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Abstract. – OBJECTIVE: Atrial fibrillation 
(AF) is the most common type of tachycardia. 
The major injury caused by AF is a systemic 
embolism. Although AF therapies have evolved 
substantially, the success rate of sinus rhythm 
maintenance is relatively low. The reason is the 
incomplete understanding of the AF mecha-
nisms.

MATERIALS AND METHODS: A Gene Ex-
pression Omnibus (GEO) dataset (GSE79768) 
was downloaded. Differentially expressed genes 
(DEGs) were identified by bioinformatic analy-
sis. Enriched terms and pathways were identi-
fied by gene ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analyses. 
A protein-protein interaction (PPI) network was 
constructed to determine regulatory genes. Cy-
toHubba and the Molecular Complex Detection 
(MCODE) algorithm were used to identify poten-
tial hub genes and important modules. The Pre-
dicting Associated Transcription Factors From 
Annotated Affinities (PASTAA) method was used 
to predict transcription factors (TFs).

RESULTS: Two hundred thirty-five upregu-
lated DEGs and seventy-seven downregulated 
DEGs were identified. In the GO biological pro-
cess, cellular component, and molecular func-
tion analyses, positive regulation of cell migra-
tion, anchoring junctions, and cell adhesion 
molecule binding were enriched significantly. 
The Hippo signalling pathway was the most 
significantly enriched pathway. In the PPI net-
work analysis, we found that Class A/1 (rhodop-
sin-like receptors) may be the critical module. 
Ten hub genes were extracted, including 6 up-
regulated genes and 4 downregulated genes. 
CXCR2, TLR4, and CXCR4 may play critical roles 

in AF. In the TF prediction, we found that Irf-1 
may be implicated in AF.

CONCLUSIONS: We found that the CXCR4, 
TLR4, CXCR2 genes, the Hippo signalling path-
way and the class A/1 (rhodopsin-like receptors) 
module may play critical roles in AF occurrence 
and maintenance, which may provide novel tar-
gets for AF treatment.
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Introduction

Atrial fibrillation (AF) is known as the most 
common type of cardiac tachycardia. The inci-
dence of AF increases with aging. It is classified 
as paroxysmal AF, persistent AF, and permanent 
AF1. The prevalence rate is more than 10% among 
those older than 80 years2. The major harms 
of AF are embolism (such as stroke) and heart 
failure. Effective treatment of AF will improve 
the clinical outcome of AF through means such 
as reducing the disability rate caused by stroke. 
Although treatment strategies have evolved sub-
stantially in recent years, their efficacy is not 
ideal. Radiofrequency ablation of AF has evolved 
considerably to become safer and more effective 
over the past decade, while the recurrence rate 
is relatively high, especially for patients with 
persistent AF3. Pharmacological treatment of AF 
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may induce substantial adverse side effects, such 
as drug-induced proarrhythmia and cardiac and 
noncardiac toxicity4-6. The reason that current 
treatment strategies have limited efficacy is the 
incomplete understanding of the mechanisms of 
occurrence and progression of AF. Understand-
ing the mechanisms may help us to find novel 
strategies for AF treatment.

Omics has become increasingly important 
in investigating the mechanisms of diseases as 
it reveals the differential expression of genes, 
RNAs or proteins between patients and con-
trols. There may be hundreds of differentially 
expressed genes, RNAs or proteins in a given 
analysis, so it is necessary to integrate them 
into modules and pathways through existing 
knowledge to understand the mechanisms of 
disease. Bioinformatic analysis is a powerful 
tool for omics dataset analysis. In this study, 
bioinformatic analysis was used to identify 
potential key genes and pathways to obtain 
a better understanding of AF mechanisms. 
GSE79768, a dataset of expression profiles of 
the left atrium in patients with atrial fibrillation 
and sinus rhythm, was used to identify DEGs. 
GO analysis and KEGG pathway analysis were 
performed to identify enriched terms and path-
ways. Protein-protein interaction (PPI) analysis 
was performed to identify key modules and hub 
genes involved in AF.

