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Abstract. – Obesity has long been suspected
to be a risk factor for cancer. The relationship be-
tween body fat deposition and the pathogenesis
of cancer has been the subject of many studies,
however, no clear consensus has emerged linking
these two biological processes. Recent epidemio-
logical studies showed a strong association be-
tween cancer-related deaths and increased body-
mass index. In fact, obesity has been identified as
a cause for oesophageal, colon, uterine, kidney
and post-menopausal breast cancers and also as
a significant risk factor for the cancers of
prostate, pancreas and non-Hodgkin lymphoma.
Approximately 16-20% of cancer deaths in women
and 14% of cancer deaths in men were found to
be due to obesity. It is also recognized that there
is a positive relationship between type-2 diabetes
associated hyperinsulinemia and cancer inci-
dence. Though the recent annual report in US
finds that the incidence and mortality rates for
many cancers have dropped in 2003 since 1975,
this decline is mostly due to a substantial de-
crease in tobacco use among men. However, dur-
ing the same period the rise in the prevalence of
obesity might have contributed to the increased
risk and incidence of prostate, liver, kidney, oe-
sophageal and breast cancers.

Whether the elevated cancer risk in obesity
arises from similar modulation of parallel signal-
ing/metabolic pathways during adipogenesis
and oncogenesis has not been hitherto ad-
dressed. In this Review we would like to bring
out the similarities between adipogenesis and
oncogenesis and how this relationship at molec-
ular level may be relevant for the development of
effective therapeutics for obesity, diabetes and
cancer. While adipogenesis is the process of for-
mation of mature adipocytes or fat cells under
normal physiological conditions, oncogenesis is
a pathological process, which results in the un-
controlled growth of cells leading to cancer.
Though, both these processes at surface seem
to be totally different, we believe that there are
important common denominators for these
processes that need to be recognized. We will
discuss the role of two such underlying factors –
(1) malonyl-CoA, an important regulator of fatty
acid metabolism and (2) triglyceride/free fatty
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Introduction

Obesity has long been suspected to be a risk
factor for cancer. The relationship between body
fat deposition and the pathogenesis of cancer
has been the subject of many studies, however,
no clear consensus has emerged linking these
two biological processes. Recent epidemiologi-
cal reports1 showed a strong association be-
tween cancer-related deaths and increased body-
mass index (BMI). In fact, obesity has been
identified as a cause for oesophageal, colon,
uterine, kidney and post-menopausal breast can-
cers and also as a significant risk factor for the
cancers of prostate, pancreas and non-Hodgkin
lymphoma2,3. Approximately 16-20% of cancer
deaths in women and 14% of cancer deaths in
men were found to be due to obesity1. It is also
recognized that there is a positive relationship
between type-2 diabetes associated hyperinsu-
linemia and cancer incidence4. Though the re-
cent annual report on cancer incidence in US5

finds that the incidence and mortality rates for
many cancers (except cancers of prostate, liver,
kidney and oesophagus and leukemias) have
dropped in 2003 since 1975; this decline is
mostly due to a substantial decrease in tobacco
use among men. However, during the same peri-
od the rise in the prevalence of obesity might
have contributed to the increased risk and inci-
dence of certain types of cancers including
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prostate, liver, kidney, oesophageal and breast.
Whether the elevated cancer risk in obesity aris-
es from similar modulation of parallel signal-
ing/metabolic pathways during adipogenesis
and oncogenesis has not been hitherto ad-
dressed. Women with a BMI of ≥ 40 kg/m2 have
three times more mortality rate than lean women
(BMI, ≤ 20.5 kg/m2), making obesity as a poor
prognosis of breast cancer2,6. In this review we
would like to bring out the relationship at molec-
ular level between adipogenesis and oncogenesis
and how this may be relevant for the develop-
ment of effective therapeutics for obesity, dia-
betes and cancer. A close analysis and fresh look
at these two processes reveals several parallels.
Though, both these processes at surface seem to
be totally different and not related, there are cer-
tain important common denominators for these
processes that need to be recognized. We suggest
that (1) malonyl-CoA, an important regulator of
fatty acid metabolism (Figure 1)7,8 and (2)
triglyceride/free fatty acid (TG/FFA) cycling9

