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Abstract. – OBJECTIVE: The aim of this study
is to identify the gene expression profile specific
to Hepatocellular Carcinoma (HCC) by comparing
the different expression profiles in cirrhosis, dys-
plastic nodule (DN) and HCC tissues.

MATERIALS AND METHODS: The microarray
data were downloaded from Gene Expression
Omnibus (GEO) repository, involving 39 samples
of normal liver tissues, 33 samples of cirrhosis,
17 samples of DNs and 286 samples of HCCs of
different stages. Differential Expressed Genes
(DEGs) of cirrhosis, DN and HCC liver tissues
were analyzed by BRB-ArrayTool software; be-
sides, the Gene Ontology (GO) analysis, Kyoto
encyclopedia of Genes and Genomes (KEGG)
and Biocarta pathway enrichment analysis were
also performed. A protein-protein interaction
(PPI) network was then constructed by STRING
software using the genes in significantly differ-
ent pathways. The resulting network was ana-
lyzed by Cytoscape software with CentiScaPe
plugin to calculate the topological characteris-
tics of the network and its individual node. Key
genes were screened according to betweenness
and degree of nodes.

RESULTS: few overlaps occurred in the GO
categories of DEGs and in the gene sets from
pathway analysis between HCCs, cirrhosis and
DNs. DEGs in abnormal tissues were shown to
be enriched in 29 KEGG pathways and 18 Bio-
carta pathways; and 43 key genes were identi-
fied to be involved in the maintenance of PPI
network. In addition, the gene expression pro-
files were significantly different among cirrhosis,
DN and HCC tissues.

CONCLUSIONS: The bioinformatic analysis of
GEO datasets of HCC identified the functional
gene sets associated with the genesis and de-
velopment of HCC, and the key genes that were
playing important roles in the maintenance of
the molecular network for biological function
specific to HCC. It provides the insights for more
precise understandings of pathogenic mecha-
nism, which will further expand the study on bio-
marker and targeted therapy of HCC.
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Introduction

Hepatocellular Carcinoma (HCC) is the third
leading cause of cancer-related death in the
worldwide area with increasing incidence1. The
occurrence of HCC is associated with multiple
risk factors, such as hepatitis virus infections and
aflatoxin exposure. The progression of most
HCCs is a stepwise process, proceeding from
chronic hepatitis, cirrhosis and dysplastic nod-
ules (DN) to HCC. A number of genes were
found to aberrantly expressed in the tissue of
HCC. In the present study, with the aim of dis-
covering the key genes that lead to the aberrant
functions of HCC cells, gene expression profiles
of cirrhosis, DN and HCC were compared with
those of normal liver tissue using microarray
analysis to identify differentially expressed genes
(DEGs). Subsequently, the pathway analysis was
performed to screen specific aberrant signaling
pathways in HCC, and thereby to identify the key
nodes involved in the maintenance of these path-
ways, which will further provide the novel thera-
peutic strategies for HCC via targeted interven-
tion of these genes.

Materials and Methods

Microarray Data
The gene dataset was retrieved from Gene Ex-

pression Omnibus (GEO) repository of National
Center for Biotechnology Information (NCBI) of
National Institute of Health (NIH) of USA. The
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inclusion criteria of dataset are listed as follows:
(1) the gene expression data series (GSE) of nor-
mal liver tissue, cirrhosis, DN and HCC. Microar-
rays of normal liver tissue should not include the
peritumoral liver tissue and the tissue of hepatitis
and exclude the microarrays of experimental cell
lines; (2) the cross species microarrays were ex-
cluded to avoid the effect on the analysis accuracy.
As a result, the dataset under annotation of
GPL570 ([HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array) was included in the
present study, containing the expression profiles of
47,000 transcripts in human genomes.

