Radiological assessment of peritoneal carcinomatosis: a primer for resident

V. GRANATA1, R. FUSCO2, S. VENANZIO SETOLAI, C. SASSAROLI3, S. DE FRANCISCIS3, P. DELRIO3, G. DANTI4,5, G. GRAZZINI4,5, L. FAGGIONI6, M. GABELLONI6, A. OTTAIANO7, S. GREGGI8, R. PATRONE9, R. PALAIA9, A. PETRILLO1, F. IZZO9

1Division of Radiology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli”, Naples, Italy
2Medical Oncology Division, Igea SpA, Naples, Italy
3Division of Colorectal Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli, Naples, Italy
4Division of Radiology, “Azienda Ospedaliera Universitaria Careggi”, Florence, Italy
5Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
6Department of Translational Research, University of Pisa, Pisa, Italy
7Abdominal Oncology Division, 8Oncological Gynecology Division, 9Division of Hepatobiliary Surgical Oncology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli”, Naples, Italy

Abstract. The imaging has critical responsibility in the assessment of peritoneal lesions along with estimating the overall extent. Valuing disease burden is crucial for selection of combining cytoreductive surgery (CRS) and intraperitoneal hyperthermic chemotherapy (HIPEC) treatment. An approach that combines the strength of several imaging tools and increases diagnostic accuracy, should be chosen, even if the preferred imaging tool in patients with suspected Peritoneal Carcinomatosis (PC) is CT.

The outcomes of PC are mainly correlated to tumor spread, localization, and lesion size. Accurate assessment of these features is critical for prognosis and treatment planning. These data can be evaluated by Peritoneal Cancer Index (PCI), a quantitative index suggested by Harman and Sugarbaker. Additionally, precise predictive biomarkers should be established to predict PC in patients at risk. The radiomics analysis could predict PC throughout the evaluation of cancers heterogeneity.

Key Words:
Peritoneal carcinomatosis, Computed tomography, Magnetic resonance imaging, Diffusion weighted imaging, Peritoneal cancer index.

Introduction

Pathologic involvement of the peritoneum is due to a wide class of disorders, comprising as neoplastic as non-neoplastic disorders. Peritoneal carcinomatosis (PC) is the neoplastic involvement of peritoneal ligaments, mesoenteries, and spaces13. Several gastrointestinal and gynaecological tumours could spread in the peritoneal space4-10. The presence of PC has been proven to drastically reduce overall survival (OS) in patients with gastrointestinal tumours1. It has been shown that the 10%-35% of patients with recurrent colorectal cancer (CRC) and the 50% of patients with recurrent gastric cancer (GC), die due to PC complications. This outcome is appreciated in epithelial ovarian cancer (EOC) too1. However, while in PC due to OC, there is common agreement that peritoneal lesions eradication is correlated with longer survival, in CRC and GC complete PC eradication is frequently associated with short-term recurrence1.

The recent knowledge of tumors biology, and the idea that peritoneum has a defensive role against cancer spreading, has fortified the concept that PC is a loco-regional disease, so that in absence of other systemic lesions, a multimodal approach, combining cytoreductive surgery (CRS), intraperitoneal hyperthermic chemotherapy (HIPEC) and systemic chemotherapy has been proposed1,11-14. In this scenario, the critical role of imaging is the identification of patients which could have advantage from this treatment, in order to avoid any unnecessary surgical treatments15-20.
individual or clumps of cells break free of the primary lesion. They are then free to spread into the peritoneal cavity, with their final destination governed by many features, as gravity, movement of the abdominal viscera, flow of ascitic fluid, etc. Following peristaltic motion, cells enter into the peritoneal circulation and implant along the paracolic gutter, passing back up into the under-surface of the diaphragm. The first surface that free cells encounter is the mesothelium (the second step). The third step includes the infiltration of the mesothelial monolayer. The fourth step represents the invasion of the underlying connective tissue, that provides the necessary scaffold for tumor proliferation. The final step includes the angiogenesis to support tumor spread. Other routes of propagation are: (a) the hematogenous, (b) contiguous and (c) lymphatic route. There are two main routes for lymphatic spreading, the lymphatic system of the greater omentum and the subphrenic lymphatic system. When the subphrenic lymphatic system becomes obstructed, ascites appears as a consequence.

