Long noncoding RNA DARS-AS1 acts as an oncogene by targeting miR-532-3p in ovarian cancer

K. HUANG, W.-S. FAN, X.-Y. FU, Y.-L. LI, Y.-G. MENG

Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China

Abstract. – OBJECTIVE: Ovarian cancer is one of the most ordinary malignant tumors. Recently, the role of long noncoding RNAs (IncRNAs) in tumor progression has caught attention of numerous researchers. In this research, IncRNA DARS-AS1 was studied to identify how it functions in the development of ovarian cancer.

PATIENTS AND METHODS: DARS-AS1 expression was detected by Real-time quantitative polymerase chain reaction (RT-qPCR) in ovarian cancer tissue samples. Moreover, functional experiments were conducted to detect the effect of DARS-AS1 on the proliferation and metastasis of ovarian cancer. In addition, the underlying mechanism was explored through luciferase assay and RNA immunoprecipitation (RIP) assay.

RESULTS: In this study, DARS-AS1 expression was remarkably higher in ovarian cancer tissy compared with that in adjacent ones. Cell r eration was inhibited after DARS-AS1 sile in ovarian cancer cells. Moreover, cell migra and invasion were also inhibited after DAF AS1 silenced in ovarian cancer urthe more, results of luciferase assau assa 110 showed that microRNA-532-3 a direct target of DARS-AS op wa egulated The expression of miR-5 after DARS-AS1 was kg down.

CONCLUSIONS: Out a discussion of DARS-AS1 enhances cell pliferation a metastasis via sponging miR-52 pp in ovariant per.

Key Words:

Long proding 4, D AS1, Ovarian cancer, miR-53

Introduction

Ovarian cancer is one of the most fatal gynecologic malignancies and is also the fifth leading cause of death among malignant cancers¹. The high mortality of ovarian cancer is associated with the high occurrence of the sistance and metastasis^{2,3}. Therefore as urgent and out new strategies in early determined of these atients and establish new there eutic the successful intervention.

Recent studie ed that ong non-coding RNAs (4) tal role in a vanalignant tumors. riety of ca ar activ 4G7 enhances tumor For exa cRNA \ grow avility teosarcoma by sponging miR-16 inhibits cell apoptosis apillary thyroid cancer⁵. LncRNA FENDRR as a tume suppressor in non-small cell lung ting miR-761. Silence of lncRNA notes glioma proliferation and metatasis via regulating phosphatidylinositol 3-kina-3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway⁷.

In this study, we found out that the expression of DARS-AS1 was remarkably higher in ovarian cancer tissues. Moreover, DARS-AS1 promoted the proliferation, migration and invasion of ovarian cancer *in vitro*. In addition, we further found that the function of DARS-AS1 in ovarian cancer was also associated with microRNA-532-3p (miR-532-3p).

Patients and Methods

Tissue Specimens

52 cases of ovarian cancer tissues and their adjacent tissues were collected from patients who received surgery at Chinese PLA General Hospital. No chemotherapy or radiotherapy was received before surgical resection. All cases were diagnosed with ovarian cancer by two independent pathologists without any controversial. Writ-

ten consent form was obtained from each patient. This study was approved by the Ethics Committee of Chinese PLA General Hospital.

Cell Culture

3 cancer cell lines (A2780, SKOV3 and OVCAR-3), and normal ovarian cell (ISOE80) were purchased from the American Type Culture Collection (ATCC) (Manassas, VA, USA). Cells were maintained in 10% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, USA), Dulbecco's Modified Eagle Medium (DMEM; Invitrogen, Carlsbad, CA, USA) as well as 100 U/mL penicillin 100 μg/mL streptomycin (Sigma-Aldrich, St. Louis, MO, USA). Besides, cells were cultured in an incubator containing 5% CO₂ at 37°C. Cell culture medium was refreshed every two days.