which is central to the generation of multiple sig-
nals which in turn control various metabolic,
physiological and signaling pathways in the cell
(Figure 1), are these underlying factors. Recent
evidence indicates that lysophosphatidic acid, a
byproduct of TG/FFA cycling, can activate
NFκB via G protein coupled receptor (GPCR)
pathway involving Bcl-10 and Malt-110. It is well
known that NFκB is involved in the expression
of anti-apoptotic proteins Bcl-2 and Bcl-xl in a
variety of cells11, thereby linking the TG/FFA cy-
cling operation to cell survival. The link between
obesity and cancer remains an enigma and raises
the question: do pre-cancerous cells employ lipid
metabolism-derived signals, which play an im-
portant role in several signaling pathways and
adipogenesis, to drive the oncogenic process?
We believe that altered lipid metabolism is cen-
tral to the obesity-mediated risk for cancer.

Methods

We performed literature search in Pubmed,
Google Scholar, Embase and other publicly
available databases for relevant studies on obesi-
ty, cancer, ageing and diabetes mellitus, pub-
lished during the last two decades. We used type
2 diabetes, breast cancer, prostate cancer,
leukemia, oncogenesis and obesity as search
terms. Only English language publications were
selected and reviewed.

Cancer cells, during their transformation, ac-
quire certain important characteristics that help
them survive and proliferate12,13. Interestingly,
some of these characteristics are also acquired by
the adipocytes during differentiation (Table I).
These include, (1) the ability to evade apoptosis
by the up-regulation of Bcl-2 family proteins14,15;
(2) the ability to self-sustain by producing the
necessary growth factors (e.g., visfatin, IGF, lep-
tin, epidermal growth factor-like growth factor,
hepatocyte growth factor, etc.)16,17; (3) angiogen-
esis (during the differentiation and formation of
adipose tissue)18,19 and (4) tissue invasion and mi-
gration (of preadipocytes20,21) to other parts of the
body (akin to metastasis). Recently, it was ob-
served that adipocytes at the front of the invasive
breast tumor cells express stromelysin-3, a ma-
trix metalloproteinase that is involved in metasta-
sis22. Though considerable evidence suggests that
excess adiposity can mediate the aggressive pro-
gression of breast tumors, the link between obe-
sity and cancer was questioned in a recent
study23, which demonstrated significantly in-
creased susceptibility of transgenic mice devoid
of white adipose tissue to mammary carcinogen-
esis. It was suggested that adipose tissue might in
fact have a protective role against cancer; howev-
er, a caveat with this study is that the possibility
that lipids and lipid-derived molecules, which
likely accumulate in other soft tissues in these
adipose deficient mice, may act as signaling mol-
ecules for tumorigenesis was not considered23.

Enzymes of Lipid Metabolism – Role in
Oncogenesis and Adipogenesis

Many enzymes of lipid metabolism are up-reg-
ulated during adipogenesis18,24,25. These include
ATP-citrate lyase (ACL), fatty acid synthase
(FAS), acetyl-CoA carboxylase-1 (ACC-1), di-
carboxylate transporter (Slc25A10) and malic en-
zyme (ME) (Figure 2). These enzymes are essen-
tial for the de-novo synthesis of fatty acids
through the formation of malonyl-CoA. Since
cancer cells are rapidly multiplying cells they are
dependent on continuous formation of phospho-
lipids and sterols for membranogenesis. Tumor
cells unlike many normal human cells, developed
the capability for de-novo synthesis of fatty acids
to meet the requirement for cell multiplication
and the elevated synthesis of all the needed en-
zymes in these cells achieves this goal26,27. Be-
sides genetic, environmental and epigenetic fac-
tors, metabolic signals also likely determine if a
cell becomes cancerous. Thus, along with accel-
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erated glycolysis, a hallmark of cancer cells28, li-
pogenesis is markedly increased in breast cancer
cells29-35. Deletion of nuclear protein Spot14,
which up-regulates the expression of lipogenic
genes in breast cancer cells in response to fuels
and hormonal status, induces apoptosis36. Many
enzymes of lipid metabolism (Figure 2), which
are up-regulated during adipogenesis18,24,25 in-
cluding ATP-citrate lyase (ACL), fatty acid syn-

