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abnormalities, like t(1;16)(p31;q24) with NFIA/
CBFA2T3 fusion gene reported to be associated  
with acute erythroleukemia young infants8.

Generally Accepted Cytogenetically High 
Risk AML 

The incidence of complex karyotype increa-
ses with age, especially over the age of 60 and 
is more common in secondary AML. It confers 
poor prognosis with lower CR rate, and shorter 
DFS and OS. Complex karyotype is mostly ba-
sed on the presence of deletions of chromoso-
me 5 and 7 combined with other abnormalities9. 
There is a strong association between complex 
karyotype and mutation of the TP53 gene10. Re-
arrangements aberration is common in long arm 
of chromosome 3 whereas translocation is often 
observed in both the long arms of chromosomes 
3 in 1.0-2.5% of AML cases11. Further, the inver-
sion is more commonly observed in comparison 
to translocation7. On the other hand, WHO reco-
gnized entity involving RPN1-EVI1 genes (EVI1 
gene now called MECOM) is commonly reported 
in pediatric patients12. Deletion of chromosome 7 
is often an additional chromosome abnormality, 
like complex and monosomal karyotypes13. Data 
also support consideration of MDS with inv(3)
(q21q26.2)/t(3;3)(q21;q26.2) as an AML with re-
current genetic abnormalities, irrespective of blast 
percentage14.

Monosomy and Deletion of Chromosome 7
Monosomy of chromosome 7 could be isola-

ted or found in the context of complex karyotype. 
Monosomy 7 and deletion of 7q are present as a 
single chromosomal alteration only in 35% and 
33%, respectively, of all AML cases11. Although, 
the majority of the large leukemia study groups 
consider isolated deletion of chromosome 7q to 

Abstract. – Chromosomal abnormalities are 
an attractive avenue for the screening of various 
disorders especially related to carcinogens like 
acute myeloid leukemia (AML). The cytogenetic 
findings like Karyotypic patterns are common in 
pediatric patients. On the other hand, monoso-
mal karyotype (MK) and complex karyotype (CK) 
are more common in older patients. Further, re-
cent studies have revealed direct proportion be-
tween the number of chromosome abnormali-
ties and mortality rates in both pediatric as well 
as old patients affected by AML. Moreover, to 
be specific 5q, 7q and/or 17p loss lead to higher 
mortality rates in comparison to loss of to MK.  
The present review article would put light on cur-
rent views of important chromosomal changes 
during AML, especially in pediatric patients. 
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Introduction 

Clonal chromosomal abnormalities are seen 
in about 50-60% of patients with AML1-3. Nor-
mal karyotype (NK) AML is a very heterogene-
ous group where additional mutational analyses 
(FLT3-ITD, NPM1, CEBPA) are nowadays obli-
gatory. There is an association of age and karyotype 
abnormalities in AML4. Chromosomal transloca-
tions, such as t(8;21), t(15;17), t(16;16) or inv16 
are usual in younger patients whereas deletion of 
chromosome 5 is more prevalent in patients older 
than 60 years5. Some scholars6 proposed cytoge-
netic classification based on age and incidence 
according to the type of abnormalities, i.e. “dele-
tional”, “translocational” or “trisomy” karyotype, 
but are controversial. Further, there is no proven 
correlation between chromosomal abnormalities 
and gender7. Moreover, there are several recurrent 
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be a bad prognostic factor.  Some groups (CAL-
GB) suggested to be related to intermediate-risk 
AML9. Recurrent somatic mutations in CUX1, 
LUC7L2 and EZH2 genes are also recurrent in -7/
del(7q)15. Also, AML patients with chromosome 
7 aberrations are characterized by frequent mul-
ti-lineage dysplasia in bone marrow cells and poor 
clinical course with a low rate of CR (20-30%).

