ELOVL fatty acid elongase 7 (ELOVL7), upregulated by Mdr2-knockout, predicts advanced liver fibrosis in patients with chronic hepatitis B

W.-M. WANG1, Z.-G. YANG2, C. LIU3, Q. DONG1

1Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
2Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
3Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Abstract. – OBJECTIVE: This study aims to investigate the correlations between gene alterations induced in Mdr2-knockout (Mdr2-/-) models and liver fibrosis.

SUBJECTS AND METHODS: The overlapping genes in Mdr2-/- models were determined and included in logistic regression analysis to identify potential candidates for predicting liver fibrosis. Correlations between the expression levels of the identified candidates and hepatic stellate cells (HSCs) were addressed. Functional enrichment of the identified candidates was also evaluated via bioinformatic analysis.

RESULTS: Twenty-two overlapping genes in the GSE4612, GSE8642 and GSE14539 datasets were identified. Univariate and multivariate analysis indicated that ELOVL fatty acid elongase 7 (ELOVL7) was significantly associated with liver fibrosis S ≥ 2 (OR = 11.8, 95% CI = 2.0 - 69.2, p = 0.006). ELOVL7 was significantly upregulated in patients with various types of liver injury including hepatitis B virus (HBV) infection and fatty liver diseases, and in multiple liver injury models, including bile duct ligation (BDL), carbon tetrachloride (CCl4) and paracetamol injection-induced liver damage models (all p < 0.05). The ELOVL7 levels were significantly higher in HSCs than in other liver cells (all p < 0.05) and were significantly upregulated in activated HSCs compared to quiescent HSCs (all p < 0.05). In addition, ELOVL7 expression was positively associated with transforming growth factor β (TGFβ) and bone morphogenetic protein 9 (BMP9) expression and negatively associated with BMP7 expression. Bioinformatic analysis of functional enrichment indicated that ELOVL7 is mainly involved in fatty acid synthesis and metabolism.

CONCLUSIONS: ELOVL7 could accurately predict advanced liver fibrosis. It might be involved in the activation of HSCs and the TGFβ signaling pathway.

Key Words: ELOVL7, Mdr2, Liver fibrosis, Cirrhosis, Hepatic stellate cells, TGFβ, Fatty acid synthesis, Metabolism.

Introduction

Fibrosis and the resulting organ injury and failure are responsible for at least one third of all deaths worldwide1,2, and its incidence is increasing3. Liver fibrosis occurs in response to various etiologies of chronic liver damage, including viral hepatitis, fatty liver diseases, alcoholic hepatitis, autoimmune and metabolic liver diseases, and toxic liver injury4. The liver disease progresses through various stages, among which liver fibrosis is the pivotal step5. Fibrosis is stimulated by chronic inflammation, which causes quiescent hepatic stellate cells (HSCs) to be activated, induces the expression of profibrotic factors and promotes liver damage progression6, resulting in the destruction of liver structures, the replacement of liver parenchyma by fibrous tissue, the development of regenerative nodules and hepatic dysfunction7.

Robust experimental models of fibrosis are emerging and provide promising approaches for understanding the mechanisms underlying liver fibrosis and the application of potential antifibrotic strategies1. As classical models of cholestatic liver disease, multidrug resistance protein 2 knockout (Mdr2-/-) mouse models are widely used for research on various liver diseases including liver fibrosis. Compared to normal livers, the livers of Mdr2-/- mice frequently exhibit infiltration of hepatic neutrophils, accumulation of proinflammatory cytokines, and
increased numbers of monocyte-derived macrophages. In addition, the activation of fibroblasts around the ducts, and periductal fibrosis have been confirmed in 8-week-old Mdr2−/− mice. According to the pathogenic features of Mdr2−/− mice, gene alterations in this model are expected to be closely associated with liver fibrosis progression.

It is recognized that liver fibrosis is a precursor to cirrhosis. Early diagnosis and assessment of liver fibrosis is critical for reversal of liver fibrosis and cirrhosis. In the present study, we aimed to elucidate the gene alterations induced in Mdr2−/− mice and investigate the correlations between these alterations and liver fibrosis progression, in the hope that the findings may provide novel diagnostic candidates and therapeutic targets as well as useful insights into the pathogenesis and mechanisms of liver fibrosis.