Materials and Methods

Data Source and Processing
The gene expression profiles associated 

with AF were obtained from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/). The 
search terms were “atrial fibrillation,” “Homo 
sapiens,” and “expression profiling by array”. 
After screening, the GSE79768 dataset submit-
ted by Tsai et al7 was selected for obtaining gene 
expression profiles. In this dataset, 13 specimens 
from 13 patients (7 with persistent AF, 6 with 
sinus rhythm) were enrolled in our analysis. The 
specimens of atrial appendages were obtained 
from patients receiving surgery for mitral valve 
or coronary artery disease. Patients with AF 
presented persistent AF known for more than 
6 months, and patients with SR had no clinical 
evidence of AF without the use of any anti-ar-
rhythmic drugs7. The expression profile arrays 
were generated by GPL570 Affymetrix Human 
Genome U133 Plus 2.0 Array. The probe ID for 

each gene was converted to a gene symbol using 
hgu133a.db, org.Hs.eg.db and the annotate pack-
age in Bioconductor (http://www.bioconductor.
org)8.

Identification of Differentially 
Expressed Genes

DEGs in the left atrial samples of patients with 
AF compared with those of patients with SR were 
identified by the R package LIMMA9. The false 
discovery rate (FDR) was used for p-value cor-
rection by the Benjamin and Hochberg method10 
and for fold change (FC) calculation. |LogFC| >1 
and adjusted p <0.05 were set as thresholds for 
DEGs.

Functional Enrichment Analysis
Databases for annotation, visualization, and 

integrated discovery (DAVID) bioinformatics 
resources and Metascape were used to perform 
GO enrichment analysis and KEGG enrichment 
analysis11,12. The cutoff for the p-value was 0.01. 
Enriched terms were selected to construct a 
network. Similar terms were connected with 
edges. The cutoff of similarity is 0.3. The net-
work is visualized using Cytoscape, and nodes 
represent enriched terms colored by cluster ID 
and p-value12.

Construction of the Differential 
Co-Expression Gene Network

PPI network analysis of DEGs was performed 
with the STRING database13, BioGrid database14, 
InWeb IM database15, and OmniPath database16. 
Proteins that interacted with others formed a 
network. Key modules were identified by the Mo-
lecular Complex Detection (MCODE) algorithm. 
Enrichment of pathway and process was per-
formed on MCODE modules, and the top three 
terms by p-value were extracted17.

Analysis of Hub Genes
The cytohubba plugin of Cytoscape was used 

to determine key genes, also called hub genes, 
in the network. The top 10 hub genes were iden-
tified by the maximal clique centrality (MCC) 
method17.

Analysis of TFs
Transcription factors (TFs) were predicted by 

using PASTAA18. After DEGs were established, 
we used both the association score and p-value to 
determine the relationship between AF and TFs 
by hypergeometric distribution8.
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Results

The DEGs and Functional Enrichment of 
DEGs

In this study, 54,675 probes corresponding to 
23518 genes were identified. There were DEGs 
in left atrial specimens of patients with AF com-
pared with patients with SR, including 235 upreg-
ulated DEGs and 77 downregulated DEGs. The 
heatmap and volcano plot are shown in Figure 1A 
and Figure 1B, respectively.

The top 10 GO biological process terms (Fig-
ure 2A), cell component terms (Figure 2B), mo-
lecular function terms (Figure 2C), and KEGG 
pathways (Figure 2D) are shown according to 
the p-value. These included positive regulation 
of cell migration, anchoring junction, and cell 
adhesion molecule binding. The Hippo signal-
ling pathway was the most significantly en-
riched pathway. Enriched terms were integrated 
into networks by cluster ID (Figure 3A) and 
p-value (Figure 3B). In Figure 3A, nodes sharing 
the same cluster ID are shown in the same color. 
In Figure 3B, terms containing more genes tend 
to have lower p-values.