Anatomy

The peritoneal cavity is the portion of the abdominal cavity delineated by the peritoneum, parietal and visceral peritoneum, and is a closed area. An open anatomic communication with the external area is only present in women through the genital organs. Peritoneal ligaments are double layers or folds of peritoneum that support a structure within the peritoneal cavity; omentum and mesentry are precisely called peritoneal ligaments. Several abdominal ligaments develop from the ventral or dorsal mesentery. They comprise the triangular ligament, the falciform ligament, the splenorenal ligament, the gastrocolic ligament, the greater omentum, the lesser omentum (formed by the gastrohepatic ligament and hepato-duodenal ligament), and the transverse mesocolon.

The transverse colon and mesocolon are the major landmarks separating the peritoneal cavity into supra-mesocolic and infra-mesocolic area. On the anterior side of the liver, the falciform ligament divide the supra-mesolic space is into the left and right subphrenic spaces. The right subphrenic space is situated under the right diaphragm and it extends caudally lateral to the liver to the right paracolic gutter, situated between the ascending colon and the lateral abdominal wall. The left subphrenic space is divided from the left paracolic gutter by the phrenic-colic ligament and the right subphrenic recess by the falciform ligament. This area comprises the gastrohepatic fossa, the gastroplenic ligament and the splenorenal recess. The splenorenal fossa continues anteriorly and medially behind the pancreas tail. The splenorenal fossa is in connexion with the left subphrenic space but it is divided from the lesser sac. Posteriorly, the falciform ligament is in continuity with the left and right triangular ligaments. The left triangular ligament is short and formed by the fusion of the inferior and superior reflections of the coronary ligaments. The right triangular ligament is formed by the fusion of the superior and inferior reflections of the right coronary ligament, separating the right subphrenic space from the right subhepatic space (the Morison pouch).

The subhepatic space, comprising the lesser sac, is situated under the liver. The right subhepatic space extends medially through the foramen of Winslow to the lesser sac. The organs surrounding the lesser sac are the spleen on the left, the stomach and duodenum anterior and right, the transverse colon anterior, and the pancreas posterior.

The infra-mesocolic space is divided by the root of the small intestine mesentery into the right and the left infra-mesocolic space and into the pelvis. The right infra-colic space is delimited by the cæcum, the ascending colon, the mesoappendix and by the small bowel mesentery on the left. The ileum and the appendix always have a mesenterium. The cæcum and the ascending colon are only partially covered by the peritoneum and their posterior face is frequently in contact with the posterior abdominal wall. However, it is possible to detect a true cæcal mesentery. The left infra-colic space is situated between the small bowel mesentery and the mesentery of the descending colon and of the sigmoid colon. The sigmoid mesentery is situated obliquely in front of the ilio-sacral joint and this mesentery has a remarkable degree of mobility so that this bowel portion can be located in various sides within the peritoneal cavity.

The pelvic space is the most caudal space. The pelvis comprises anteriorly the bladder, part of which is covered by peritoneum. In women, the uterus and the tubes are situated within a large transverse peritoneal fold separating the pelvis into an anterior and posterior space. The pelvic space is divided ventrally by the remnant of the urachus (median umbilical ligament), the obliterated umbilical arteries (medial umbilical ligament), and the lateral umbilical ligaments (inferior epigastric vessels) into five fossae: the right and left lateral and medial inguinal fossae and the supravesical fossa. The peritoneal fossae of the pelvis extend laterally in the paravesical fossae, and dorsally, in the man, in the rectovesical fossa and, in the woman, in the cul-de-sac (Douglas pouch) and...
Radiological assessment of peritoneal carcinomatosis: a primer for resident

The greater omentum, originating by the greater gastric curvature, divides the peritoneum in the frontal plane. It covers anteriorly most part of the infra-mesocolic compartment, crosses the transverse colon and falls in front of the abdominal viscera, sporadically down to the symphysis. The omental portion between the stomach and the colon is named the gastrocolic ligament, and the portion below the colon is the apron. The greater omentum forms the ligament between the spleen and stomach (gastro-splenic ligament) and connects the spleen to the dorsal abdominal wall.

The lesser omentum connects the small curvature of the stomach and the duodenal bulb to the inferior side of the liver. It is made by the gastrohepatic and hepatoduodenal ligaments, which are in anatomic continuity. The hepatoduodenal ligament comprises the portal vein, the hepatic artery and the common bile duct. The gastrohepatic ligament comprises the coronary vein and left gastric artery.