Cell Transfection

Specific shRNA against DARS-AS1 was designed and synthesized by Invitrogen (Carlsbad, CA, USA). Negative control shRNA was also synthesized. To establish cell lines with stable knockdown of DARS-AS1, SKOV3 cells were transfected with DARS-AS1 or negative shRNA through Lipofectamine 3000 reag vitrogen, Carlsbad, CA, USA) according manufacturer's protocol.

RNA Extraction and Real-Time Quantitative Polymerase Chapter (RT-qPCR)

Total RNA was extracted fr ultur cancer cells or patients' tun using TRIzol reagent (TaKaRa P Inc. ga, Japan) and then reverse-tra bed to cr it (TaKaRa Ъ. gh reverse Transcripti nc., Otsu, Shiga, Japan) performed three times in the following equ denaturation at 95°C for 1 min forlowed by at 95°C 0 s, and 72°C k $_{50}$ s. $2^{-\Delta\Delta Ct}$ for 15 s, 60°C d for Aculating relative expresmethod was ut sion. The p ces used for RT-qPCR seq AS1 fo rd: 5'- AGCCAwere as fol AGGACTGO reverse: 5'-CT-3'; glyceraldehyde GTACTGGTGGC (GAPDH), forward: 3-pho ehydrog 5'- (CAAGGC AGAAC-3' and rever-CCAGTGGA -3'. 1GG

Ce. ration Assay

Cell vas monitored with Cell Counting Kit-8 (Counting Kit-8) assays (Dojindo, Kumamoto, Japan). Briefly, ×10³ SKOV3 cells were seeded

and incubated in 96-well plates as the se cells were incubated with μ KS-As for 24 h and then incubated with 10 μ K-8 for 3 h. The absorbar measured nm with an ELISA reaction m (M) Kan Ascent, LabSystems Helsink,

Colony Format Ass

To detect the ffect DARS-AS1 g-ter liferat colony foron ovarian cal mation assay were SKOV3 cells/well wer aced in ate and culture medium eplaced every 7 day later, coloith 75% ethanol for 30 min and nies wa stal violet. Colonies were staine **Ath** photographed and

ynyl Deoxyuridine (EdU) Incorporan Assay

for deteggeell proliferation of transfer deteggeell proliferation of transfer dells were cultured well plates. Next, each well was added with 50 μM EdU labeling medium incurated for 2 h at 37°C. Finally, cells were stained EdU working solution. Hoechst 33342 and to label cell nuclei. Representative notograph was taken by a fluorescent microscope (Olympus, Tokyo, Japan).

ranswell Assay

Transwell chambers with 8 µm pores were provided by Corning (Corning, NY, USA). Cells were then seeded into the upper chambers of a 24-well plate. 20 % FBS-DMEM was added to the lower chamber of the culture inserts. After cultured for 24 h, these inserts were fixed with methanol for 30 min and stained by hematoxylin for 20 min. The number of migrated cells was counted by a light microscope (Olympus, Tokyo, Japan). For the transwell invasion assays, the membrane was precoated with 50 µL Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). Next, the experiments were the same as described above.

Scratch Wound Assay

1.0×10⁴ cells were seed into a 6-well plate in each well. Three parallel lines were made on the back of each well. After growing to about confluent of 90%, cells were scratched with a pipette tip and cultured in a medium. Cells were photographed under a light microscope after 0 and 48 h. Each assay was independently repeated in triplicate.

Luciferase Reporter Gene Assay

DIANA LncBASE Predicted v.2 was used to predict the potential target gene and fragment sequences containing DARS-AS1 reaction sites. The DARS-AS1 3'-UTR wild-type (WT) sequence named DARS-AS1-WT was 5'-UCUCACU-CAAAAGUGGGAGU-3' and the mutant sequence of DARS-AS1 3'-UTR missing the binding site with miR-532-3p named DARS-AS1-MUT was 5'-UCUCACUCAAAACACCCUCU-3'. Luciferase reporter gene assay kits (Promega, Madison, WI, USA.) were used to detect the luciferase activity of ovarian cancer cells. The luciferase reporter gene vector was constructed, and SKOV3 cells were transfected.