MLL
Translocations involving 11q23/MLL are pre-

sent in 5% of de novo AML and 10% of tAML 
(mostly previously treated with topoisomerase-II 
inhibitors)16. Moreover, there is an abundance 
of gene partners for MLL, as more than 65 have 
been described to date7. The most common tran-
slocations include t(9;11)(p21;q23), t(11;19)
(q23;p13), 10p12/11q23-16 rearrangements, and 
t(6;11)(q27;q23). On the other hand, recent wor-
ks showed that MLL-PTD (partial tandem du-
plications) did not have a prognostic impact in 
CN-AML patients treated with intensive therapy. 
Many patients still succumb to the disease and 
the course of disease is more dismal for the pa-
tients not eligible for intensive chemotherapy17-19.  
So, the new, as well as effective drugs targeting 
MLL, are entering into the early phase of clinical 
trials20,21.

Monosomy or Chromosome 5 Deletions
The monosomy of chromosome 5 (-5) and de-

letion of the long arm of the chromosome 5 (5q-) 
has been observed to be 6-9% of all the chromo-
somal abnormalities during AML9. It often occurs 
in the patients older than 60 years and is rarely 
described as an isolated abnormality in AML. 
These chromosomal alterations are frequently ob-
served in patients who were previously exposed to 
alkylating agent favoring multi-lineage dysplasia 
in bone marrow cells leading to secondary AML7. 
However, this is a very rare chromosomal abnor-
mality (<1%)22. The affected patients are often 
children or young men (median 23-30 years) and 
the disease is presented as de novo AML or MDS. 
It predicts short survival and these patients are 
candidates for allogeneic stem cell transplanta-
tion7.

Not Generally Accepted Cytogenetically 
high-risk AML 17p Abnormalities

The abnormalities under the above category are 
accepted as a marker for high-risk AML. These 
are described23 as 17p deletion or add 17p, and 
are often a part of complex karyotype together 

with abnormalities of chromosomes 5 and 7. 
They indicate a resistant disease with short sur-
vival and often involvement of tumor suppressor 
gene TP5324. Another abnormality that also leads 
to deletion of 17p is isochromosome 17q and is 
associated with a poor prognosis25. The well-k-
nown Philadelphia translocation is seen in <1% 
of AML26,27. Despite this, data in the literature are 
scarce. The patients’ clinical features, cytogene-
tic abnormalities, molecular features and genome 
signature are different from those with CML28,29.

Trisomy 8
This is the most common trisomy in AML. 

About 10% of all AML patients bear this abnor-
mality7. All the international cooperative groups 
consider trisomy 8 as an intermediate cytogene-
tic-risk alteration30. It is frequent for all ages, but 
prevalence is higher in older age. Although indivi-
duals with a constitutional +8 mosaicism have an 
increased risk of AML, only a minority develops 
this disease. Secondly, there does not seem to be 
an increased risk of AML in CML patients with 
trisomy 8-positive/t(9;22)-negative clones emer-
ging after treatment with imatinib31. Thirdly, the 
discriminating gene expression pattern of AML 
with isolated +8 does not depend on the up-regu-
lation of chromosome 8 genes alone. In fact, ar-
ray-based analyses have revealed several cryptic 
chromosome changes in AML with +8 as a see-
mingly sole change and mutations of the ASXL1, 
JAK2, and TET2 genes32-34.

