Up-regulation of miR-124 inhibits invasion and proliferation of prostate cancer cells through mediating JAK-STAT3 signaling pathway

Z. WU, W. HUANG, B. CHEN, P.-D. BAI, X.-G. WANG, J.-C. XING

Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China

Abstract. – OBJECTIVE: Signal transducer and activator of transcription 3 (STAT3) is an important protein in Janus kinase (JAK)-STAT signaling pathway, and can facilitate expression of Bcl-2 and Cyclin D1 gene, thus playing a role in tumor pathogenesis. Bioinformatics analysis revealed targeted binding sites between microRNA-124 (miR-124) and 3'UTR of STAT3 mRNA. This study aims to investigate the role of miR-124 in regulating STAT3 expression and proliferation, cycle, apoptosis and invasion of prostate cancer cells.

MATERIALS AND METHODS: Dual luciferase reporter gene assay demonstrated targeted regulation between miR-124 and STAT3. Expression of miR-124, STAT3, p-STAT3, Bcl-2 and Cyclin D1 were compared between normal human prostate epithelial cell RWPE-1 and prostate cancer cell DU145. In vitro cultured DU145 cells were transfected with miR-124 mimic and/or si-STAT3, followed by clonal formation and transwell assay to test malignant proliferation and cell invasion.

RESULTS: Targeted regulation existed between miR-124 and STAT3. Comparing to RWPE-1, DU145 cells had lower miR-124 expression, G0/G1 phase ratio, or cell apoptosis, plus higher expression of STAT3, p-STAT3, Bcl-2 and Cyclin D1 ratio of S or G2/M phase. Transfection of miR-124 mimic and/or si-STAT3 remarkably decreased STAT3 expression, weakened clonal formation and transwell assay, followed by increased G0/G1 ratio.

CONCLUSIONS: miR-124 up-regulation significantly suppressed STAT3, pSTAT3 and downstream Bcl-2 and Cyclin D1 expression, weakened cell proliferation, malignant proliferation potency, inducing cell apoptosis. miR-124 is a promising new treatment strategy for prostate cancer.

Key Words: miR-124, STAT3, Cell apoptosis, Cell cycle, Invasion, Proliferation, Prostate cancer.
MicroRNA and cancer cell proliferation

of target gene mRNA to degrade mRNA or inhibit mRNA translation, modulating cell proliferation, differentiation and migration. The role of abnormal expression of function of mRNA in tumor onset has drawn increasing research focus. Studies showed significantly decreased miR-124 expression in PCa tissues/cells, suggesting its potential role as tumor suppressor gene in PCa occurrence. Bioinformatics analysis showed the existence of complementary binding sites between miR-124 and 3′-UTR of STAT3. This study investigated the role of miR-124 in regulating STAT3 and downstream target genes Bcl-2 and Cyclin D, and in affecting proliferation, cycle, apoptosis and invasion of PCa cells.

Materials and Methods

Major Reagent and Materials

Human prostate cancer cell line DU145 and normal prostate epithelial cell line RWPE-1 were purchased from Shengbo Biomed (Zhanjiang, China). Dulbecco’s Modified Eagle’s medium (DMEM), Keratinocyte-serum-free media (SFM) culture medium, fetal bovine serum (FBS) and gentamicin-penicillin were purchased from Gibco (Rockville, MD, USA). Trizol and Lipofectamine 2000 were purchased from Invitrogen/Life Technologies (Carlsbad, CA, USA). QuantiTect SYBR Green RT-PCR Kit was purchased from Qiagen (Hilden, Germany). miR-124 mimic and miR-NC nucleotide fragments were designed and synthesized by Ruibo Bio-Technology Co. Ltd. (Guangzhou, China). siRNA sequences were: si-NC sense: 5′-UUCUCCGAACGUGUCACGU-3′; si-NC anti-sense, 5′-ACGUGACACGUGAAAGAAGA-3′.

Cell Culture

Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin, and were kept in a humidified chamber with 5% CO2 at 37°C. RWPE-1 cells were kept in Keratinocyte-SFM medium containing 5 ng/mL EGF, 0.05 mg/mL bovine pituitary extract (BPE) in a humidified chamber with 5% CO2 at 37°C. Cells at log-growth phase with satisfactory status were used for further experiments.