Subjects and Methods

Ethics Statement

Written informed consent was obtained from all participants. The protocol of this secondary analysis was reviewed and approved by the Ethics Committee of Beijing Tian Tan Hospital, Capital Medical University.

Mdr2−/− Mouse Sequencing Datasets

As of April 21, 2022, 30 series were identified with the keywords “Mdr2” in the Gene Expression Omnibus (GEO, available at: https://www.ncbi.nlm.nih.gov/geo/) database. Seventeen series with expression profiling by array were screened further. The source organism of all 17 series was Mus musculus. Only series containing raw.CEL files and platforms with “ID”, “Gene symbol”, and “ENTREZ_GENE_ID” terms were included in this analysis. Finally, GSE461218, GSE864219 and GSE1453920 were included in the analysis. The details of the GEO series included in this analysis are summarized in **Supplementary Table I**.

Patients and Outcome Definition

The GSE8404415 dataset was used to screen candidate molecules for predicting liver fibrosis. As we previously reported, liver biopsy samples from 124 patients with chronic hepatitis B (CHB) were included in this dataset. The clinical characteristics, including the age, gender and histopathological diagnosis results, of these CHB patients were available. The diagnosis of CHB was made according to the criteria of the Asian Pacific Association for the Study of the Liver (APASL). Patients with the following characteristics were excluded from the study: 1) use of any antiviral therapies or immunosuppressive drugs within six months before sampling and 2) lack of hepatitis B virus (HBV) infection, human immunodeficiency virus (HIV) infection, autoimmune liver disease, drug-induced liver injury, alcoholic liver disease or hepatocellular carcinoma. The histopathological diagnosis of all liver biopsies was confirmed by two experienced pathologists from the Pathology Department of Shanghai Fudan University, School of Medicine. The fibrosis staging (Scheuer S) and inflammation grading (Scheuer G) were calculated according to the Scheuer scoring system, namely, S 0-4 and G 0-4. The primary outcome was advanced liver fibrosis, which was defined as a histological fibrosis staging of S ≥ 2. As stated by Wang et al, all subjects provided written informed consent. The study protocol was approved by the Ethics Committee of Ruijin Hospital, Shanghai Jiaotong University, School of Medicine.

Identification of Differentially Expressed Genes (DEGs)

This identification framework was used in all the GEO series included in this analysis. Raw CEL files of the microarray data from each GEO dataset were subjected to quantile normalization with the robust multichip analysis (RMA) algorithm in the R package affy (available at: https://
www.r-project.org). Gene expression was compared with the Limma package (Bioconductor, Roswell Park Comprehensive Cancer Center, NY, USA). Missing gene expression data were imputed by the k-nearest neighbor method with the impute index in the R program. DEGs were identified as genes meeting the criteria of $|\log_2 \text{FC}| > 1.0$ and adjusted p-value < 0.05.

RNA Sequencing of Liver Fibrosis Samples

Eight liver biopsy samples from Putuo Hospital, Shanghai University of Traditional Chinese Medicine, namely, samples from 4 patients with liver fibrosis $S \geq 2$ and 4 normal liver samples were sequenced. Whole-genome microarray expression profiling was conducted by Shanghai OE Biotech Co., Ltd (Shanghai, China) with the OE Biotech Human ceRNA Microarray Platform GPL28576. The raw microarray data have been deposited in the GEO database under accession series code GSE197112.

Enrichment of DEGs

The average log$_2$-transformed fold changes in the expression of the overlapping DEGs were calculated in the GSE4612, GSE8642 and GSE14539 datasets. The Gene Ontology (GO) Enrichment Analysis tool in the SRplot online server (available at: http://www.bioinformatics.com.cn/en) was used to identify the biological processes and molecular functions of these overlapping DEGs in mice.

Protein-Protein Interaction (PPI) of Candidates

The PPI of the identified candidates for predicting liver fibrosis was evaluated by STRING version 11.5 (available at: https://cn.string-db.org/) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Reactome pathway and GO biological process enrichment of the genes in the PPI network were also determined with the STRING database.