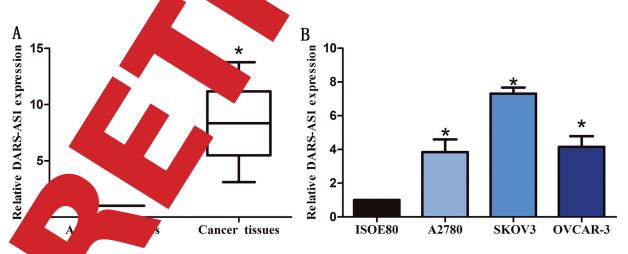
RNA Immunoprecipitation (RIP) Assay

To confirm the endogenous relationship between DARS-AS1 and miR-532-3p, RIP assay was carried out using the EZMagna RIP RNA-binding protein immunoprecipitation kit (Millipore, Billerica, MA, USA). Treated SKOV3 cells were collected and lysed using RIP lysis buffer containing protease inhibitor and RNase inhibitor. Cells were incubated with the RIP buffer oning magnetic beads coated with Ago2 and (Millipore, Billerica, MA, USA). IgG acte negative control (input group). After incubator 2 h at 4°C, co-precipitated RNAs were isolate and measured by RT-qPCR analysis

Statistical Analysis

All statistical analyses v performance Statistical Product and Server (SPS)

21.0 (IBM Corp., Armonk, Note that the dent-sample *t*-test was used rence between the two growth and the dent sample that the dent sam


esul

DARS-AS1 Education evel varian Cancer Tissues 45

First, R7 CR was a for detecting DARS-A9 pression in scents' tissues and 3 ovaria cell lines. As a result, DARS-AS1 was six case gulated in tumor tissue samples on are 1A). SI level of ovarian cancer cell as higher than a fISOE80 (Figure 1B).

ockdown of DARS-AS1 Inhibited Cell pliferation i KOV3 Ovarian cer Cells

chose SKOV3 cell line for the DARS-AS1. Next, RT-qPCR was utilized for detecting the DARS-AS1 expression (Figure 2A). Moreover, CCK-8 assay showed all growth ability of SKOV3 cells was not ocked down (Figure 2B). Colony formation assay showed that the colonies were significantly educed after DARS-AS1 was knocked down (Figure 2C). Furthermore, EdU incorporation assay also showed that EdU positive cells were reduced after knockdown of DARS-AS1 in SKOV3 cells (Figure 2D).

Figure 1. Sion levels of DARS-AS1 were increased in ovarian cancer tissues and cell lines. A, DARS-AS1 expression was significant to pased in the ovarian cancer tissues compared with adjacent tissues. B, Expression levels of DARS-AS1 relative to GAR and the determined in the human ovarian cancer cell lines and ISOE80 by RT-qPCR. Data are presented as the mean \pm standard error of the mean. *p<0.05.