Microarray Analysis
The microarray analysis was performed by

BRB-Array Tools version 4.4.0 - Beta_12. Gene
expression profiles of cirrhosis, DN and HCC
were compared with those of normal liver tissue
to identify DEGs. The analysis included the fol-
lowing procedures: (1) CEL files of microarrays
were imported into Microsoft EXCEL using
MAS5.0 algorithm; (2) probes with hybridization
signal intensity < 10 were filtered; (3) probe sig-
nal values were then converted to log2 value; (4)
data were normalized by the Median Normaliza-
tion module (the system automatically calculated
the median log intensity as reference chip, then
calculated the differences in log intensity between
probes and reference chip, and finally relative
mRNA expression level was obtained by subtract-
ing the median differences from the log intensity
of each probe); (5) probes which failed to meet
the following criteria were filtered: at least 1.5
fold of change occured in the median value of the
probe (two-way) and this change was observed in
≥ 20% of samples. A number of samples with
missing gene expression data didn’t exceed 50%;
(6) the affymetrix platform was used for dataset
annotation and gene annotation of the probes. The
microarray data were analyzed by the univariate t
test at a nominal significance level of 0.001; (7)
the identified DEGs were analyzed by the Gene
ontology (GO) analysis, KEGG and Biocarta
pathway analysis. Significantly enriched gene sets
were identified. Differences between gene sets
were analyzed by the LS/KS permutation test and
Efron-Tibshirani’s GSA maxmean test with a sig-
nificance threshold of 0.005; (8) the mean expres-
sion ratios of individual genes in each pathway of
HCC tissue and normal liver tissue were obtained,
and the pathways with mean expression ratio >1
were considered as the pathways with globally in-
creased expression.

Construction of Protein-protein
Interaction (PPI) Network
DEGs identified by Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway and Bio-
carta pathway analyses were uploaded to Search
Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING) version 9.1 online tool
(http://string-db.org/) in order to construct PPI
network of proteins encoded by the DEGs3. The
STRING software, jointly developed and operat-
ed by EMBL, SIB and UZH, is a database con-
taining all known and predicted protein interac-
tions. The interactions include direct (physical)
and indirect (functional) associations as derived
from four sources, including literature reported
protein interactions, genome analysis and predic-
tion, high-throughput experiments and co-expres-
sion studies.

Network Visualization and
Screening of Key Genes
The PPI networks obtained from the analysis

with STRING 9.1 software were imported into
Cytoscape software version 3.1.1 for further visu-
al processing4. In the meantime, topological char-
acteristics of PPI network and each node were an-
alyzed by CentiScaPe 2.1 pulgin to screen for key
nodes. The Cytoscape software enables the inte-
gration of various molecular information includ-
ing biological network, gene expression and
genotype in a visual environment; besides, it can
directly connect networks with the functional an-
notation database5. Nodes in a network represent
genes, proteins or molecules, while connections
indicate the interactions between these molecules.
The degree in CentiScaPe (node degree) is the to-
tal number of edges connected a node. Between-
ness of a node is defined as the ratio of the num-
ber of shortest paths passing through a node to the
total number of paths passing through the node. A
higher degree of a node indicates that more genes
interact with the node, and a greater value of be-
tweeness of a node represents a greater impact of
this gene on the regulation of the entire network.
The so-called key genes refer to those genes
whose alterations can induce changes of expres-
sion of a number of genes downstream of the net-
work. These genes play important roles in main-
taining the stability of network. The knockout of
these genes may result in the crash of the entire
network. Nodes with higher degree and higher be-
tweeness tend to be more essential in the entire
network. Functional alterations of these nodes
may be crucial to the entire network. Hence, key
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GO categories of DEGs

Cirrhosis group GO:0002577, GO:0002579, GO:0010712, GO:0018149, GO:0021859, GO:0022028,
GO:0032594, GO:0032595, GO:0032596, GO:0032599, GO:0032651, GO:0032652,
GO:0032907, GO:0032910, GO:0032965, GO:0033606, GO:0035860, GO:0044246,
GO:0044253, GO:0045112, GO:0045113, GO:0060601, GO:0060737, GO:0071356,
GO:0072139, GO:0072182, GO:0072203, GO:0072215, GO:0090183, GO:2000696,
GO:2000698

DN group GO:0002431, GO:0006907, GO:0009445, GO:0030238, GO:0030520, GO:0030850,
GO:0032594, GO:0046546, GO:0046661, GO:0046686, GO:0060330, GO:0060334,
GO:0060512, GO:0060736, GO:0060740, GO:0072135, GO:0072183, GO:0090185,
GO:2000697