Statistical Analysis

Differences in gene expression levels between the individual groups were analyzed using Student’s t-test, the Mann-Whitney U test or two-way ANOVA, based on the variable type by GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA). Variables associated with the liver fibrosis stage were assessed by univariate and multivariate logistic regression analysis. The results are reported as odds ratios (ORs) with 95% confidence intervals (CIs). The OptimalCutpoints package (available at: https://www.r-project.org) in the R program was used to perform ROC analysis to evaluate the predictive values of potential candidates for the liver fibrosis stage and inflammation grade, and the rmda package (available at: https://www.r-project.org) was used for decision curve analysis (DCA) to reevaluate the predictive performance of the candidates. Correlation analysis was performed by the Spearman’s method. Stata software version 16.1 (Stata Corp LLC, Texas, USA) was used for logistic regression and correlation analyses. A two-tailed $p < 0.05$ was considered significant.

Results

Overlapping DEGs in Mdr2 Knockout Mouse Models

The flow diagram of the study is summarized in Figure 1. In total, 2,481, 498 and 1,313 DEGs were identified in the GSE4612, GSE8642 and GSE14539 datasets, respectively. A Venn diagram was used to identify 22 overlapping DEGs among these three GEO series (Figure 2A). As detailed in Figure 1B, all 22 genes were significantly upregulated in the livers of 9-month-old $Mdr2^{-/-}$ mice compared to wild-type mice (all $p < 0.05$, GSE14539, Figure 2B). They were also significantly upregulated in 12-month-old compared to 3-month-old $Mdr2^{-/-}$ homozygous mice (all $p < 0.0001$, GSE4612, Figure 2B) and were significantly upregulated in tumor tissues compared to nontumor tissues in $Mdr2^{-/-}$ mice (all $p < 0.05$, GSE8642, Figure 2B). Enrichment analysis of the overlapping DEGs indicated that they were involved mainly in biological processes that included response to tumor necrosis factor, cellular response to tumor necrosis factor, and positive regulation of response to external stimulus, etc. (Figure 2C). The overlapping DEGs also had molecular functions that included structural constituent of cytoskeleton, cadherin binding, metalloendopeptidase activity, etc. (Figure 2D).
ELOVL fatty acid elongase 7 (ELOVL7), upregulated by Mdr2-knockout

Candidate Genes for Predicting Liver Fibrosis

In the liver fibrosis dataset GSE84044, the median age of the 124 CHB patients was 40 years, and 87 (70.2%) were male (Table I). The gene expression data of SDCBP2 were not available in the GSE84044 dataset. As summarized in Figure 3A, TUBB6, RGS1, PROM1, CRIP2, COL4A5, TNFRSF12A, ELOVL7, ADAM10, FABP4, TMEM45B, CASP4, AQP8, and LIMS1 were significantly overexpressed in the liver samples with S ≥ 2 (all p < 0.05, Figure 3A), and PDK4, NTF3, NDRG1, AQP8 were significantly downregulated in liver samples with S < 2 (all p < 0.05, Figure 3A). Univariate logistic regression analysis revealed that age, TUBB6, RGS1, PROM1, CRIP2, COL4A5, TNFRSF12A, ELOVL7, PDK4, NTF3, NDRG1, ADAM10, FABP4, TMEM45B, CASP4, AQP8, and LIMS1 were potential candidates for predicting liver fibrosis S ≥ 2 (all p < 0.05, Figure 3B). Multivariate logistic regression analysis indicated that ELOVL7 upregulation was significantly associated with liver fibrosis S ≥ 2 (OR = 11.8, 95% CI = 2.0 - 69.2, p = 0.006, Figure 3C).

