Long non-coding RNA OR3A4 promotes metastasis of ovarian cancer *via* inhibiting KLF6

F.-F. GUO^{1,2}, M.-M. JIANG², L.-L. HONG², B. QIAO², X.-M. LIN², W.-Y. XU², X.-Q. FU¹

Abstract. – **OBJECTIVE**: Recently, long noncoding RNAs (IncRNAs) have attracted much attention for their roles in tumor progression. The aim of this study was to investigate the exact role of IncRNA OR3A4 in the development of ovarian cancer (OC), and to explore the possible underlying mechanism.

PATIENTS AND METHODS: OR3A4 expression in OC tissue samples was detected by Real-time quantitative polymerase chain reaction (qRT-PCR). Moreover, wound healing and transwell assay were performed to the effect of OR3A4 on the metastasis Furthermore, the underlying mechanism as explored by RT-qPCR and Western blot as

RESULTS: The expression level of OR3A OC samples was significantly bid of adjacent tissues. Moreov nigratio and invasion were signification ıy re sed af*itro*. Mo ver, the ter OR3A4 knockdown mRNA and protein exp ns of factor 6 (KLF6) werg nore, the exafter knockdown of 3A4. F pression level of 6 was neg correlated with the exp of OR3A4 in ssues.

CONCLUSIC . results should that OR3A4 could whance and II metastasis and invasion via appressing Moreover, OR3A4 might be potential therap target for OC.

Key / us onc ug RNA, OR3A4, Ovarian cancer (OC),

Introduction

varian cancer (OC) is one of the most commular alignancies in women worldwide. It is reported that approximately 22,280 patients are newly diagnosed of OC in US. Meanwhile, almost 15,5 mated to die of OC in the an same year. Due to ailable tests, OC is often diagnosed at advanced making it one of the uses of cancer- ed death in females. main interventions for OC include surgery, radiotherapy. However, most ents develop stance to chemotherapy or refter surge Furthermore, the prognosis of s still dismal, with 5-year sur- $10\%^{1,2}$. Thus, the severe situation vival race ighlights the urgency of early detection and new treatment for OC patients. Researches acated that long non-coding RNAs (lncRNAs) are closely involved in a variety of cellular activities. For example, lncRNA MSTO2P facilitates the proliferation and colony formation of gastric cancer cells indirectly by regulating the expression of miR-3353. LncRNA SNHG7 promotes epithelial-to-mesenchymal transition and tumor proliferation in osteosarcoma by regulation of miR-34a Signals⁴. LncRNA PCAT-1 plays an important role in the tumorigenesis of hepatocellular carcinoma via modulating TP53-miR-215-PCAT-1-CRKL axis⁵. Zhang et al⁶ has indicated that up-regulation of lncRNA FENDRR inhibits the proliferation and malignancy of non-small cell lung cancer by serving as a sponge of miR-761. In addition, lncRNA RUNX1-IT1 inhibits the migration and proliferation of colorectal cancer, acting as a tumor suppressor⁷. However, the exact role of lncRNA OR3A4 in the progression of OC, as well as the underlying molecular mechanism has not been fully elucidated. In this study, we found that OR3A4 was highly expressed in OC tissues. Moreover, OR3A4 significantly promoted the migration and invasion of OC cells in vitro. Moreover, our further experiments explored the underlying mechanism of how OR3A4 functioned in OC development.

¹Edmond H. Fischer Signal Transduction Laboratory, School of Life Science Vin Unit Sity, Changchun, China

²Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated to Dalian United Sity, Department of Gynecology, Xinhua Hospital Affiliated Sity, Department of Gynecology, Affiliated Sity, Affiliated Sity, Affiliated Sity, Affiliated Sit

Patients and Methods

Cell Lines and Clinical Samples

A total of 52 OC tissues were collected from patients who received surgery at Xinhua Hospital Affiliated to Dalian University between June 2015 and July 2018. No radiotherapy or chemotherapy was performed for any patients before the operation. All fresh tissues were stored at -80°C for subsequent use. This study was approved by the Ethics Committee of Xinhua Hospital Affiliated to Dalian University. Signed written informed consents were obtained from all participants before the study and operation.