Luciferase Reporter Gene Construct

Full length or mutant fragment of 3′-UTR of STAT3 gene was sub-cloned into pLUC-Luciferase vector, which was named as pLUC-STAT3-wt. Luciferase reporter vector containing mutant form of 3′-UTR of STAT3 gene was also constructed as pLUC-STAT3-mut. Lipofectamine 2000 was used to transfect pLUC-STAT3-wt (or pLUC-STAT3-mut) and miR-124 mimic (or miR-124 inhibitor, or miR-NC) into HEK293T cells. After 48 h, luciferase activity was measured to test dual luciferase activity. Nucleotide sequences were: miR-NC, 5′-ACUACUGAGUGACAGUAAGA-3′; miR-124 mimic, 5′-GGCAUCUCACCUCUGCCUUA-3′; miR-124 inhibitor, 5′-UAAGGCACGCCGUGAGAUGC-3′.

Transfection and Grouping

In vitro cultured DU145 cells were divided into five groups: miR-NC transfection group, miR-124 mimic transfection group, si-NC transfection group, si-STAT3 group, and miR-124 mimic + si-STAT3 transfection group. 72 h after transfection, cells were collected for gene and protein expression assay. Nucleotide sequences for transfection were: si-STAT3 sense, 5′-CAUCUCGGAGGAUCCUCCAC-3′; si-STAT3 anti-sense: 5′-UAGCCGAUCCACGUGAU-3′; si-NC sense: 5′-UUCUCGCAAACUGAGUGCU-3′; si-NC anti-sense, 5′-ACCGUACACGUGCUUCCAG-3′.

qRT-PCR for Gene Expression

Trizol reagent kit was used to extract RNA following manual instruction. QuantiTest SYBR Green RT-PCR Kit was used to test gene expression by one-step qRT-PCR. In a 20 μL qRT-PCR system, there were 10 μL 2×QuantiTest SYBR Green RT-PCR Master Mix, 1.0 μL of forward and reverse primer (0.5 μm/L), 2 μg template RNA, 0.5 μL QuantiTest RT Mix, and ddH2O. Primer sequences used were: miR-124F: 5′-CGTGACCGCCTCGCAGAC-3′; miR-124R: 5′-AGTCCCCGAGTCGCCG-3′; 18S: 5′-U6-AGAGTCGTGAGTCGGC-3′; U6: 5′-ATGGCTACAGAGATG-3′; U6p: 5′-GAATCAGAGATG-3′; U6p: 5′-GAACACCGGGA-3′.
Western Blot

Radioimmunoprecipitation assay (RIPA) lysis buffer was used to extract protein. A total of 40 μg samples was separated in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and was then transferred to polyvinylidene fluoride (PVDF) membrane, which was blocked in 5% defatted milk powder at room temperature incubation. Primary antibody (STAT3 at 1:300, p-STAT3 at 1:100, Bcl-2 at 1:200, Cyclin D1 at 1:200, β-actin at 1:800) was added for 4°C overnight incubation. After phosphate buffered saline tween-20 (PBST) rinsing, horse radish peroxidase (HRP) conjugated secondary antibody (1:5000 dilution) was added for 60 min of incubation. The membrane was rinsed in phosphate buffered saline tween-20 (PBST) and incubated using Enhanced Chemiluminescence (ECL, Amersham Biosciences, Little Chalfont, UK) method. After dark exposure and development, the film was scanned and analyzed.

Clonal Formation Assay for Malignant Growth Potency

Cells from all transfection groups were inoculated into 10 cm diameter culture dish at 100 cells density. Cells were incubated for 14-21 weeks. After that, cells were fixed in paraformaldehyde for staining with Giemsa dye. Clones were counted under low-magnification microscope. Clonal formation rate = (clone number/inoculate cell number) ×100%.

Transwell Assay for Cell Invasion Potency

Transwell assay was employed to test cell invasion potency. In brief, 1×10⁵ cells were inoculated into the upper chamber containing Matrigel and serum-free Dulbecco’s Modified Eagle Medium (DMEM). DMEM containing 10% fetal bovine serum (FBS) was added to the bottom chamber. After 48 h, un-penetrated cells were removed. Chambers were then fixed in methanol and stained with 0.1% crystal violet. Cell number was counted under five randomly selected high-magnification fields.