Predictive Performance of ELOVL7 for Liver Fibrosis and Liver Inflammation

To evaluate the predictive accuracy of ELOVL7 for liver fibrosis and liver inflammation, we performed receiver operating characteristic (ROC) analysis and found that ELOVL7 accurately predicted liver fibrosis S ≥ 2 [cutoff = 3.92, AUC = 0.9 (95% CI = 0.85 - 0.95), specificity = 0.87, sensitivity = 0.79, positive predictive value (PPV) = 0.81, and negative predictive value (NPV) = 0.86, Figure 4A].
Figure 2. A total of 22 overlapped differentially expressed genes (DEGs) were identified in the GSE4612, GSE8642 and GSE14539 datasets.

A. The gene expression comparison in these three Gene Expression Omnibus (GEO) series. B. The Gene Ontology (GO). C, biological process. D, molecular functions of these 22 overlapped DEGs.
ELOVL fatty acid elongase 7 (ELOVL7), upregulated by Mdr2-knockout

Figure 3. A. The gene expression between fibrosis staging S < 2 and S ≥ 2 in the GSE84044. B, Univariate and (C), multivariate logistic regression analysis for predicting liver fibrosis S ≥ 2. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Figure 4. The receiver operating characteristic (ROC) curve of ELOVL7 for liver fibrosis $S \geq 2$ (A) and liver inflammation $G \geq 2$ (B).
Subgroup analysis demonstrated that ELOVL7 also showed outstanding predictive performance for liver fibrosis S ≥ 2 in both male and female (male patients: cutoff = 3.92, AUC = 0.92, 95% CI = 0.86 - 0.98; female patients: cutoff = 4.29, AUC = 0.85, 95% CI = 0.73 - 0.98; Figure 4A). Similarly, ELOVL7 showed good predictive performance for liver inflammation G ≥ 2 (cutoff = 3.91, AUC = 0.82 (95% CI = 0.74 - 0.89), specificity = 0.85, sensitivity = 0.69, positive predictive value (PPV) = 0.68, and negative predictive value (NPV) = 0.86, Figure 4B), even in the male and female subgroups (male subgroup: cutoff = 3.91, AUC = 0.83, 95% CI = 0.74 - 0.91; female subgroup: cutoff = 4.4, AUC = 0.79, 95% CI = 0.64 - 0.94; Figure 4B).

DCA indicated that ELOVL7, with a threshold probability of 10% - 100%, showed good predictive value for liver fibrosis S ≥ 2 (Figure 5A). The true positive and false positive rates of ELOVL7 for predicting liver fibrosis over a range of high-risk thresholds, as well as the clinical impact curve, are presented in Figure 5B. Similarly, ELOVL7, with a threshold probability of 10% - 75%, showed good predictive performance for liver inflammation G ≥ 2 (Figure 5C). The true positive and false positive rates of ELOVL7 for predicting liver inflammation over a range of high-risk thresholds, as well as the clinical impact curve, are presented in Figure 5D.

Figure 5. The Decision Curve Analysis (DCA) of ELOVL7 for liver fibrosis S ≥ 2 (A-B), and liver inflammation G ≥ 2 (C-D).
ELOVL7 Expression in Liver Injury

Liver injury datasets were searched and downloaded from the GEO database. The identification framework and data algorithm were the same as noted above. Moreover, we conducted Spearman’s Chi-square test to evaluate the correlation between ELOVL7 expression and liver fibrosis staging in GSE84044. As shown in Figure 6A, the ELOVL7 level was positively correlated with the liver fibrosis staging ($r = 0.737, p < 0.001$, Figure 6A).

ELOVL7 expression was significantly upregulated in cirrhosis samples compared to normal liver or hepatitis samples in the GSE77413, GSE25097, and GSE103580 datasets ($p < 0.01$, Figure 6B). Additionally, our own RNA sequencing data indicated that ELOVL7 levels were significantly higher in the patients with liver fibrosis $S \geq 2$ than in those with $S < 2$ ($p < 0.05$, GSE197112, Figure 6B).

ELOVL7 was significantly overexpressed in patients with HBV-associated acute liver failure compared with healthy individuals, patients with liver angioama ($p < 0.001$, GSE146684 and GSE96851, Figure 6C) or CHB patients in the immune clearance stage ($p < 0.01$, GSE65359, Figure 6C). ELOVL7 expression exhibited an increasing trend in CHB patient livers compared to normal livers ($p = 0.05$, GSE58208, Figure 6C). ELOVL7 also showed an increasing trend in hepatitis C virus (HCV)-infected patients; unfortunately, no significant difference was found (Figure 6D).