thase (FAS), acetyl-CoA carboxylase-1 (ACC-1),
dicarboxylate transporter (Slc25A10) and malic
enzyme, are also increased in many types of can-
cer cells29-35 and abrogation of their activity leads
to apoptosis. Similar results have been obtained
with ACC-130. However, FL5.12 leukemia cells
with ACL knockdown show impaired proliferato-
ry response to cytokine IL3, which stimulates the
conversion of glucose to lipid. ACL knockdown

Figure 1. Generation of multiple signals for cell proliferation by triglyceride free fatty acid cycle. Triglyceride/Free fatty acid
(TG/FFA) cycle consists of lipogenic and lipolytic segments. Lipogenesis starts with the formation of glycerol-3-phosphate
(Gly3P) either from glycerol coming from glucose, aquaglyceroporin (AQP)-mediated transport, or glyceroneogenesis. Gly3P
is acylated to lysophosphatidic acid (LPA), which is either further acylated to phosphatic acid (PA) by acylglycerophosphate
acyltransferase (AGPAT) or dephosphorylated to form monoacylglycerol (MAG). PA and MAG can be converted to 1,2-diacyl-
glycerol (DAG) by acylation and dephosphorylation, respectively. DAG is acylated by DAG acyltransferases 1,2 (DGAT) to
triglyceride (TG) in endoplasmic reticulum as the final step of lipogenic segment and TG thus formed is stored as lipid
droplets. Lipolytic segment is composed of sequential hydrolysis of TG to DAG to 2-MAG on the surface of lipid droplet, by
adipose TG lipase (ATGL) and hormone sensitive lipase (HSL), respectively. MAG is hydrolyzed by the ubiquitous MAG li-
pase (MAGL) to glycerol and FFA, both of which can re-enter the cycle. Gly3P can also be metabolized further via glycolysis
yielding ATP, NADH and pyruvate. Pyruvate metabolism in mitochondria yields citrate, a significant amount of which enters
cytosol where it contributes to FFA via malonyl-CoA. The different metabolites generated during TG/FFA cycling act as sig-
naling molecules and influence the activity of various transcription factors, enzymes or receptors and may contribute to the reg-
ulation of cytosolic redox and energy charge ratios and cell survival, multiplication, motility and secretion.
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Table I. The obesity and cancer link commonalities between oncogenesis and adipogenesis.

Figure 2. Malonyl-CoA metabolism regulates oncogene-mediated cell proliferation. The relationship between dicarboxylate
carrier, synthesis of malonyl-CoA, the key intermediate in lipid metabolism and oncogene function is depicted here. The possi-
bility that malonyl-CoA can influence the activity of HIF1α-PH is hypothetical.
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also significantly blunts the tumorigenesis by the
FL5.12 cells in vivo indicating that this enzyme
activity is necessary for the formation of tu-
mors29,37. Dicarboxylate carrier (Slc25A10),
which participates in the net export of mitochon-
drial citrate in to cytosol, is important for de no-
vo synthesis of fatty acids. Slc25A10 is also in-
volved in the transport of succinate from mito-
chondria to cytosol, and because succinate can in
turn promote HIF-1α (hypoxia inducible factor-
1α) accumulation, it has been suggested that sin-
gle nucleotide polymorphisms (SNP) in
slc25A10 gene could affect the penetrance and
type of cancer38.