Cell Apoptosis Assay

Cells were collected, digested with trypsin and were re-suspended in binding buffer. 5 μL Annexin V-fluorescein isothiocyanate (FITC) and 5 μL propidium iodide (PI) staining buffer were sequentially added. Flow cytometry was used to test cell apoptosis.

PI Staining for Cell Cycle

Cells were digested with trypsin and rinsed in phosphate buffered saline (PBS). After 70% ethanol fixation overnight and PBS washing, PI was added for staining in the dark at 37°C for 30 min. Flow cytometry was used to detect cell cycle.

Statistical Analysis

SPSS18.0 software (SPSS Inc., Chicago, IL, USA) was used for data analysis. Measurement data were presented as mean ± standard deviation (SD). Student t-test was used to compare measurement data between groups. Statistical significance was defined when p<0.05.

Results

miR-124 Targeted and Inhibited STAT3 Expression

Bioinformatics analysis showed the existence of complementary binding sites between miR-124 and 3’-UTR of STAT3 mRNA (Figure 1A). Dual luciferase gene reporter assay showed that transfection of miR-124 mimic and miR-124 inhibitor remarkably decreased or increased relative luciferase activity in HEK293T cells, respectively (Figure 1B), suggesting that miR-124 could target 3’-UTR of STAT3 mRNA and inhibited its expression. qRT-PCR results showed that transfection of miR-124 mimic and miR-124 inhibitor remarkably decreased and potentiated STAT3 mRNA expression in DU145 cells, respectively (Figure 1C).
MicroRNA and cancer cell proliferation

Transfection of miR-124 mimic and/or si-STAT3 significantly decreased expression of STAT3, p-STAT3, Bcl-2, and Cyclin D1 in DU145 cells (Figure 3A), weakened cell clonal formation ability (Figure 3B), decreased cell invasion potency (Figure 3C), and potentiated cell apoptosis (Figure 3D) or G0/G1 phase arrest (Figure 3E).

Discussion

JAK-STAT signal transduction pathway can respond to multiple extracellular growth factors and mitogen stimuli. Under the existence of activator of JAK-STAT signal pathway, member receptor may undergo dimerization, which can further phosphorylate and activate JAK kinase to phosphorylate receptor tyrosine, facilitating the recruitment of STAT onto tyrosine phosphorylation receptor complex via SH2 domain. Under this scenario, JAK kinase can phosphorylate and activate STAT protein with spatial proximity, separating it from receptor complex to form dimer, which is transported from cytoplasm to nucleus, where it can facilitate transcription and expression of genes related to cell proliferation, cycle, and apoptotic regulation. STAT3 is the most important member of STAT protein family (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6). Previous studies attributed anti-apoptotic factor B-cell lymphoma-2 (Bcl-2) and Cyclin D1 as important target genes under regulation by STAT3 transcriptional factor. By enhancing gene transcription and expression, STAT3 participates in facilitating cell proliferation and cycle progression, and modulating/antagonizing cell apoptosis, makes it one STAT protein with closest correlation with human tumor pathogenesis. A previous study showed elevated STAT3 expression in PCa patient tumor tissues, indicating its tumor-facilitating role in PCa. Reports indicated significantly lower miR-124 expression in PCa tumor tissues/cells, indicating its possible role as tumor suppressor gene in PCa pathogenesis. Bioinformatics analysis showed complementary binding sites between miR-124 and 3'-UTR of STAT3. This work thus investigated if miR-124

Figure 1. miR-124 targeted and inhibited STAT3 expression. (A) Functional site between miR-124 and 3'-UTR of STAT3 mRNA was detected by reporter assay; (B) qRT-PCR for DU145 cell gene expression; a, p<0.05 comparing between miR-124 mimic and control; b, p<0.05 comparing between miR-124 inhibitor and miR-NC.

Flow cytometry results showed significantly lower basal apoptotic rate of DU145 cells than that of RWPE-1 cells (Figure 2D).