Cell Culture

Three human OC cell lines (A2780, SKOV3 and OVCAR-3) and one normal ovarian cell line (ISOE80) were cultured in Dulbecco's modified Eagle's medium (DMEM) (Gibco, Rockville, MD, USA) containing 10% fetal bovine serum (FBS; Life Technologies, Gaithersburg, MD, USA) and penicillin. Besides, all cells were maintained in an incubator with 5% CO, at 37°C.

Cell Transfection

After synthesis, cDNA oligonucleotic cargeting OR3A4 (OR3A4/shRNA) were clone op GPH1/Neo vector (GenePharma, Shanghai, na)). 293T cells were used for paol sing OR3A shRNA and empty vector, which were transfected into OC cells. 48 h and cell to effection, the expression level of OP sin cells as detected using Real-time quantity oly reaction (qRT-PCR)

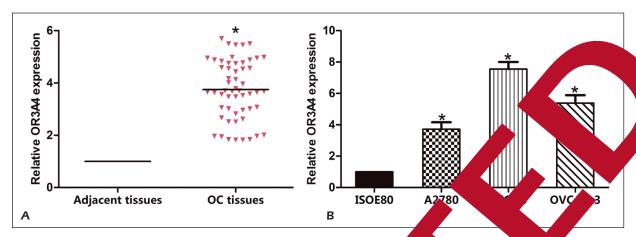
RNA Extraction and RT-qPC

according to the in-Total RNA was extra structions TRIzol reagen. trogen, Carlsbad, Subsequently, extract total RNA was CA, US ranscribed to complementary deoxyrirever s (cDNAs) in strict accordance bos leic anscript with 1 Kit (TaKaRa Biotechn, China). Primers used ogy (study follows: OR3A4, forward CTCTAAGAA-3' and reverse ATCCC TCTGCAAAAACGTGCTG-3'; sphate dehydrogenase (GAPDH), ward >- AAAATCAGATGGGGCAATGCTand reverse 5'-TGATGGCATGGACTGTG-TCA-3'. Thermal cycle was as follows: 30 s at 95°C, and 35 s at 60°C.

Western Blot Analysis

Total proteins were extracted from cells via radioimmunoprecipitation assay (RU fer. After that, the concentration inchoninic protein was quantified by the China). Taracid method (Beyotime, Shang) get protein samples were separa sodium dodecyl sulphate-polyacry ectrophoresis (SDS-PAGE) transfer polyvinylidene difluo (PVDF) mem MA, U). Next, (Millipore, Billerig membranes were in h prim w an-∢ (Cell tibodies of rabb naling nti-C , Danvers. US Technology, and rabuppel-like fa (Cell Sigbit anti-KL ST, Danver, MA, USA). naling T On the next day, the mbranes were incubated with corresponding s ary antibodies. Chescent film was fied for assessment protein expression with Image J software IH, Bethesda ID, USA).

Mand Healin Assay


cultured MEM medium overnight. After ratching with a plastic tip, the cells were cultured rum-free DMEM medium. Wound clorum-free DMEM medium. Wound clorum-free to the company was independently repeated in triplicate.

Transwell Assay

5×10⁴ cells in 200 μL serum-free DMEM were seeded into the upper chamber of an 8-μm pore size insert (Millipore, Billerica, MA, USA) coated with or without 50 μg Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). Meanwhile, the lower chamber was added with DMEM and FBS. 48 h later, after wiped by cotton swab, the top surface of the chamber was immersed with precooling methanol for 10 min. Then the cells were stained with crystal violet for 30 min. Three fields randomly selected for each sample, and the number of migrated and invaded cells was counted.

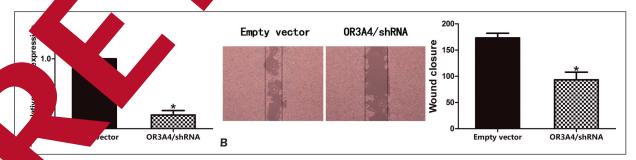
Statistical Analysis

Statistical Product and Service Solutions (SPSS) 20.0 (IBM, Armonk, NY, USA) was used for all statistical analysis. Data were presented as mean \pm SD (Standard Deviation). Student's *t*-test was utilized to compare the difference between two groups. p<0.05 was considered statistically significant.