Whether malonyl-CoA, which is formed by
consecutive actions of Slc25A10, ACL and ACC
in cytosol, directly or indirectly regulates the sur-
vival of the cancer cells has long been debat-
ed30,39,40. Malonyl-CoA occupies a central posi-
tion at the intersection of the glucose and fatty
acid metabolic cross roads (Figure 2). After its
formation, malonyl-CoA has only two metabolic
fates, viz., to become a substrate for FAS and
contribute to fatty acid synthesis or to get decar-
boxylated to acetyl-CoA by malonyl-CoA decar-
boxylase (MCD). Besides being a substrate for
these enzymes, malonyl-CoA can also bind to
CPT-I of mitochondrial outer membrane and in-
hibit its activity and, thereby, the ß-oxidation of
fatty acids41-44. This regulatory role of malonyl-
CoA is important for fuel partitioning by the di-
version of fatty acids towards TG synthesis and
may also be part of the central hypothalamic ma-
chinery involved in the food intake control45.

The above mentioned lipogenic enzymes FAS,
ACL, ACC-1, ME, stearoyl-CoA desaturase
(SCD-1) and also the transcription factor
SREBP-1c are co-ordinately induced in hepato-
cellular carcinoma46 and in other cancers26. The
association between non-alcoholic steatohepatitis
(NASH) and hepatocellular carcinoma is long
recognized47. Obesity, specifically, increased vis-
ceral adiposity can result in non-alcoholic fatty
liver disease and NASH2. Though it has been
suggested that targeting any of these lipogenic
enzymes may have beneficial anti-cancer effects,
it must be realized that as these enzymes are es-
sential for the metabolic activity of normal cells,
such measures can be extremely toxic to the
whole organism. Besides the lipogenic enzymes,
lipolysis segment of TG/FFA cycle (Figure 1) al-
so seems to be important in the cancer cells48.
Adipose triglyceride lipase (ATGL), which hy-
drolyzes triglycerides and hormone sensitive li-
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pase (HSL), which preferentially breaks down di-
acylglycerols were found to be increased in pa-
tients with cancer cachexia, which leads to
wastage of tissue and is considered an adverse
prognostic factor49. Interestingly, monoacylglyc-
erol hydrolyzing enzymes, monoglyceride lipase
(MGL) and alpha/beta hydrolase containing-6 are
found to be increased in many cancers and it has
been shown that inhibitors of MGL in fact induce
apoptosis in cancer cells and prevent the growth
of tumor xenografts in mice50.

FAS, Her2/neu/erbB-2 and BRCA1
Signaling in Cancer

Recent studies showed that either inhibition or
RNAi knockdown of FAS in cancer cells leads to
the down regulation of Her2/neu/erbB-2 onco-
protein, which helps in the survival of breast can-
cer cells51. The molecular relationship between
FAS and Her2/neu is not known. Her2/neu, when
translocated to the surface of the plasma mem-
brane transmits survival signals whereas, if
translocated to the nucleus, it signals apoptosis.
It is possible that de novo synthesized FFA by
FAS are needed for the acylation and membrane
anchoring of the Her2/neu protein. Thus,
SREBP-1c, which up-regulates FAS, can help
promote cell survival. In fact, it has been shown
that overexpression of Her2/neu in MCF7 breast
cancer cells up-regulates SREBP-1c—dependent
FAS expression52. Her2/neu and FAS appear to
regulate each other’s expression and biological
activity, which is reflected in cell survival and
proliferation. It is interesting to note that oleic
acid when added externally down regulates
Her2/neu/erbB-2 oncoprotein53. However, in
many cancers SCD-1, which synthesizes oleate,
is up regulated and abrogation of its activity
leads to loss of cell proliferation54. Thus, it is
likely that de novo made oleate via FAS/SCD in
the cell may be important for the Her2/neu/erbB-
2 survival signaling pathway whereas, externally
added oleate may antagonize this pathway. An-
other GPCR protein, GPR40, which is activated
by fatty acids, has recently been shown by us55 to
play important role in the proliferation of breast
cancer cells. Receptor crosstalk between GPR40
and Her2/neu is an intriguing possibility and
needs to be explored. In adipocytes, FAS expres-
sion is regulated mostly by nutritional and hor-
monal signaling pathways. Adipocytes express
significant levels of FAS and SCD-1 under the
control of SREBP-1c. However, the expression
of Her2/neu/erbB-2 oncoprotein was found to in-



crease several fold during the proliferation of
preadipocytes followed by significant decline
during differentiation to adipocytes56. It is not
clear if this protein would play a role in the sur-
vival of adipocytes and in the control of FAS ac-
tivity. Lysophosphatidic acid, an intermediate in
glycerolipid synthesis, has been shown to trans-
activate Her2/neu in gastric cancer cells57. Such
activation may also be prominent in breast cancer
cells inasmuch as many breast cancer cells are
active in glycerolipid synthesis and upregulate
Her2/neu oncoprotein.