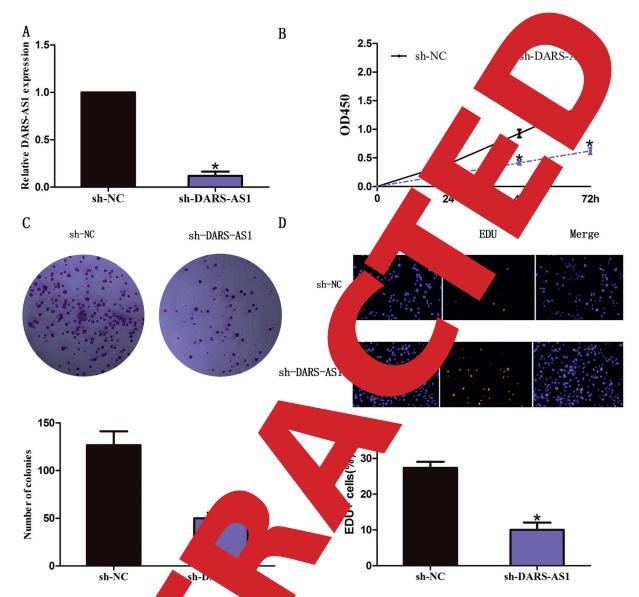
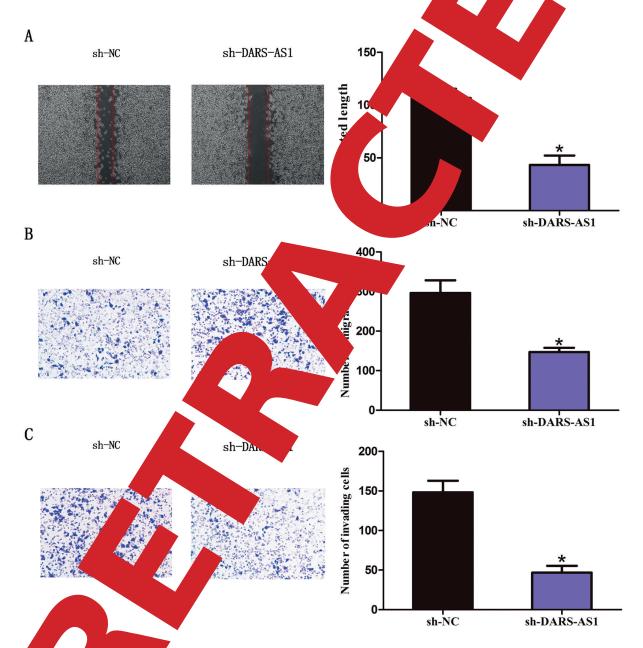


Figure 2. Knockdown of D ovarian cancer cell proliferation. A, DARS-AS1 expression in SKOV3 DARS-AS1 shavA (sh-DARS-AS1) and negative control shRNA (sh-NC) was detected ovarian cancer cells trans by RT-qPCR. GAPDH y ternal control. B, CCK-8 assay showed that knockdown of DARS-AS1 significantly .OV3 inhibited cell growth i er cells. C, Colony formation assay showed that the number of colonies was reduced after knockd wn of DARS-A N3 cells (magnification: 10×). D, EdU incorporation assay showed that EdU positive cells were ed after knockdov DARS-AS1 in SKOV3 cells. The results represent the average of three indestandard error of the mean). *p<0.05, as compared with the control cells. pendent experime nean 🖠

Knockdown of Inhibited Cell Migr and Inva. In SKOV3 Ov a cer Cells

ktch y howed that the migrated was significantly decreased RS-AS1 was knocked down (Figure 3A). Was significantly reduced after DARS-AS1 was knocked down (Figure 3B).

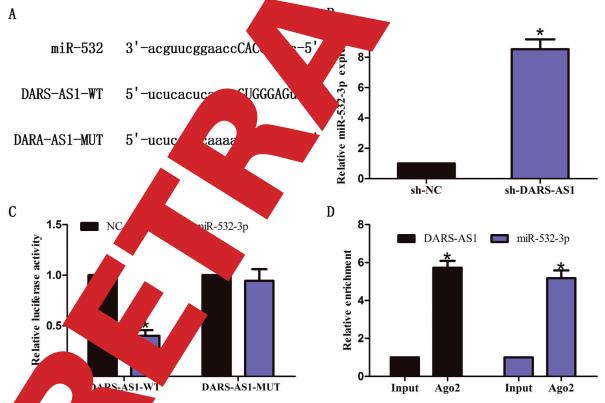

Transwell invasion assay showed that the number of invaded cells was significantly reduced after DARS-AS1 was knocked down (Figure 3C).

The Interaction Between miR-532-3p and DARS-AS1 in Ovarian Cancer

Starbase v2.0 (http://starbase.sysu.edu.cn/mir-LncRNA.php) was used to find the miRNAs that contained complementary base with DARS-AS1.