The PPI Network and Key Module of 
the DEGs

The PPI network is shown in Figure 4, 
which accounted for 79.2% of the differen-
tially expressed genes. To investigate densely 

connected network components, an MCODE 
network was constructed (Figure 5 and Table 
I). The three best-scoring terms by p-value are 
shown in Figure 5 and Table I. A functional 
description of the corresponding components is 
also shown in Figure 5. The GO description of 
MCODE1 is Class A/1 (rhodopsin-like recep-
tors), G alpha (i) signalling events, and peptide 
ligand-binding receptors. The GO description 
of MCODE2 is positive regulation of cellu-
lar protein localization, PI3K-Akt signalling 
pathway, and regulation of cellular protein lo-
calization. The GO description of MCODE3 is 
EPH-ephrin mediated repulsion of cells, ephrin 
receptor signalling pathway, and EPH-Ephrin 
signalling. The GO description of MCODE4 
is PID HIF2 signalling, response to oxidative 
stress, and cellular responses to stress.

Hub Gene Selection
The top 10 hub genes were determined by 

cytoHubba via the MCC method. The hub genes 
are shown in Figure 6. The upregulated genes 
were CXCR2 (degree=9), TLR4 (degree=8), 
CXCR4 (degree=7), PTPRC (degree=7), CASP1 
(degree=6), and IL33 (degree=6). The down-
regulated genes were IL18 (degree=6), EGFR 
(degree=5), NMU (degree=4), and C3 (degree=4). 
Detailed information on these genes is shown in 
Table II.

Figure 1. (A) Heatmap of differentially expressed genes and (B) volcano plot of differentially expressed genes.



S.-D. Yu, J.-Y. Yu, Y. Guo, X.-Y. Liu, T. Liang, L.-Z. Chen, Y.-P. Chu, H.-P. Zhang

2284

Analysis of TFs
We used PASTAA to predict transcription fac-

tors of hub genes. These transcription factors are 
shown in Table III and Table IV. The Irf-1 and 
Irf-10 families were the top transcription factors 
of the upregulated hub genes by p-value. For1 and 
For2 families were the top transcription factors of 
downregulated hub genes by p-value.

Discussion

AF is the most common sustained arrhythmia 
in the world. Current therapies for AF are im-
perfect due to an incomplete understanding of 
the mechanism. Revealing the mechanism may 
help us treat AF better. Bioinformatic analysis 
of omics data is a powerful tool for mechanis-

Figure 2. Enriched terms of (A) biological process (B) Cell component (C) molecular function and (D) KEGG pathway. The 
most significant 10 terms are shown in this figure.
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tic investigation. In our study, 235 upregulated 
and 77 downregulated genes were identified in 
patients with AF compared with patients with 
SR. The GO biological process enrichment anal-
ysis showed that positive cell migration was the 

most significantly enriched biological process. 
The regulation of cell migration has been proven 
to be related to atrial fibrillation occurrence and 
maintenance19. It has been reported that inhibi-
tion of fibroblast migration may attenuate atrial 

Figure 3. Network of enriched terms is shown in cluster ID (A) and p-value (B) form. In network shown in p-value form, the 
more significant p-value was, the deeper color was painted.
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fibrosis and reduce AF vulnerability20. It has 
also been reported that inhibition of cell migra-
tion may prevent postinfarct atrial fibrillation 
in rats21. The anchoring junction was the most 
significantly enriched cellular component in the 
GO analysis. Growing evidence suggests that an-
choring junctions play an important role in main-
taining normal conduction. Disturbance of the 
anchoring junction has been proven to be related 
to arrhythmia, especially arrhythmogenic cardio-
myopathy and Brugada syndrome22,23. Abnormal 
propagation of action potential has been shown 
to contribute to AF24. Anchoring junctions may 
be a potential target of AF treatment. In the GO 
molecular function analysis, cell adhesion mole-
cule binding was the most significantly enriched 
molecular function. Similar to cell migration, cell 
adhesion has also been reported to be related to 
atrial fibrillation19.