Lipid metabolism also appears to be associat-
ed with the expression/activity of breast cancer-
related oncogenes. Thus BRCA1 tumor suppres-
sor protein is found to sequester the phosphory-
lated form of lipogenic enzyme, ACC-1, by bind-
ing via BRCT-domain and to control ACC activi-
ty and lipogenesis in normal breast epithelial
cells (Figure 2). Mutations in the BRCT domain
of BRCA1, seen in many breast cancers, attenu-
ate this interaction leading to elevated lipogene-
sis30,39,40,58,59 and altered b-oxidation60, a charac-
teristic of breast cancer cells58,59.

AMPK, mTOR and Malonyl-CoA
Thus, it appears that many enzymes involved

in the metabolism of malonyl-CoA may play a
crucial role both in adipogenesis and oncogene-
sis. The biosynthesis of malonyl-CoA is regulat-
ed by AMP-activated protein kinase (AMPK),
which is a heterotrimeric enzyme containing
three distinct subunits8,61. This enzyme is activat-
ed by conformational-change induced phospho-
rylation at high AMP/ATP ratio (i.e., decreased
energy state) in the cell. AMPK is also phospho-
rylated by an upstream kinase, LKB1, which is
known as a tumor suppressor61. Activated AMPK
phosphorylates and inhibits the activities of ACC,
FAS and GPAT40. Thus, activation of AMPK re-
sults in lowered cellular malonyl-CoA levels as-
sociated with decreased de-novo biosynthesis of
fatty acids and TG and increased fatty acid oxi-
dation7,61. AMPK also brings about the activation
of MCD to facilitate the decrease in the malonyl-
CoA levels62. In adipocytes AMPK activation can
lead to enhanced lipolysis63. In cancer cells, it ap-
pears that AMPK activity is kept at relatively low
levels so that elevated activities of the lipogenic
enzymes, ACC, ACL and FAS are maintained40.
For example, in Peutz-Jeghers syndrome (PJS), a
rare form of hereditable cancer of gastrointestinal
tract, LKB1 is mutated with the resultant loss of
active AMPK61,64. Activators of AMPK viz., met-

formin and AICAR inhibit the growth and sur-
vival of cancer cells4,65. Recently, it has been hy-
pothesized that66 premalignant tumors may gain a
replicative advantage by keeping AMPK activity
low, whereas malignant tumors are able to toler-
ate partial AMPK activation and shift to active
glycolysis to relieve from substrate limitation
stress on the cell. However, whether this anti-
cancer effect of activated AMPK is related to its
ability to block malonyl-CoA synthesis or to oth-
er known effects such as mTOR inactivation,
etc., is not known. In fact, nutrients like glucose,
amino acids and fatty acids appear to reciprocally
regulate AMPK and mTOR activation so that un-
der nutrient-rich conditions an active mTOR-
pathway helps in the growth and proliferation of
cells. Lowering of malonyl-CoA level is an es-
sential component of the anti-obesity, pro-apop-
totic and anti-cancer effects of AMPK. HIF-1α
has been shown to be activated by mTOR in
PTEN-null cancers67. The increased HIF-1 in
melanoma cells has been shown to be dependent
on mTOR and that inhibition of mTOR by ra-
pamycin results in the apoptosis of melanoma
cells68. Surprisingly, mTOR pathway is found to
play significant role during adipogenesis and its
inhibition by rapamycin leads to the loss of the
positive feed back between C/EBP and PPARγ
and disrupted adipocytes differentiation69. LKB1,
besides activating AMPK, is also implicated in
the negative regulation of mTOR signaling by a
mechanism dependent on AMPK70.