ELOVL7 levels were significantly higher in non-alcoholic steatohepatitis (NASH) patients than in nonalcoholic fatty liver disease (NAFLD) patients or healthy subjects ($p < 0.05$, GSE495415, GSE58979, and GSE59045, Figure 6E). In C57BL/6 NASH mice fed a methionine- and choline-deficient (MCD) diet and a high-fat diet, ELOVL7 expression was significantly upregulated compared to that in normal livers ($p < 0.0001$, GSE35961, Figure 6E). Similarly, ELOVL7 was significantly overexpressed in the high-fat-diet-fed mice compared to normal-chow-diet-fed mice ($p < 0.0001$, GSE57425, Figure 6E).

In addition, ELOVL7 levels were significantly increased in the liver injury models, including mice with bile duct ligation (BDL), mice with carbon tetrachloride (CCL) induction and C57BL6/N mice with paracetamol injection ($p < 0.05$, Figure 6F). In addition, the injection of lipopolysaccharide (LPS) increased the levels of ELOVL7, but no significant difference was found ($p = 0.09$, GSE166488, Figure 6F).

In summary, ELOVL7 is widely overexpressed in the setting of various types of liver injury, including HBV infection, non-alcoholic steatohepatitis (NASH), and some mouse models of liver damage.

Correlations Between ELOVL7 Expression and HSC Properties

To further investigate the roles of ELOVL7 in the progression of liver fibrosis, we compared ELOVL7 expression in different stages of HSCs. As shown in Figure 7A, ELOVL7 was significantly upregulated in HSCs compared to liver stem/progenitor cells, hepatocytes, liver sinusoidal endothelial cells, and embryonic fibrolasts (all $p < 0.05$, GSE49995, GSE68000, and GSE106347, Figure 7A). ELOVL7 was significantly overexpressed in activated HSCs compared to quiescent HSCs and reverted HSCs (all $p < 0.001$, GSE68000 and GSE68001, Figure 7A).

Since the transforming growth factor β (TGFβ) pathway is the core signaling pathway in the development of liver fibrosis and activation of HSCs, we determined the correlations between ELOVL7 expression and TGFβ1, TGFβ2, and TGFβ3 expression in the GSE84044 dataset. As shown in Figure 7B, TGFβ2 was significantly upregulated in the high ELOVL7 expression group ($p < 0.0001$, Figure 7B), and TGFβ1 and TGFβ3 expression exhibited an increasing trend according to ELOVL7 upregulation ($r = 0.07$, Figure 7B). Spearman correlation analysis showed that TGFβ1, TGFβ2, and TGFβ3 expression had positive correlations with ELOVL7 expression ($r = 0.287$, $p = 0.001$; $r = 0.516$, $p < 0.001$ and $r = 0.211$, $p = 0.019$, respectively; Figure 7C). In addition, bone morphogenic protein 7 (BMP7) expression was negatively associated with ELOVL7 expression in the GSE84044 dataset ($p < 0.001$, Figure 7D). ELOVL7 expression was significantly increased in LX2 cells treated with recombinant human bone morphogenic protein 9 (BMP9) and in human umbilical vein endothelial cells (HUVECs) stimulated with BMP9 (both $p < 0.05$, GSE104482 and GSE104684, Figure 7E).

In summary, ELOVL7 expression is increased in activated HSCs and is involved in the activation of the TGFβ signaling pathway.