HCC group GO:0000083, GO:0000098, GO:0003014, GO:0006270, GO:0007052, GO:0007098,
GO:0008608, GO:0009064, GO:0009069, GO:0009071, GO:0009072, GO:0009081,
GO:0009083, GO:0009448, GO:0009698, GO:0022616, GO:0030261, GO:0032508,
GO:0042737, GO:0046487, GO:0046950, GO:0050000, GO:0050667, GO:0051297,
GO:0051303, GO:0051310, GO:0051983, GO:0060004, GO:0090329

Table I. GO analysis of DEGs in cirrhosis, DN and HCC tissues.

KEGG-identified pathways of HCC group
mainly included the following pathways: fatty
acid synthesis and metabolism, caffeine metabo-
lism, amino acid metabolism, retinol metabolism,
DNA replication, one-carbon metabolism, metab-
olism of cytochrome p450 enzymes, glycoly-
sis/gluconeogenesis, bicarbonate reabsorption in
the proximal tubule, complement and coagula-
tion cascade. The study of HCC tissue revealed
several increased expressed pathways, including
hsa00010 (glycolysis/gluconeogenesis pathway),
hsa00471 (D-glutamine and glutamic acid meta-
bolic pathway), hsa00670 (one-carbon metabo-
lism pathway of folate), hsa00910 (nitrogen me-
tabolism pathway), hsa03030 (DNA replication
pathway), hsa04964 (proximal tubule bicarbon-
ate reclamation), hsa04966 (collecting duct acid
secretion) and hsa05410 (hypertrophic cardiomy-
opathy) (Table II).
The following highly expressed enriched

pathways were identified through Biocarta path-
way analysis, including h_vdrPathway (control
of gene expression by vitamin D receptor),
h_g2Pathway (cell cycle: G2 / M checkpoint),
h_ptc1Pathway (Sonic Hedgehog, Ptc1 regu-
lates cell cycle), h_cdc25Pathway (cdc25 and
chk1 regulatory pathway in response to DNA
damage), h_antisensePathway (RNA poly-
merase III transcription), h_atrbrcaPathway
(Role of BRCA1, BRCA2 and ATR in Cancer
Susceptibility), h_mcmPathway (CDK regula-
tion of DNA replication), h_stathminPathway
(Stathmin and breast cancer resistance to an-
timicrotubule agents), h_rbPathway (RB tumor
suppressor /checkpoint signaling in response to

genes were screed in accordance of the values of
degree and betweeness of the nodes. In the pre-
sent study, nodes with both degree and betwee-
ness values ≥ mean +1SD, respectively, were con-
sidered as key nodes.

Results

Datasets Retrieved
A total of 11 datasets were retrieved from

GEO repository and further subjected for the data
analysis according to the inclusion criteria, in-
cluding GSE6222, GSE6764, GSE9843,
GSE11045, GSE13471, GSE17548, GSE19665,
GSE23343, GSE24042, GSE29721 and
GSE45436. These datasets included data from 39
samples of normal liver tissue, 33 samples of cir-
rhosis, 17 samples of DNs and 286 samples of
HCCs at different stages. During the comparison
of expression profiles between cirrhosis and nor-
mal liver, 19503 genes have been screened, and
7141 aberrantly expressed genes were identified.
A total of 16854 genes have been screened when
the expression profiles were compared between
DN and normal liver, and 5416 aberrantly ex-
pressed genes were obtained. When the gene pro-
file of HCC was compared with that of the nor-
mal liver, 24384 genes have been screened and
10512 genes have been identified. No overlap of
DEG sets was observed between three groups
through GO analysis as well as KEGG and Bio-
carta pathway analysis on DEGs, indicating that
gene expression profiles were significantly dif-
ferent between three groups of samples (Table I).