Role of Tumor Suppressor p53 in Tumor
Energy Metabolism and Adipogenesis

It is well known that tumor suppressor gene p53
is either mutated or deleted in most cancers and
this contributes to the ability of the malignant cells
to escape and evade apoptosis. It appears that be-
sides its role in the regulation of cell death, cell
cycle and as the sentinel of the chromosomal in-
tegrity, p53 also participates in the control of ener-
gy metabolism and adipogenesis. The expression
of p53 was found to decline during adipogenesis
from 3T3-L1 preadipocytes71. Senescence-associ-
ated increase in the expression of p53 in human
mesenchymal stem cells makes them to lose their
capacity to differentiate into adipocytes72. Interest-
ingly, the ability of PPARγ ligands to induce apop-
tosis in cancer cells may be because these com-
pounds induce the expression of p53 in these
cells73,74. Several recent reports have shown the in-
volvement of p53 in the control of glycolysis75,76.
Liver cells from p53-knockout mice exhibit much
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higher capacity for glycolysis and significantly el-
evated lactate production76. However, it is not
known whether p53 controls the expression of lac-
tate dehydrogenase (LDH) gene. This is an in-
triguing possibility since it has been observed that
the glycolytic phenotype of cancers is highly like-
ly due to LDH-A activity in these cells besides the
upregulation of glycolytic enzymes77. Knockdown
of LDH-A leads to increased mitochondrial oxida-
tive phosphorylation and decreased ability to pro-
liferate under hypoxic conditions associated with
curtailed tumorigenicity77. Can LDH play a role in
the adipogenic process? Hypoxic conditions,
which are likely to prevail in the adipose mass, are
shown to enhance the production of lactate by the
adipocytes and this is associated with the elevated
levels of angiogenic factors19. Also, the increased
plasma lactate levels were proposed to contribute
to the insulin resistance in obese individuals and
thus can be a significant risk factor for type 2 dia-
betes78. AMPK, a well known cellular energy sen-
sor, has been shown to activate p53 by phosphory-
lation at ser-1579. Under conditions of low glucose
availability, cell proliferation is prevented by
AMPK mediated activation of p53 followed by
cell cycle arrest, which is reversed upon the
restoration of glucose availability79. In tumors that
do express p53 and in adipose tissue, the cells that
are far from circulation and nutrient supply may
employ this low-glucose regulated AMPK/p53-de-
pendent reversible cell cycle arrest to prevent cell
death due to excessive proliferation. Also, acceler-
ated GL/FFA cycle in breast cancer cells probably
ensures a continuous supply of reoxidized NAD
substrate to SIRT-1, which deacetylates and inacti-
vates p53 tumor suppressor protein, and protects
breast cancer cells from apoptosis80. Acetylation-
mediated activation of p53 is also likely regulated
by the size of cytosolic acetyl-CoA pool, which is
controlled by ACC-1 (Figure 2).

Adipocytes, besides possessing certain charac-
teristics of cancer cells, can also stimulate the
proliferation of many cancer cells. The strong
link between obesity and various cancers includ-
ing liver, prostate, pancreas, colon, breast,
leukemia etc. makes increased adiposity as a
high risk factor and poor prognostic marker in
the treatment of cancer. Adipocyte-derived colla-
gen-viα3 has been shown to stimulate the growth
of mammary tumors in vivo81. The adipocy-
tokines, leptin, IL6, IGF-1, adiponectin and vis-
fatin secreted by the adipocytes act as signals for
proliferation and survival. Recent studies have
shown that visfatin, also known as Pre-B-Cell

colony Enhancing Factor (PBEF), enhances cell
survival by elevating the activity of NAD+-depen-
dent protein deacetylases (known as SIRT) and
cellular NAD+ content82. There is evidence to
show that visfatin/PBEF is in fact nicotinamide
phosphoribosyltransferase, a cytosolic enzyme
involved in NAD biosynthesis and is produced in
other cell types82. SIRT class enzymes and NAD+

are important contributors for lifespan increase.
SIRT-1 can attenuate adipogenesis by enhancing
TG/FFA cycling through the repression of
PPARγ in mouse adipocytes83,84. Starvation in-
creases the activities of both SIRT-1 and SIRT-3
in adipocytes and in liver and it is speculated that
this increase is instrumental in the extension of
mammalian lifespan84. Elevated SIRT-1 is no-
ticed in various cancer cells85.