MiR-124 up-Regulation Inhibited STAT3 Expression, Cell invasion or Proliferation, Induced cell Apoptosis and Cyclin D1

Micro-RNA and cancer cell proliferation
played a role in mediating STAT3 expression and affecting proliferation, cell cycle, apoptosis and invasion of PCa cells. Dual luciferase gene reporter assay showed that transfection of miR-124 mimic significantly depressed relative luciferase activity, whilst miR-124 inhibitor elevated it, indicating targeted regulation between miR-124 and STAT3. Transfection of miR-124 mimic and miR-124 inhibitor remarkably increased and decreased STAT3 mRNA expression in DU145 cells, respectively, demonstrating targeted regulation between miR-124 and STAT3. G0/G1 phase ratio of DU145 cells was significantly lower than that of RWPE-1 cells, whilst ratios of S phase and G2/M phase were higher, indicating rapid cell cycle progression.

Flow cytometry results showed that comparing to RWPE-1 cells, DU145 cells had significantly lowered apoptotic rate. Further assay found decreased miR-124 expression in DU145 cells, whilst expression of STAT3, p-STAT3, Bcl-2 and Cyclin D1 was elevated. These findings showed possible role of miR-124 down-regulation up-regulating STAT3 and p-STAT3, facilitating downstream gene Bcl-2 and Cyclin D1 expression, and facilitating proliferation of PCa cells for suppressing their apoptosis. Chu et al\(^\text{18}\) showed hyper-methylation of miR-124 gene promoter region in PCa cells, leading to suppression of miR-124 expression. Shi et al\(^\text{15}\) found that comparing to prostate epithelium RWPE-1, PCa cell lines including 22Rv1, LNCaP, LAPC-4, cdx2 and C4-2B, all had decreased miR-124 expression. Moreover, miR-124 expression level in PCa tissues was also lower than benign prostate tissue hyperplasia\(^\text{15}\). Falzarano et al\(^\text{19}\) observed significantly elevated miR-124 expression in PCa patients after treatment, indicating that miR-124 expression was one important mechanism governing PCa pathogenesis. In this study, miR-124 was down-regulated in prostate cells, indicating its role in PCa pathogenesis, as consistent with Chu et al\(^\text{18}\), Shi et al\(^\text{15}\), and Falzarano et al\(^\text{19}\). Abdulghani et al\(^\text{17}\) showed significantly elevated STAT3 expression in PCa tumor tissues, with higher expression level in those with bone or lung metastasis, indicating the correlation between

Figure 2. Higher miR-124 and lower STAT3 expression in DU145 cells. (A) qRT-PCR for gene expression; (B) Western blot for protein expression; (C) Flow cytometry for cell cycle; (D) Flow cytometry for cell apoptosis. a, p<0.05 comparing to RWPE-1 cells.
MicroRNA and cancer cell proliferation

Elevated miR-124 expression inhibited STAT3 expression, cell invasion or proliferation, and induced cell apoptosis or cycle arrest. (A) Western blot for protein expression; (B) Clonal formation assay; (C) Transwell assay for cell invasion potency; (D) Flow cytometry for cell apoptosis; (E) Flow cytometry for cell cycle. a, p<0.05 comparing between miR-124 and miR-NC group; b, p<0.05 comparing between si-STAT3 and miR-NC group; c, p<0.05 comparing between miR-124 mimic + si-STAT3 and miR-NC group; d, p<0.05 comparing between miR-124 mimic + si-STAT3 and si-NC group.
activation of STAT3 by JAK kinase inhibitor, PCa cell had significantly weakened cell motility and migration potency. All these studies revealed the role of miR-124 up-regulation in weakening malignant biological features of PCa cells, as supported by our results. In this study, STAT3 down-regulation weakened proliferation or invasion of PCa cells, as consistent with Abdulghani et al17. This work revealed the role of miR-124 down-regulation in inducing STAT3 up-expression and in facilitating PCa occurrence, whilst miR-124 up-regulation could weaken PCa proliferation, invasion or apoptosis resistance via targeted inhibition of STAT3 expression. All these results have not been reported before.

Conclusions

MiR-124 up-regulation significantly decreases STAT3, p-STAT3 and downstream Bcl-2 or Cyclin D1 expression in DU145 cells, whose invasion and malignant proliferation potency are weakened, along with induction of cell cycle arrest at G0/G1 phase to facilitate cell apoptosis.

Acknowledgments

This project was supported by Natural Science Foundation of Fujian Province of China (Grant No. 2016D009). This work was supported by Project of Science and Technology Department of Fujian Province of China (Grant No. 2016H0009).

Conflict of interest

The authors declare no conflict of interest.

References

MicroRNA and cancer cell proliferation