2057

Bioinformatics analysis of gene expression profiles in hepatocellular carcinoma

DNA damage pathway), h_smPathway (spliceo-
some assembly), h_ck1Pathway (regulation of
Ck1/cdk5 by type 1 glutamate receptors),
h_rac1Pathway (Rac 1 cell motility signaling
pathway), h_EfpPathway (Estrogen-responsive
protein Efp controls cell cycle and breast tu-
mors growth), h_cellcyclePathway (cyclin and
cell cycle regulation). Pathways with low ex-
pression included h_nuclearRsPathway (nu-
clear receptors in lipid metabolism and toxici-
ty), h_lectinPathway (lectin induced omple-
ment pathway), h_compPathway (complement
pathway), h_ghrelinPathway (ghrelin and the
regulation of food intake and energy balance)
(Table III).
DEGs of HCC identified through pathway en-

richment analysis in the course of KEGG and

Biocarta analysis were imported into STRING
software to construct PPI network. As a result, a
total of 680 nodes were shown to be involved in
network construction with 43 key genes identi-
fied, including ATIC, CAD, CAT, CCND1,
CDK1, CDK2, CREBBP, CYP2A6, CYP2B6,
CYP2C19, CYP3A4, CYP3A5, DHFR, ESR1,
F2, FTCD, GAPDH, GOT1, GOT2, GSTA3,
GSTA4, HADH, IGF1, KNG1, MDH1, MDH2,
PCNA , PKLR, PKM2, PLG, POLA1, POLD1,
POLE, PPARA, PPARG, PTGS2, RFC4, SER-
PINC1, SERPINE1, SHMT2, TGFB1, TP53,
TYMS. Among these genes, several driver
genes involved in multiple cancers were identi-
fied, including ATIC, CCND1, CREBBP,
FTCD, MDH2, PPARG and TP53 on the basis
of data in NCG4.0 database6.

KEGG pathways related to DEGs

Cirrhosis group hsa00120, hsa00280, hsa00532, hsa04080, hsa04122, hsa04330, hsa04512, hsa04640, hsa04672,
hsa04940, hsa04970, hsa04971, hsa04972, hsa04974, hsa05140, hsa05310, hsa05320, hsa05330,
hsa05332, hsa05340, hsa05410, hsa05412, hsa05414

DN group hsa00561, hsa00603, hsa03320, hsa04080, hsa04115, hsa04610, hsa04640, hsa04672, hsa04920,
hsa04940, hsa05100, hsa05130, hsa05131, hsa05140, hsa05150, hsa05216, hsa05222, hsa05320,
hsa05322, hsa05323, hsa05330, hsa05332, hsa05416

HCC group hsa00010, hsa00061, hsa00071, hsa00072, hsa00232, hsa00250, hsa00260, hsa00280, hsa00330,
hsa00350, hsa00380, hsa00410, hsa00471, hsa00590, hsa00591, hsa00630, hsa00640, hsa00650,
hsa00670, hsa00830, hsa00910, hsa00920, hsa00980, hsa00983, hsa03030, hsa04610, hsa04964,
hsa04966, hsa05410

Table II. KEGG pathway analysis of DEGs in cirrhosis, DN and HCC tissues.

Biocarta pathways related to DEGs

Cirrhosis group h_ifngPathway, h_ucalpainPathway, h_slrpPathway, h_lymphocytePathway, h_npp1Pathway,
h_CSKPathway, h_tcraPathway, h_tcytotoxicPathway, h_nktPathway, h_monocytePathway,
h_thelperPathway, h_mhcPathway, h_calcineurinPathway, h_lympathway, h_cftrPathway,
h_il22bppathway, h_PDZsPathway, h_inflamPathway, h_TPOPathway, h_hSWI-SNFpathway,
h_neutrophilPathway, h_il6Pathway, h_plateletAppPathway, h_cell2cellPathway, h_pdgfPathway,
h_il17Pathway h_reckPathway, h_il18Pathway, h_gpcrPathway, h_vipPathway,
h_mef2dPathway, h_carm1Pathway, h_glycolysisPathway, h_stathminPathway