TG/FFA Cycling, Malonyl-CoA and
Hypoxia Inducible Factor (HIF)

Several indirect evidences indicate a positive re-
lationship between the expression and activity of
HIF-1α and malonyl-CoA levels. HIF-1α, which
is induced by the hypoxic conditions that prevail
in the core region cancer cells of many solid tu-
mors86 and also in the internal adipocytes during
adipogenesis19,87 leads to the expression of vascu-
lar endothelial growth factor (VEGF), which pro-
motes angiogenesis26. Conditions that lead to an
elevation of cellular malonyl-CoA levels, for ex-
ample, elevated glucose concentration88-90 and
lowering the activity of FAS either by C75 or siR-
NA91 lead to enhanced MAPK activity and a rise
in HIF protein. HIF levels in the cells are con-
trolled by the availability of oxygen and this regu-
lation takes place both at its transcription and at
degradation. HIF levels rise in proportion to the
concentration of glucose supplied. HIF-prolylhy-
droxylase (HIF-PH) is an important enzyme in de-
termining the fate of the HIF, as it hydroxylates
HIF at specific proline residues and marks it for
further VHL (von Hippel Landau) protein-depen-
dent ubiquitinylation and proteolysis. HIF-PH us-
es 2-oxoglutarate as a cofactor and recent studies
have shown that succinate92 and fumerate93 at mil-
limolar concentrations, can inhibit this enzyme
and lead to the accumulation of HIF in the cells
thereby explaining the association of fumerase or
succinate dehydrogenase deficiency with cancer.
Lu et al89 provided evidence for pyruvate, derived
from glucose metabolism, being important for the
inhibition of HIF-PH.

It is possible that malonyl-CoA, which in-
creases at high glucose concentration7, being
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similar to fumarate and succinate, may also be
able to inhibit HIF-PH (Figure 2). In this regard,
it is important to note that radicicol, an inhibitor
of HSP90 and also of ACL, an enzyme involved
in malonyl-CoA synthesis, potently inhibits the
growth of tumour cells both in vivo and in vitro
and this is shown to be due to the enhanced
degradation of HIF-1α94. Thus, decreased synthe-
sis of malonyl-CoA can lead to lowered levels of
HIF1α and the associated down-stream signal-
ing. If malonyl-CoA does inhibit HIF-PH, it can
also explain the role of elevated ACL, ACC and
dicarboxylate carrier activities in cancer cells and
in adipocytes in their survival by stimulating gly-
colysis and vascularization (Figure 2). Another
possibility is the involvement of elevated mal-
onyl-CoA levels in the high glucose activation of
MAPK (ERK 1/2) pathway95, which can lead to a
rise in HIF in the cells96. Hypoxic conditions are
also known to cause an elevation of TG and
phosphatidic acid, the intermediates of TG/FFA
cycle97, and this accumulation likely plays an im-
portant role in the expression of HIF.

It is interesting to note that HIF promotes
metastasis in tumor cells98,99, probably by regu-
lating the expression of integrins and since HIF
levels rise during adipogenesis, it may have a
parallel role in the migration of adipocytes.
Adipocytes at the front of the invasive breast tu-
mor cells express stromelysin-3, a matrix metal-
loproteinase (MMP) that is involved in metasta-
sis 22. Also, under hypoxic conditions, induced
either chemically or by high glucose, adipocytes
express high levels of MMPs19. The expression of
MMPs is a prerequisite for angiogenesis and cel-
lular migration. Thus prolonged elevation of mal-
onyl-CoA in cells may predispose them to be-
come cancerous if the same cells also harbor mu-
tations that cause either over-expression of onco-
genes, which otherwise may trigger apoptosis
(e.g., c-myc, bcl-2 etc.) or inactivation of p53.