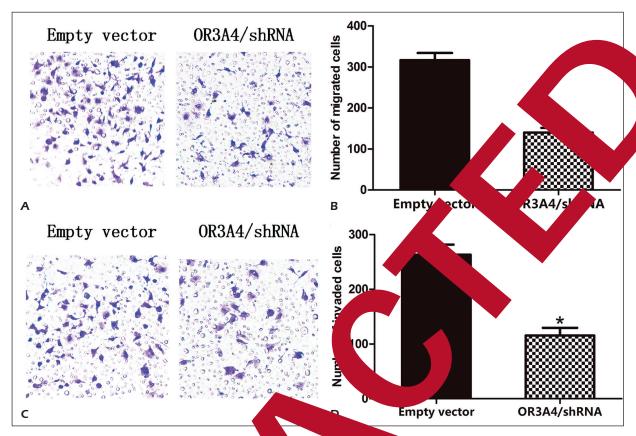
Figure 1. Expression level of OR3A4 was significantly increased in OC tissues at the set of the

Results

Expression of OR3A4 in OC Tissues and Cells


First, RT-qPCR was conducted to detect OR3A4 expression in 52 OC patients' tissues and 3 OC cell lines. Results demonstrate OR3A4 expression was significantly up-result in OC tissue samples (Figure 1A). Besides, pression of OR3A4 in OC cells was significantly whigher than that of ISOE80 cells (Figure 1B).

Knockdown of OR3A4 In Migration and Invasion OC


In our study, SKOV ls were osen for knockdown of OR3A4, Air CR was utilized to ve the e on of Orsan4 (Figure 2A). Resu of wound assay revealed that after 4 knockdow migrasignificantly repressed tion ability of (Figure 2B) Meanwhile well assay also indirect at after OR3A4 wn-expressed in OC s, the number of migrated cells was remarkably creased (Figure A and 3B). Furthermore, the inon of OC cells as remarkably decreased after 4 knockdo (Figure 3C and 3D).

Interaction Setween KLF6

CR results showed that compared with aps, actor group, the expression level of KLF6 in OC cells of OR3A4/shRNA group was significantly higher (Figure 4A). Western blot assay found that after OR3A4 knockdown, the protein expression of KLF6 was significantly upregulated (Figure 4B). Our results further illustrated that KLF6 expression in OC tissues was significantly lower when compared with that of adjacent tissues (Figure 4C). Subsequent correlation analysis demonstrated that the expression level of KLF6 was negatively correlated with OR3A4 expression in OC tissues (Figure 4D).

2. Wound healing assay showed that knockdown of OR3A4 inhibited OC cell migration. **A**, OR3A4 expression in transfected with OR3A4/shRNA and empty vector was detected by RT-qPCR, respectively. GAPDH was used as an internal control. **B**, Wound-healing assay showed that knockdown of OR3A4 significantly repressed the migration of OC cells. The results represented the average of three independent experiments (mean \pm standard error of the mean). *p<0.05.

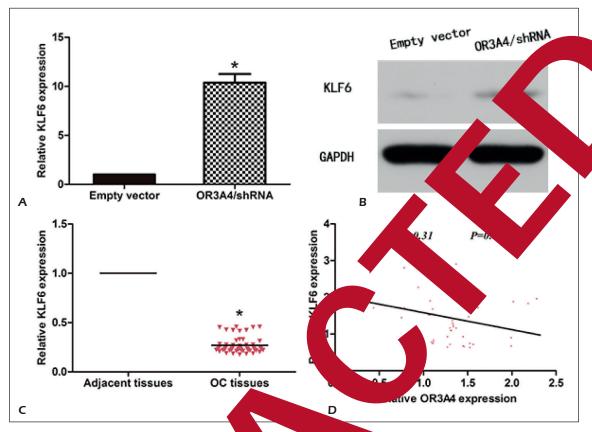


Figure 3. Transwell assay showed that knockdow pR3A4 p cell migration and invasion. **A**, Representative pictures of migrated cells in OR3A4/shRNA group and expressed after knockdown of OR3A4 in OC cells. **C**, active pictures of invaded cells in OR3A4/shRNA group and empty vector group. **D**, Transwell assay of swed that number of invaded cells was significantly decreased after knockdown of OR3A4 in OC cells. The results p can be averaging the average where independent experiments (mean \pm standard error of the mean). *p<0.05.