Enrichment of ELOVL7 Interacting Proteins

PP1 analysis indicated significant interactions between ten proteins and ELOVL7 in the STRING database (coefficient = 0.864, $p = 1.78 \times 10^{-4}$, Figure 8A). KEGG pathways such as biosynthesis of unsaturated fatty acids, fatty acid metabolism, fatty acid elongation, and metabolic pathways were enriched (Figure 8B). Reactome pathways such as fatty acid metabolism, fatty acyl-CoA biosynthesis, linoleic acid (LA) metabolism, synthesis of very long-chain fatty acid acyl-CoAs, and metabolism were enriched (Figure 8C).
Figure 6. The correlation of ELOVL7 and liver fibrosis staging (A); the ELOVL7 expression in multiple liver injuries including cirrhosis (B), chronic hepatitis B (CHB) (C), hepatitis C virus (HCV) infection (D), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) (E), and the liver injury models induced by bile duct ligation (BDL), carbon tetrachloride (CCl4), paracetamol injection and lipopolysaccharide (LPS) injection (F). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Figure 7. The ELOVL7 expression in different status of hepatic stellate cells (HSCs) (A), and the correlation between ELOVL7 and biomarkers in the transforming growth factor β (TGFβ) pathway including TGFβ1, TGFβ2, TGFβ3, bone morphogenic protein 7 (BMP7) and bone morphogenic protein 9 (BMP9) (B-E). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Figure 8. The protein-protein interaction (PPI) of ELOVL7 (A), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (B), Reactome pathway (C), and Gene Ontology (GO) biological process (D) enrichments of the ELOVL7 interacted proteins.
Discussion

Ablation of Mdr2 leads to intrahepatic bile accumulation and cholestatic liver fibrosis. Mdr2 is the rodent homolog of the human Mdr3 protein, and emerging evidence indicates that genetic mutations in the ABCC4 gene, encoding Mdr3, are associated with cholestasis and cirrhosis. However, the relationships between genes with expression alterations, induced by Mdr2 deletion and noncholestatic cirrhosis in humans, remain uncertain. In this study, we found that the genes with expression alterations induced by knockout of Mdr2 were involved mainly in the biological processes of response to cytokines and cell differentiation. Among these altered genes, ELOVL7 was identified as a promising predictor of advanced liver fibrosis and liver inflammation.

Our enrichment analysis indicated that ELOVL7 interacted with genes involved in fatty acid synthesis and metabolism. In humans, ELOVL7 participates in the synthesis of long-chain fatty acids, elongates saturated and mono-saturated fatty acids and assists with lipid formation. It exhibits high activity toward acyl-CoAs with C18 carbon chain length. Previous studies have shown that ELOVL7 is involved in prostate cancer cell viability and survival by regulating the levels of saturated very-long-chain fatty acids and their derivatives. Human cytomegalovirus infection-induced ELOVL7 upregulation is dependent on mammalian target of rapamycin (mTOR) and sterol regulatory element-binding transcription factor 1 (SREBP1). The α-linolenic acid was found to enhance ELOVL7 promoter activation and result in the accumulation of cellular fat, suggesting that ELOVL7 is involved in fatty acid metabolism in bovine mammary epithelial cells. ELOVL7 mRNA is expressed at relatively low levels in normal livers. Notably, our data revealed that the level of ELOVL7 was increased in various types of liver injury, advanced liver fibrosis and cirrhosis. Non-alcoholic fatty liver disease (NAFLD), which is characterized by an imbalance in fatty acid synthesis and lipid metabolism, can regularly progress to NASH, which increases the risk of liver fibrosis and cirrhosis. Dysfunction of fatty acid synthesis and metabolism leads to increased levels of hepatic fatty acids, resulting in multiple liver insults, for instance, mitochondrial dysfunction, endoplasmic reticulum stress, and the release of inflammatory cytokines, which trigger signaling cascades related to inflammation, cell death, and liver fibrosis. According to some studies and our results, we assumed that ELOVL7 can promote liver fibrosis progression via fatty acid-related mechanisms.

HSCs are the core factors in liver fibrosis development. Our data demonstrated that ELOVL7 activity was elevated in activated HSCs compared to normal liver cells and quiescent HSCs. HSCs are the main fibrogenic cells in the damaged liver, accounting for most of the proliferative, contractile, and fibrogenic myofibroblasts that are involved in the process of liver fibrosis. During the activation of quiescent HSCs, the content of lipid droplets changes, and the content of ribonucleic acid decreases but that of triacylglycerols (TAGs) increases; the increase of TAGs is likely dependent on the modulated expression of diacylglycerol O-cyltransferase-1 and adipose triglyceride lipase, both of which are involved in the synthesis and breakdown of TAGs. Finally, stabilized ribonucleic acid is released from lipid droplets for the catabolism and β-oxidation of fatty acids. Hence, as a regulator of fatty acid synthesis and metabolism, ELOVL7 upregulation during HSC activation is expected to contribute to the progression of liver fibrosis.