In the KEGG pathway analysis, the Hippo 
signalling pathway was the most enriched path-
way. Studies have shown that Hippo signalling 
is related to arrhythmia. Xu et al25 reported that 
Hippo signalling is likely to play a substan-
tial role in the preventive effects of mechani-
cal ventricular arrhythmia in response to left 
ventricle afterload increase. Chen et al26 and 
Schlegelmilch et al27 have reported that Hippo 
signalling is implicated in arrhythmogenic car-
diomyopathy pathogenesis and adipogenesis by 
regulating cell-cell contact. Changes in cell-cell 
contact may affect the excitation and conduc-
tion of atrial cardiomyocytes, which may cause 
atrial arrhythmia, including atrial fibrillation. 
Therefore, we hypothesize that Hippo signalling 
may be involved in atrial fibrillation. Among 
the identified hub genes, CXCR2, TLR4, and 
CXCR4 were the top 3 genes. Wang et al28 have 

Figure 4. Protein-protein interaction network of DEGs. Upregulated genes were colored red, downregulated genes were 
colored green. 
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demonstrated that CXCR2 is implicated in the 
pathogenesis of Ang-II-induced cardiac remod-
elling. Atrial remodelling, such as atrial fibrosis, 
contributes to the pathogenesis of atrial fibril-
lation. TLR4 has been reported to be related to 
new-onset atrial fibrillation in acute myocardial 
infarction29. Soppert et al30 showed that CXCR4 
is involved in myofibroblast necroptosis, which 
may modulate cardiac remodelling in heart fail-

ure. Based on these studies, we speculate that 
these 3 genes may be a novel target for atrial 
fibrillation treatment.

Of the modules extracted from the PPI network, 
Class A/1 (rhodopsin-like receptors) may be the 
critical module. It has high sequence similarity to 
the angiotensin receptor AT1 and plays an import-
ant role in the occurrence and development of car-
diovascular and metabolic diseases, including ath-
erosclerosis (AS), coronary heart disease (CAD), 
heart failure (HF), pulmonary arterial hyperten-
sion (PAH), myocardial hypertrophy and atrial 
fibrillation31. The hub genes CXCR2 and CXCR4 
were included in this module, so the critical role of 
this module was further confirmed.

Transcription factors (TFs) may play important 
roles in gene expression. Of the predicted TFs of 
upregulated genes, Irf-1 has been reported to be 
required for cardiac remodelling in response to 
pressure overload32.

Atrial fibrillation is a complex disease with 
both environmental and genetic risk factors that 
contribute to arrhythmia. In recent years, genetic 
analysis has identified several genes associated 
with AF. The novelty of our research is the iden-
tification of several key genes and modules in the 
left atrium. Since the left atrium is known to be 
highly related to AF occurrence and maintenance, 
these genes and modules may ultimately facilitate 
the identification of new therapeutic targets and 
enable more precise risk stratification for this 
common arrhythmia. Our study may increase the 
understanding of atrial fibrillation mechanisms. 
Based on GO analysis, KEGG pathway analysis, 
PPI network analysis, hub gene prediction, key 
module prediction and transcription factor pre-
diction, we found that the CXCR4, TLR4, and 

Figure 5. MCODE identified in the PPI network.

Table I. Pathway and process enrichment analysis.

 MCODE GO Description Log10 (p)

MCODE_1 R-HSA-373076 Class A/1 (Rhodopsin-like receptors) -7.3
MCODE_1 R-HSA-418594 G alpha (i) signalling events -6.8
MCODE_1 R-HSA-375276 Peptide ligand-binding receptors -6.8
MCODE_2 GO:1903829 positive regulation of cellular protein localization -5.6
MCODE_2 hsa04151 PI3K-Akt signalling pathway -5.6
MCODE_2 GO:1903827 Regulation of cellular protein localization -5
MCODE_3 R-HSA-3928665 EPH-ephrin mediated repulsion of cells -8.1
MCODE_3 GO:0048013 ephrin receptor signalling pathway -7.4
MCODE_3 R-HSA-2682334 EPH-Ephrin signalling -7.3
MCODE_4 M44 PID HIF2PATHWAY -8.6
MCODE_4 GO:0006979 Response to oxidative stress -5.2
MCODE_4 R-HSA-2262752 Cellular responses to stress -4.8