Discus.

Evidence indic that IncR n important regulator in ression of U ich can narker and Lerapeutic be used as a target for OC. For inst silence of lncRNA MNX1-A suppresses the feration and mi-C cells, which may a potential target gration LncRN BACE1-AS inhibits the proliferfor C of OC stem cells, functioning as atic r OC tre ent⁹. LncRNA HOXA1 a nove on and migration of serolife litates ociated with the prognosis nts¹⁰. The n regulation of epithelial-meshal transition, downregulation of lncRNA ances the metastasis of OC11. In adon, Inc. A ElncRNA1, as an oncogene in the feration of epithelial OC cells, is significantly ated by estrogen¹². Olfactory receptor family 3 ubfamily A member 4 (OR3A4) (Accession Number: NR 024128.1) is a novel lncRNA that

has been widely explored recently. It is abnormally expressed in several cancers, which is related to cancer progression. For instance, upregulation of OR3A4 facilitates the proliferation and metastasis of breast cancers via epithelial-mesenchymal transition¹³. OR3A4 promotes the proliferation and tumorigenesis of gastric cancer, serving as a potential therapeutic strategy¹⁴. In this study, we found that OR3A4 was significantly upregulated in OC tissues and cells. Besides, after OR3A4 knockdown, the migration and invasion of OC cells were found remarkably inhibited. All above results indicated that OR3A4 promoted tumorigenesis of OC and might act as an oncogene. KLF6 (Krüppel-like factor 6) functions as a tumor suppressor in a diverse of tumors by regulating various biological processes. For example, through attenuating the activity of MMP-9 and the expression level of mesenchymal markers, overexpression of KLF6 inhibits the migration and invasion of oral cancer cells¹⁵. KLF6-E2F1 axis is activated in aggressive clear cell renal

Figure 4. Interaction between OR3A4 and KLF6. A qPCR τ of that KLF6 expression in OR3A4/shRNA group was significantly higher than empty vector group. **B**, say τ ealed that protein expression of KLF6 in OR3A4/shRNA group was remarkably increased when compared in OC tissues when compared with adjacent tissues. **D**, the protein expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues. The results represented the expression level of KLF6 and OR3A4 in OC tissues.

cell carcinoma. Meanwhile epression of tumor suppressor via nscrip E2F1¹⁶. KLF6 is d ed in gliou as, which is related to po nosis of par hrough targeting KL er, by targeting KLF6, overexpression of miR-o motes growth, proial OC18. Furtherliferation migration of e 6 expression could pregulated after more, l wn of CR3A4. Moreover, KLF6 expresknog s was negatively correlated with sio non. All OR3A above results suggested OR3 ote tumorigenesis of OC tht p geting

Conclusions

Ye showed that OR3A4 could enhance OC cell in and invasion through targeting KLF6. These findings suggested that OR3A4 might contribute to therapy for OC as a candidate target.

Funding Acknowledgements

The study was granted by the National Natural Science Foundation of China (No.31670795) and School of Life Chang-Bai Mountain Scholarship Foundation of Jilin Province (No. 440050117010).

Conflict of Interests

The authors declare that they have no conflict of interest.

References

- 1) SIEGEL R, NAISHADHAM D, JEMAL A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10-29.
- 2) BRINKHUIS M, IZQUIERDO MA, BAAK JP, VAN DIEST PJ, KENEMANS P, SCHEFFER GL, SCHEPER RJ. Expression of multidrug resistance-associated markers, their relation to quantitative pathologic tumour characteristics and prognosis in advanced ovarian cancer. Anal Cell Pathol 2002; 24: 17-23.