Thus, malonyl-CoA and TG/FFA cycling in
combination likely exert potent survival pressure
on cells through interconnected metabolic and
signaling pathways. These metabolic signals are
probably strong enough to commit the cells to
proliferate even if they suffered a mutational in-
sult thereby leading to oncogenesis.

Therapeutic Approaches for
Obesity and Cancer

As mentioned above, the onset of obesity and
pathogenesis of cancer may share same metabol-
ic and biological pathways. This indicates that

there can be targets for therapeutic development
that are common to both these processes. In an
interesting study Choi et al100 described a series
of compounds, identified on the basis of their an-
ti-adipogenesis activity, to have potential anti-
cancer effects as well in cell culture experiments.
In a recent review, Swinnen et al101 suggested
that since there is an increased lipogenesis in
cancer due to the disturbances in signaling path-
ways, the lipogenic enzymes involved can be
good targets for anti-cancer drug development. It
has already been suggested45,102 that FAS in-
hibitor, C75, can be useful as a therapeutic
against obesity and type-2 diabetes and also cer-
tain types of cancer. However, C75 suffers from
lack of specificity and several side effects103,104.
This compound was originally thought to specifi-
cally inhibit FAS and activate CPT-1. However,
recent SAR studies revealed that C75 inhibits
CPT-1105. Similarly, inhibitors of ACC are being
developed by several pharmaceutical and
biotechnology companies as therapeutics against
obesity/metabolic syndrome and recent findings
indicate that it can be an important target for an-
ti-cancer drug development. So far, no specific
inhibitors that target either ACC-1 or ACC-2 are
described106,107. It may be desirable to have in-
hibitors that target ACC-2 for treating obesity
and promote weight-loss108. However, because of
the essential nature of this enzyme’s function
(particularly ACC-1) in the cell, a global inhibi-
tion of this enzyme can have potentially unwant-
ed side effects. Hydroxycitrate, an inhibitor of
ACL, has been described as a potential drug for
obesity109. The HSP90 inhibitor, radicicol, which
also inhibits ACL, has been suggested as a thera-
peutic against cancer110. Although the importance
of ACL in lipogenesis has been known since
long, this enzyme has not been intensively stud-
ied as a potential target for anti-obesity drug de-
velopment. Its significance as a probable target
for anti-cancer drug discovery is only currently
being realized29,37. Another lipid metabolism in-
hibitor orlistat, which inhibits lipases in the di-
gestive tract and prevents fat absorption, has been
recently approved by FDA for inducing weight
loss in clinically obese people111. Orlistat also in-
hibits intra-cellular lipases and TG/FFA cycling
and also FAS112. This compound is also recog-
nized for its anti-cancer efficacy113.

An inhibitor of DGAT and a probable ligand
for farnesoid X receptor, xanthohumol was found
to have anti-tumor properties in various sys-
tems114 and is also able to reduce white adipose
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mass and lower plasma glucose levels in KK-
A(y) mice115. Compounds that can specifically
inhibit TG/FFA cycling can have beneficiary ef-
fects by reducing the capacity of adipose tissue
to store TG and also by antagonizing the various
pathways by which TG/FFA cycling produces
different signaling molecules needed for cellular
growth and proliferation. Thus inhibition of
TG/FFA cycling in cancer cells can induce apop-
tosis in these cells. However, the efficacy and
specificity of this approach to combat cancer re-
mains to be seen.

Conclusions

Multiple lines of epidemiological, clinical and
biochemical evidences strongly implicate obesity
and diabetes as risk factors for various types of
cancer. We have summarized evidences showing
the parallels between adipogenesis and oncogen-
esis pathways. Though it still remains enigmatic
how the existing normal cellular machinery for
adipogenesis can be exploited by the pathologi-
cal oncogenic process, the lessons we learned
from studies on cancer pathology and the devel-
opment of obesity demonstrate that there is a po-
tential for both the processes to be targeted by
common pharmacological intervention.
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