Multiple genes and multiple factors are involved in the activation of HSCs, and the related signaling pathways may constitute potential therapeutic targets. Among these pathways, TGFβ signaling is generally recognized to participate in the development of liver fibrosis. In our analysis, we found that ELOVL7 expression was positively correlated with TGFβ1, TGFβ2, and TGFβ3 expression and was especially upregulated in livers with high TGFβ2 high expression. On the other hand, ELOVL7 expression was negatively correlated with BMP7 expression and was upregulated in BMP9-treated cells. Current publications have indicated that TGFβ2 can induce expression of a number of fibrotic genes in cholangiocytes and HSCs. BMP7, a member of the TGFβ superfamily, can decrease the expression of collagen 1A2 and α-smooth muscle actin (α-SMA), trigger the expression of inhibitors of differentiation 2, and inhibit the expression of TGFβ1 and the epidermal growth factor receptor, resulting in alleviation of liver fibrosis. BMP9, also called growth differentiation factor 2 (GDF2), is a member of the TGFβ superfamily and is involved in the...
ELOVL fatty acid elongase 7 (ELOVL7), upregulated by Mdr2-knockout

promotion of liver fibrosis progression70,71. Considering the previous studies66-71 and our results, we hypothesized that ELOVL7 might induce the activation of the TGFβ signaling pathway during the development of liver fibrosis.

Limitations

This study has some limitations. First, our analysis was based on public datasets, and the clinical characteristics of the included patients were incomplete; for instance, liver function parameters and virological markers were not obtained and adjusted for, which might result in biases regarding the predictive power of ELOVL7 for liver fibrosis. Second, ELOVL7 protein expression in different liver fibrosis stages was not investigated, and the correlation and consistency of ELOVL7 levels between liver tissues and peripheral blood mononuclear cells (PBMCs) have not been investigated, which currently limits the clinical application of this candidate. Third, the mechanisms of ELOVL7 in the development of liver fibrosis were discussed superficially in this study. Considering the complicated mechanisms of liver fibrosis, the genetic, epigenetic and metabolic aspects of the role of ELOVL7 in liver fibrosis progression should be investigated in depth.

Conclusions

ELOVL7 can accurately predict advanced liver fibrosis and be involved mainly in the activation of HSCs and the TGFβ signaling pathway. This candidate is expected to be a diagnostic and therapeutic target in liver fibrosis. Future research should focus on the relationship between the expression levels of ELOVL7 in PBMCs and the severity of liver fibrosis to verify the possibility of its clinical application.

Conflicts of Interest

The authors declare no conflicts of interest in this work.

Ethics Approval

The protocol of this secondary analysis was reviewed and approved by the Ethics Committee of Beijing Tian Tan Hospital, Capital Medical University.

Informed Consent

Written informed consent was obtained from all participants.

Availability of Data and Materials

The datasets used in the current study are available in the NCBI Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). All the datasets are available from Dr. Qian Dong upon reasonable request.

Authors’ Contributions

Qian Dong and Zong-Guo Yang conceived and designed the study. Wen-Ming Wang wrote the manuscript. Qian Dong revised the manuscript. Wen-Ming Wang, Qian Dong, Cheng Liu, and Zong-Guo Yang analyzed and interpreted the data. All authors read and approved the final manuscript.

Funding

This work was supported by the Shanghai Municipal Health Commission (grant number 2020LZ001). The funders had no role in the study design, data collection and analysis, decision to publish, or manuscript preparation.

ORCID ID

Wen-Ming Wang: 0000-0002-0610-6282
Zong-Guo Yang: 0000-0002-6623-4841
Cheng Liu: 0000-0002-8741-6169
Qian Dong: 0000-0003-0588-2498

References