- Li H, Zhu H, Zhou Y, Wang H, Niu Z, Shen Y, Lv L. Long non-coding RNA MSTO2P promotes the proliferation and colony formation in gastric cancer by indirectly regulating miR-335 expression. Tumour Biol 2017; 39: 1393384158.
- 4) DENG Y, ZHAO F, ZHANG Z, SUN F, WANG M. Long noncoding RNA SNHG7 promotes the tumor growth and epithelial-to-mesenchymal transition via regulation of miR-34a signals in osteosarcoma. Cancer Biother Radiopharm 2018; 33: 365-372.
- REN Y, SHANG J, LI J, LIU W, ZHANG Z, YUAN J, YANG M. The long noncoding RNA PCAT-1 links the microRNA miR-215 to oncogene CRKL-mediated signaling in hepatocellular carcinoma. J Biol Chem 2017; 292: 17939-17949.
- 6) ZHANG MY, ZHANG ZL, CUI HX, WANG RK, FU L. Long non-coding RNA FENDRR inhibits NSCLC cell growth and aggressiveness by sponging miR-761. Eur Rev Med Pharmacol Sci 2018; 22: 8324-8332.
- SHI J, ZHONG X, SONG Y, Wu Z, GAO P, ZHAO J, SUN J, WANG J, LIU J, WANG Z. Long non-coding RNA RUNX1-IT1 plays a tumour-suppressive role in colorectal cancer by inhibiting cell proliferation and migration. Cell Biochem Funct 2019; 37: 11-20
- Lv Y, Li H, Li F, Liu P, Zhao X. Long Noncoding RNA MNX1-AS1 Knockdown inhibits cell proliferation and migration in ovarian cancer. Cancer Biother Radiopharm 2017; 32: 91-99.
- 9) CHEN Q, LIU X, XU L, WANG Y, WANG S, LI Y, LIU T. Long non-coding RNA BACE1 is a novel target for anisomycin-mediated st sion of ovarian cancer stem cell proliferation invasion. Oncol Rep 2016; 35: 1916-1924.
- 10) YIM GW, KIM HJ, KIM LK, KIM SVECTA S, NAM KIM YT. Long non-coding RN antisens promotes cell proliferation of invariant products patient prognosis for erous over a cancer. Cancer Res Treat 201

- Yu J, Han Q, Cui Y. Decreased long non-coding RNA SPRY4-IT1 contributes to ovarian cancer cell metastasis partly via affecting critical-al-mesenchymal transition. Tumour Bi 1393380535.
- 12) QIU JJ, ZHANG XD, TANG XY, ZHENG ZHANG Y, HUAKQ. EIncRNA1, a long non-case RNA that is transcriptionally induced by occupant promotes epithelial ovarian cancer cell produced by Oncol 2017; 51: 507-514
- 13) Liu G, Hu X, Zhou C 20ng non-coco OR3A4 promotes preration and migrabreast cancer. Bir Pharm other 2017, 6: 426-433.
- 14) Guo X, Yang Z Zhi Q, Guo L, Miao R, Shi Y, Ku Y. Long Sing F OR3A4 promotes astasis and to get 2016; 7: 0294.
- 15) Hsu Louis Lai HW, Hss AT, Sung WW, Hsieh LJ, Wu Chen MK, Lo YS, Chen CJ. KLF6 inhibited oranger migration and invasion unregulation of machymal markers and invasion of MMP-9 actives. Int J Med Sci 2017; 14: 530-535.
- O, Liu K, Li X, Fan Y, Ni D, Zhang Y, Huang Q, Liu K, Li X, Fan Y, Ni D, Zhang Y, Huang Q, Liu K, Li X, Fan G, L, Yao Y, Ai Q, Du Q, KLF6 suppresses metastasis of cell carcinoma via transcriptional £2F1. Cancer Res 2017; 77: 330-342.
- Masilamani AP, Ferrarese R, Kling E, Thudi NK, Kim Scholtens DM, Dai F, Hadler M, Unterkircher Mania L, Weyerbrock A, Prinz M, Gillespie GY, Harsh GI, Bredel M, Carro MS. KLF6 depletion promotes NF-kappaB signaling in glioblastoma. Oncogene 2017; 36: 3562-3575.
- 18) ZHANG S, ZHANG JY, Lu LJ, WANG CH, WANG LH. MiR-630 promotes epithelial ovarian cancer proliferation and invasion via targeting KLF6. Eur Rev Med Pharmacol Sci 2017; 21: 4542-4547.