DN group h_glycolysisPathway, h_ifngPathway, h_il18Pathway, h_mCalpainPathway, h_cftrPathway,
h_mhcPathway, h_il22bppathway, h_egfr_smrtePathway, h_npp1Pathway, h_ucalpainPathway,
h_th1th2Pathway, h_mta3Pathway, h_lymphocytePathway, h_vitCBPathway, h_shhPathway,
h_ifnaPathway, h_rarrxrPathway, h_il10Pathway, h_monocytePathway, h_ctcfPathway,
h_biopeptidesPathway, h_cremPathway, h_gleevecpathway, h_ecmPathway, h_ace2Pathway,
h_nkcellsPathway, h_fasPathway, h_IL12Pathway, h_tnfr1Pathway, h_compPathway

HCC group h_nuclearRsPathway, h_vdrPathway, h_lectinPathway, h_g2Pathway, h_ptc1Pathway,
h_cdc25Pathway, h_antisensePathway, h_compPathway, h_atrbrcaPathway, h_mcmPathway,
h_stathminPathway, h_rbPathway, h_smPathway, h_ck1Pathway, h_rac1Pathway, h_EfpPathway,
h_ghrelinPathway, h_cellcyclePathway

Table III. Biocarta pathway analysis of DEGs in cirrhosis, DN and HCC tissues.
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Discussion

A progression from cirrhosis, DN to HCC is a
typical pathway of HCC development. In the pre-
sent study, the gene expression profiles were
compared among these three pathological condi-
tions and a number of aberrantly expressed genes
were identified.
Fewer genes and proteins act alone. Converse-

ly, they usually interact through a complex net-
work and affect the functions of biological sys-
tem collaboratively. The impact of multiple genes
interacting through a signaling pathway on cellu-
lar functions is more significant than that of a
single gene; furthermore, the influence of genes
on cellular functions is achieved through alter-
ations in signaling pathways. Therefore, in the
present study, module analysis was performed to
identify genes in the pathways of DEG sets,
thereby narrowing the scope of genetic screen-
ing; subsequently, the PPI network analysis of
encoded genes was performed to identify key
nodes that were crucial in maintaining the func-
tion of the entire network. These genes have been
shown to play important roles in the regulation of
these pathways and the maintenance of aberrant
functions of HCC cells.
Also in the present study, GO categories of

DEGs and pathways were compared among three
pathological conditions and no substantial over-
lap was observed, which indicated that alter-
ations in signalling pathways in these three
pathological conditions were not progressively
accumulated; however, each pathway collection
represented completely different molecular func-
tion status under different pathological condi-
tions. As a result, the gene sets of HCC signaling
pathway included in PPI network analysis could
represent the global molecular status specific to
HCC.
The GO analysis and the KEGG pathway

analysis have identified more amino acid me-
tabolism pathways in significant DEG set.
Genes with elevated expression levels have
been shown to be mainly involved in DNA syn-
thesis and repair, as well as in energy metabo-
lism, which is associated with the vigorous
growth of cancer cells. Biocarta pathways were
enriched in cell cycle regulation as well as
DNA damage and repair pathways. Previous
studies have shown that vitamin D controlled
gene expression signaling pathway, which asso-
ciated with the development of multiple tu-
mors. This pathway can influence tumor cell

growth by affecting the functions of ß-catenin
pathway and MAPK singling pathway, which
influences the functions of insulin-like growth
factor (IGF), transforming growth factor beta
(TGF-ß) and epidermal growth factor receptor
(EGFR)7,8. The cell cycle signaling pathway
regulated by Sonic Hedgehog receptor, Ptc1, is
associated with the development of gastric can-
cer, pancreatic cancer and HCC, and other di-
gestive tract tumours9-13. Stathmin is over-ex-
pressed in primary liver cancer. It is also in-
volved in the development and progression of
HCC possibly by promoting cell proliferation
and suppressing cell apoptosis through regula-
tion of the expressions of tumor proliferation
related genes14-17. Stathmin expression has also
been shown to be elevated in non-small cell
lung cancer, oral squamous-cell carcinoma and
ovarian cancer18-20.
Forty-three nodes identified in this study are