Age-Dependent Incidence of Different 
Chromosomal Abnormalities 

The data from one population-based study cle-
arly indicated that the age-dependent increase in 
incidence of AML substantially differs between 
the cases with balanced, with normal, and with 
unbalanced karyotypes. Further, it was suggested 
that mechanisms of leukemogenesis are different 
and more or less age-dependent35. Moreover, the-
re are two different age profiles in AML from the 
cytogenetic point of view. The first one is characte-
rized by a rather constant incidence over lifetime 
and is represented by balanced translocations. In 
contrast, unbalanced aberrations and especially 
complex aberrant karyotype show a sharp increa-
se in incidence in older age. This is suggestive of 
different mechanisms in the underlying pathoge-
nesis of AML35. At least a proportion of, if not all, 
balanced translocations of pediatric leukemias al-
ready develop in the prenatal period. This was de-
monstrated by the observation of twins developing 
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acute leukemia with reciprocal gene fusions, e.g. 
cALL with TEL-AML136. The retrospective poly-
merase chain reaction analyses of Guthrie cards of 
children led to the detection of clonotypic sequen-
ces of the respective gene fusions AML1-ETO, 
PML-RARA, and CBFB-MYH1136. On the other 
hand, unbalanced aberrations lead to genomic im-
balances and might occur due to a variety of me-
chanisms, including sister chromatid exchange of 
ring chromosomes, unbalanced distribution of the 
chromosomes to the daughter cells, or incorrect 
repair of DNA double-strand breaks37-39. These 
genetic alterations seem to occur more frequently 
in aging cells due to shortening of telomeres and 
less efficient DNA repair capacity. The age-speci-
fic distribution of the molecular markers might be 
due to age-specific changes in hematopoiesis and 
to changes in the available pools of hematopoietic 
precursors as targets for leukemogenesis. Diffe-
rent age profiles of the cytogenetic subtypes and 
of the recurrent molecular markers indicated dif-
ferent mechanisms of the pathogenesis of AML35. 
WHO classification from 2008 roughly separates 
AML into three categories: de novo AML, the-
rapy-related AML and secondary AML (with an-
tecedent MDS or MPN). These categories seem 
to have a different ontogenesis and age-distribu-
tion40. There is accumulating data about the time 
sequence of events that lead to overt leukemia, 
where specific gene mutations and even CBFH/
MYH translocation in inv16 occur in preleukemic 
stem cells. These findings indicated that preleuke-
mic HSCs could survive induction chemotherapy. 
Cytogenetic data from the Swedish Acute Leuke-
mia Registry could also provide insight into the 
clonal origin and evolution, especially in the cases 
with complex karyotype41-43. 

Failures in Cytogenetics 
Unsuccessful (UC) and unperformed cytogene-

tics (UPC) are often reported together as a “not 
determined karyotype”44. The definition of unsuc-
cessful cytogenetic karyotype (UC) is a lack of 
analyzable metaphasis. There are several possible 
explanations for this phenomenon. Some cases 
with UC are undoubtedly due to insufficient num-
ber of cells in the bone marrow aspirates sent for 
cytogenetic analysis. Furthermore, human errors 
in taking the bone marrow aspirates cannot be 
excluded, such as too small volumes or diluting 
the bone marrow cells with peripheral blood, and 
technical problems in the laboratory. Finally, there 
might be some biological explanations for UC, re-
presenting the intrinsic properties of the leukemic 

clone, such as inability to divide in vitro. In fact, 
UC is not specific for AML. There are reports of 
dismal prognosis of ALL cases with UC as well as 
of myelodysplastic syndromes with UC45,46 with 
the latter suggesting that UC is a property of dy-
sfunctional stem cells. 

Unperformed Cytogenetics 
The issue of unperformed karyotype is 

even more controversial than unsuccessful 
karyotype. This group is almost invisible in the 
literature, since karyotype is usually mandatory 
in clinical trials. UPC is often lumped together 
with unsuccessful karyotype or just classified as 
not done, not available or not determined44. The 
population-based AML Registry is an excellent 
source to identify such a patient group. It is im-
possible in retrospect to know the reasons why 
the karyotype was performed or not from case 
to case, but it is likely that many were not fit for 
intensive treatment. The presence of UPC em-
phasizes the need for proper genetic analyses of 
all patients for whom treatment with curative 
intent is planned, and even in the cases where 
therapy is not planned to have data for future 
analysis. 

Conclusions

Chromosomal aberrations are crucial especial-
ly in the cases of pediatric acute myeloid leuke-
mia (AML).  Proper screening of these chromo-
somal aberrations warrants effective management 
of AML. 
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