GO: Gene ontology,



S.-D. Yu, J.-Y. Yu, Y. Guo, X.-Y. Liu, T. Liang, L.-Z. Chen, Y.-P. Chu, H.-P. Zhang

2288

CXCR2 genes and the Class A/1 (rhodopsin-like 
receptors) module may play critical roles in atrial 
fibrosis. Hippo signalling may also contribute to 
atrial fibrillation occurrence.

Although our study may provide novel targets 
for atrial fibrillation treatment, there are still 
limitations. The number of samples is relative-
ly small, so there may be confounding factors. 
More samples are needed to confirm our findings. 
Although the sample size is small, this is the on-
ly dataset comparing the expression profiles of 
persistent AF patients and sinus rhythm patients. 
In addition to nuclear DNA, mitochondrial DNA 
(mtDNA) also carries genes. Mutation of mtDNA 
may also cause atrial fibrillation because elevated 
ROS levels have been proven to promote atrial 
fibrillation33. We did not analyze mtDNA data, 
and further investigations on mtDNA need to de-
termine the effect of mtDNA mutations on atrial 
fibrillation.

Conclusions

Our study found that the CXCR4, TLR4, and 
CXCR2 genes and the class A/1 (rhodopsin-like 
receptors) module may play critical roles in atri-
al fibrosis. Hippo signalling may also contribute 
to atrial fibrillation occurrence. These genes and 
modules may ultimately facilitate the identification 
of new therapeutic targets and enable more precise 
risk stratification for this common arrhythmia.

Figure 6. PPI network of 10 hub genes.

Table II. Description of 10 hub genes.

 Gene LogFC p Degree

CXCR2 1.50 0.022 9
TLR4 1.36 0.027 8
CXCR4 1.30 0.030 7
PTPRC 1.26 0.017 7
CASP1 1.10 0.015 6
IL33 1.07 0.020 6
IL18 -1.39 0.014 6
EGFR -1.15 0.001 5
NMU -1.79 0.048 4
C3 -1.20 0.026 4

Table III. Top 20 transcription factors of up-regulated genes.

 Rank Matrix Transcription factor Association score p-value

 1 IRF_Q6 Irf-1, Irf-10 4.212 2.04E-04
 2 IRF_Q6_01 Irf-1, Irf-10 3.366 9.41E-04
 3 PU1_Q6 Pu.1 3.123 1.68E-03
 4 ETS_Q6 Elf-1, Elfr 3.106 1.68E-03
 5 ICSBP_Q6 Irf-8 3.015 2.88E-03
 6 CEBP_Q2_01 C/ebpalpha, C/ebpalpha(p30) 2.72 5.95E-03
 7 PEA3_Q6 Pea3 2.646 6.45E-03
 8 TATA_C Tbp 2.574 6.83E-03
 9 SEF1_C N/A 2.522 9.05E-03
10 INR_HAND100 N/A 2.473 9.47E-03
11 SRF_Q5_01 Srf 2.346 1.31E-02
12 CEBP_Q3 C/ebp, C/ebpalpha 2.282 1.44E-02
13 BLIMP1_Q6 Blimp-1 2.278 1.44E-02
14 OCT4_01 N/A 2.221 1.70E-02
15 POLY_C N/A 2.221 1.70E-02
16 COUPTF_Q6 Coup, Coup-tf1 2.221 1.70E-02
17 HNF4_Q6 Hnf-4, Hnf-4alpha 2.123 2.10E-02
18 MEIS1AHOXA9_01 Hoxa9, Hoxa9b 2.046 2.25E-02
19 MEIS1BHOXA9_02 Hoxa9, Hoxa9b 2.046 2.25E-02
20 OCT4_02 N/A 2.046 2.25E-02
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