involved in different pathways and locate at
multiple node positions in the network. Re-
moval of these nodes can lead to the collapse of
the entire network. Among these genes, seven
were identified as driver genes of multiple tu-
mors. The 5-aminoimidazole-4-carboxamide ri-
bonucleotide formyltransferase/IMP cyclohy-
drolase (ATIC) locates on chromosome 2q35.
The encoded ATIC protein is a bi-functional en-
zyme that exhibits catalytic activities of amino-
imidazolecarboxamide ribonucleotide trans-
formylase and inosine monophosphate cyclohy-
drolase. It is involved in the de novo purine nu-
cleotide synthesis pathway, catalyzing the
formylation of 5-amino-4-imidazole carboxam-
ide ribonucleotide to generate 5-formamido-
imidazole-4-carboxamide nucleotides, which is
then catalyzed to IMP through dehydration and
cyclization and, thereby, leading to the synthesis
of adenine nucleotide (AMP) and guanine nu-
cleotide (GMP). ATIC is a driver gene of lym-
phoma, which is associated with the develop-
ment of colorectal cancer and ovarian cancer21-
23. Cell cyclin D1 (CCND1) gene locates on
chromosome 11q13 and plays a key role in cell
cycle G1/S control. It has been shown to be
overexpressed in multiple tumors and is the dri-
ver gene for breast cancer, lung cancer,
leukemia and myeloma. CCND1 has been
shown to be associated with a number of signal-
ing pathways, including p53, PI3K-Akt, AMPK,
Wnt, JAk-STAT, Ras, Rap1, MAPK, ErbB sig-
naling pathways and its mutation can increase
the risk of HCC24. CREB binding protein
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(CREBBP) gene locates on chromosome
16p13.3. The encoded protein exhibits histone
acetyl- transferase activity and can promote the
binding of transcription factors to DNA, which
is beneficial to the gene transcription; therefore,
this gene is involved in a wide range of physio-
logical process, such as embryonic development
and growth regulation. Previous studies have
shown that this gene is involved in multiple tu-
mor-related signaling pathway, such as MAPK
signaling pathway and is a driver gene in
leukemia, lymphoma and bladder cancer25.
Formiminotransferase cyclodeaminase (FTCD)
gene locates on chromosome 21q22.3 and ex-
hibits transferase and deaminase activities.
FTCD is involved in the transportation of one-
carbon units from formimidoylglutamate to
folic acid, and also a driver gene for lym-
phoma26. The results of this study showed that
this gene was expressed at low level in HCC tis-
sue. Malate dehydrogenase 2 (MDH2) locates
on chromosome 12q14.3-q15. It assists in cat-
alyzing the oxidation of malate to oxaloacetate
in the citric acid cycle and is the driver gene of
colorectal cancer, glioma, sarcoma and lung
cancer. Our results showed the low expression
of this gene in HCC tissue. Peroxisome prolifer-
ator-activated receptor gamma (PPARG) locates
on chromosome 3p25. A variety of genes in-
volved in fatty acid transportation and metabo-
lism are regulated by PPARG on transcriptional
level, such as adipocyte fatty acid binding pro-
tein (AFABP), fatty acid transport protein
(FATP) and lipoprotein lipase (LPL). PPARG
can enhance the expressions of fatty acid trans-
port proteins and fatty acid transferase, and
stimulate cellular uptake of fatty acids and the
transformation to fatty acyl coenzyme A.
PPARG is the driver gene of thyroid cancer. Tu-
mor protein p53 (TP53), locating on chromo-
some 17p13.1, is a tumor suppressor gene
whose expression can induce the stagnation of
cell growth or apoptosis. TP53 mutation occurs
in a wide range of tumors such as HCC27-30.

Conclusions

The microarray of HCC included in this
study contains HCC samples originating from a
variety of causes; therefore, the signaling path-
ways and PPI networks obtained can represent
common molecular functional changes in HCCs
of various etiologies. These signaling pathways

we identified are different from those in cirrho-
sis and DN. The PPI network constructed by the
genes obtained from these signaling pathways
can represent molecular network specific to
HCC, and the nodes in the PPI network are of
paramount importance to the stability and func-
tional maintenance of the entire network. Novel
therapeutic strategies against aforementioned
key nodes of the network can shed the light on
the future targeted therapy of HCC.
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