MiR-532-3p was selected from these miRNAs, which were interacted with DARS-AS1 (Figure 4A). RT-qPCR assay showed that the expression of miR-532-3p was higher in DARS-AS1/shR-NA cells than that in control cells (Figure 4B). Furthermore, the luciferase assay revealed that co-transfection of DARS-AS1-WT and miR-532-

3p largely decreased the lucife while co-transfection of DARSiR-532-3p had no effect on luciferase ity either (Figure 4C). Mea RIP ass lso identified that miR-532be rem bly with enriched in the DAR AS1 g control group (Figu


KS-AS1 inhibited SKOV3 ovarian cancer cell migration and invasion. *A*, Scratch wound assay nigrated length of SKOV3 cells was significantly decreased after DARS-AS1 was knocked down (magnification: 4) was sell assay showed that number of migrated cells was reduced after knockdown of DARS-AS1 in SKOV3 cells (magnification: 40×). *C*, Transwell invasion assay showed that number of invaded cells was reduced after knockdown of DARS-AS1 in SKOV3 cells (magnification: 40×). The results represent the average of three independent experiments (mean ± standard error of the mean). *p<0.05, as compared with the control cells.

Discussion

Ovarian cancer is one of the most fatal gynecologic malignancies and the fifth leading cause of death in cancer. Most ovarian cancer cases are diagnosed at a late stage due to atypical or absent symptoms at early stage. Plenty of lncR-NAs have been revealed to play important roles in oncogenesis and progression of ovarian cancer. For example, silence of lncRNA MNX1-AS1 suppresses cell proliferation and migration of ovarian cancer, which may be a potential target for ovarian cancer⁸. LncRNA TUG1 promotes epithelial ovarian cancer cell proliferation and invasion via the WNT/beta-catenin pathway⁹. LncRNA BA-CE1-AS inhibits the proliferation and invasion of ovarian cancer stem cell and functions as a novel target for treating ovarian cancer¹⁰. Besides, lncRNA ElncRNA1 functions as an oncogene in the proliferation of epithelial ovarian cancer cells which is upregulated by estrogen¹¹.

AS1), LncRNA DARS antisense B located in 2q21.3, is a nove κNA red recently. Its role in cancer velopment not uncovered been studied. Our study association between DARS varia hcer progression. The resu demon ARS-AS1 was upregulat n ovarian amples er D/ and cells. Besides -AS1 Wa. knocked er cel down, ovarian olifer on was inhibited. Meanwl RS-A vas knocked down, ovaria can and invasion were found oe inhib data indicated \$1 promoted that DAP rigenesis of ovaght act as an oncogene. rian car

Big fine ware predicted miR-532-3p as a possible tar, ARS-AS1. MiR-532-3p for all as a tumor oppressor in a diverse of ors by regulating various biological proces-2,13. For example, miR-532-3p is downregulated ladder cancer and inhibits tumor development gh targetic. What signaling pathway¹⁴. MiR-

532-3p could induce cell apoptosis of lung adenocarcinoma cancer¹⁵. Recently, high expression of miR-532-5p is associated with better prognosis in ovarian cancer¹⁶. Besides, miR-532-3p was reported to repress cell growth and invaded ability in ovarian cancer¹⁷.

In the present study, miR-532-3p could be directly targeted by DARS-AS1 through a luciferase assay. Moreover, miR-532-3p expression could be upregulated through knockdown of DARS-AS1. Furthermore, miR-532-3p was significantly enriched by DARS-AS1 through RIP assay. All these results showed that DARS-AS1 could work as a miR-532-3p sponge in ovarian cancer.

Conclusions

We demonstrated that DARS-AS1 could enhance ovarian cancer cell proliferation and metastasis through sponging miR-532-3p. These findings implied that lncRNA DARS-AS1 could act as a prospective therapeutic target for ovarian cancer.

