stroke in Korean population. Eur J Neurol 2006; 13: 742-748.
- 17) MARINKOVI S, KOVACEVI M, GIBO H, MILISAVLJEVI M, BUMBASIREVI L. The anatomical basis for the cerebellar infarcts. Surg Neurol 1995; 44: 450-460; discussion 460-461.
- 18) AMARENCO P, HAUW JJ, HÉNIN D, DUYCKAERTS C, ROUL-LET E, LAPLANE D, GAUTIER JC, LHERMITTE F, BUGE A, CASTAIGNE P. Cerebellar infarction in the area of the posterior cerebellar artery. Clinicopathology of 28 cases. Rev Neurol 1989; 145: 277-286.
- SHRONTZ C, DUJOVNY M, AUSMAN JI, DIAZ FG, PEARCE JE, BERMAN SK, HIRSCH E, MIRCHANDANI HG. Surgical anatomy of the arteries of the posterior fossa. J Neurosurg 1986; 65: 540-544.
- 20) LI S, SUN X, BAI YM, QIN HM, WU XM, ZHANG X, JOLKKONEN J, BOLTZE J, WANG SP. Infarction of the corpus callosum: a retrospective clinical investigation. PLoS One 2015; 10: e0120409.
- CHOI I, JUNG KI, YOO WK, JANG S, OHN SH. Novel information on anatomic factors causing grasp reflex in frontal lobe infarction: a case report. Ann Rehabil Med 2015; 39: 150-153.
- 22) HAO M, QIN X, GAO H. A case of hemichoreahemiballism induced by acute infarction of bilateral corona radiata and cortex. Cell Biochem Biophys 2015 Feb 24. Epub ahead of print].
- 23) CHO JH, KANG DH, KIM YW, PARK J, KIM YS. Microembolic signal monitoring and the prediction of thromboembolic events following coil embolization of unruptured intracranial aneurysms: diffu-

- sion-weighted imaging correlation. Neuroradiology 2015; 57: 189-196.
- 24) KINSELLA JA, TOBIN WO, KAVANAGH GF, O'DONNELL JS, McGrath RT, TIERNEY S, FEELEY TM, EGAN B, O'NEILL D, COLLINS RD, COUGHLAN T, HARBISON JA, DOHERTY CP, MADHAVAN P, MOORE DJ, O'NEILL SM, COLGAN MP, SAOQUR M, MURPHY RP, MORAN N, HAMILTON G, McCABE DJ. Increased endothelial activation in recently symptomatic versus asymptomatic carotid artery stenosis and in cerebral microembolic-signal-negative patient subgroups. Eur J Neurol 2014; 21: 969-e55.
- JIANG J, JIANG Y, FENG S, SUN D, ZHUANG A, ZENG Q, ZHANG Y, HUANG H, NIE H, ZHOU F. Microembolic signal monitoring of TOAST-classified cerebral infarction patients. Mol Med Rep 2013; 8: 1135-1142.
- 26) YAMAOKA Y, ICHIKAWA Y, KIMURA T, SAMESHIMA T, OCHIAI C, MORITA A. A novel method for transcra-

- nial Doppler microembolic signal monitoring at the vertebrobasilar junction in vertebral artery dissection patients. J Neuroimaging 2014; 24: 191-194.
- 27) IWANAMI H, ODAKA M, HIRATA K. Bilateral cerebellar infarction caused by intracranial dissection of the vertebral artery after long periods of "Shiatsu"]. Brain Nerve 2007; 59: 169-171.
- IWANAMI H, ODAKA M, HIRATA K. Bilateral cerebellar infarction caused by intracranial dissection of the vertebral artery after long periods of "Shiatsu". No To Shinkei 2007; 59: 169-171.
- GADWALKAR SR, BUSHAN S, PRAMOD K, GOUDA C, KU-MAR PM. Bilateral cerebellar infarction: a rare complication of scorpion sting. J Assoc Physicians India 2006; 54: 581-583.
- UMASHANKAR G, GUPTA V, HARIK SI. Acute bilateral inferior cerebellar infarction in a patient with neurosyphilis. Arch Neurol 2004; 61: 953-956.