Conflict of Interest

The Authors declare that they have no conflict of inter

References

- 1) SIEGEL R, NAISHADHAM D, JEMAY 2ance 2012. CA Cancer J Clin 20
- 2) Yu Y, Zhang X, Tian H, Zhang Z, Qockdown of long non-coding RI IOTAL Consistency of splatin sensitivity in an cancer s, and cisplatin-induced at the state of the splatin sensitivity in the splatin sensitivit
- 3) CANNISTRA SA. Ca Of L. N Engl J Med 2004; 351: 2519-2529.
- 4) ZHANG Y, ZHANG Y, WANG H. Resease on correlations of ERG with proliferation and apoptosis of ovarian care cells JON 2018; 23: 1753-1795.
- 5) Wen O, BAI L. Sign of miles and the street of miles argets Ther 2019; 12:
- 6) HANG ZL, CULAX, WANG RK, Fu L. Long n-cod SNDRR inhibits NSCLC cell

- growth and aggressiveness IR-761. Eur Rev Med Pharmacol S 332.
- 7) Xu DH, CHI GN, ZHAO CHO DY. Long in RNA MEG3 inhibits regration and monomout induces autophage lation of S and PI3K/AKT/mTOR pathway a cell Cell Biochem 2018 N 11. doi: 8026. [Epub ahead of July 11. doi: 10.000]
- 8) Lv Y, Li H, Li F, ZHAC along none ding RNA MNX1-AS1 Ladown bits cell proliferation and migration and migration
- 9) Liu S, L. Lu Q, L. Liang W. The IncRN G1 promote all ovarian cancer cell ation and invariant via the WNT/beta-way. Onco Targets Ther 2018; 11:
- 10) SHEN Q, LIU X, G Y, WANG S, LI Q, HUANG G RNA BACE1-AS is a noel target for anisomycin-mediated suppression of ovarian cancer stem cell proliferation and invasion. Oncol R 2016; 35: 1916-1924.
- OIU JJ, ZHANG Y, TANG XY, ZHENG TT, ZHANG Y, HUA REINCE a long non-coding RNA that is ally induced by oestrogen, promotes Varian cancer cell proliferation. Int J Oncol 2017; 51: 507-514.
- Sun Z, Jian Y, Fu H, Li B. MiR-532 downregulation Wnt/beta-catenin signaling via targeting and induced human intervertebral disc nucleus pulposus cells apoptosis. J Pharmacol Sci 2018; 138: 263-270.
- Hu S, Zheng Q, Wu H, Wang C, Liu T, Zhou W. miR-532 promoted gastric cancer migration and invasion by targeting NKD1. Life Sci 2017; 177: 15-19.
- 14) XIE X, PAN J, HAN X, CHEN W. Downregulation of microRNA-532-5p promotes the proliferation and invasion of bladder cancer cells through promotion of HMGB3/Wnt/beta-catenin signaling. Chem Biol Interact 2019; 300: 73-81.
- 15) GRIESING S, KAJINO T, TAI MC, LIU Z, NAKATOCHI M, SHIMADA Y, SUZUKI M, TAKAHASHI T. Thyroid transcription factor-1-regulated microRNA-532-5p targets KRAS and MKL2 oncogenes and induces apoptosis in lung adenocarcinoma cells. Cancer Sci 2017; 108: 1394-1404.
- 16) Wang F, Chang JT, Kao CJ, Huang RS. High expression of miR-532-5p, a tumor suppressor, leads to better prognosis in ovarian cancer both in vivo and in vitro. Mol Cancer Ther 2016; 15: 1123-1131.
- 17) BAI L, WANG H, WANG AH, ZHANG LY, BAI J. MicroR-NA-532 and microRNA-3064 inhibit cell proliferation and invasion by acting as direct regulators of human telomerase reverse transcriptase in ovarian cancer. PLoS One 2017; 12: e173912.