Imaging Tools

Imaging plays a critical role in the assessment of peritoneal illness. Evaluating disease burden is essential for HIPEC patient selection. A multimodality approach merges the strength of each imaging tool and improves diagnostic accuracy.

It is crucial to recognize that peritoneal imaging is a challenge due to the large extension of the peritoneum. In addition, peritoneal tumors can be imperceptible, even if widely distributed. Plain radiographs and barium studies have modest usefulness in PC. The diagnostic accuracy of abdominal radiographs is low, since it permits to assess indirect features as ascites, central displacement of small bowel, indistinct psoas margins, bulging of flanks and pleural effusion. Ultrasound (US) has greater sensitivity to detect ascites, about 100 mL of intraperitoneal fluid, while radiography needs at least 500 mL. The presence of indirect signs, on abdominal plain film, in patients at risk of PC, should be assessed with more sensitive tools, considering that the abdominal plain film is the first toll utilized in emergency setting.

Computed tomography (CT) is the best imaging tool for the assessment of known or suspected peritoneal implants. In fact, CT has exceptional spatial resolution. However, without contrast medium, the inadequate contrast resolution reduces its capacity to detect peritoneal tumour. Coakley et al. showed that the sensitivity of CT for peritoneal tumors <1 cm was only 25%-50% compared to 85%-93% for all tumors. So as, non-contrast enhanced T1-weighted (W) and T2-W Magnetic Resonance Imaging (MRI) performs poorly in detection of small peritoneal tumours. MRI and CT have comparable accuracy in detection of PC and PC nodules size. In a study by Kim et al, it has been demonstrated that MRI shows a sensitivity of 95%. However, long breath holds, during MRI studies, are problematic for several cancer patients due to their usually frail states. These could cause artifacts reducing the quality of MRI evaluation. Another MRI weakness is the presence of ascites, which could also lead to artifacts and then high wrong positive-7. A recent metaanalysis, that involved 22 studies (934 assessed patients), revealed that MRI and CT have high per patient accuracy in detecting PC. However, due to the lack of evidence on MRI, the ideal imaging tool was CT. In the assessment of corresponding between Peritoneal Cancer Index (PCI) on CT and surgical PCI, the authors found that CT seems to undervalue surgical PCI by about 12-33%.

Recent technical improvements in radiology have favored the use of dual-energy CT (DECT). Dual layer spectral detector CT (SDCT), the newly acquired dual-energy system, uses a single poly-chromatic x-ray source and identifies the photons of lower energies. This allows dual-energy analysis to be performed on each data set acquired, which enables to generate spectral images such as virtual monoenergetic image (VMI). In several reports, VMIs have yielded high levels of contrast between iodine-enhanced tumors and neighboring tissues. Since peritoneal implants enhance with contrast media, low energy VMIs may be helpful for small peritoneal nodules evaluation. Kim et al. assessed quantitative and qualitative parameters of VMIs. To detect peritoneal implants, it is principally significant to maximize the contrast to noise ratio (CNR) and signal to noise ratio (SNR) during delayed phase of contrast studies. Kim et al. found that VMI at low energy levels produced substantially higher CNR and SNR values and superior lesion detection rate.

Clinical Setting

Ovarian Cancer

Ovarian cancer is the fourth leading cause of cancer deaths in women and is the most lethal of the gynecological malignancies. EOC is the typical tumor that spreads into peritoneum. It is appraised that 75% of women have advanced stage disease at the time of diagnosis, with peritoneal lesions (Figure 1). Patients with bulky abdominal tumor...
are treated with neoadjuvant chemotherapy to decrease tumor burden before surgery. Imaging is a useful tool to direct biopsies in patients with more limited metastatic tumour.

Although, there is no strong agreement on the resectability criteria of PC, massive involvement of the small bowel or mesenteric root, so as involved of lymph nodes superior to the celiac axis, pleural infiltration, pelvic sidewall invasion, bladder trigone involvement, and hepatic parenchymal metastases or implants near the right hepatic vein are thought indicative signs of non-resectability. The pre-surgical staging of liver is critical for treatment planning. The radiologist’s report should specify the size, side, and number of implants on the liver. The presence of subcapsular implants in the region extending from the Morison pouch to the inferior vena cava at the level of the right hepatic vein should be reported since it causes an increased risk of intraoperative bleeding precluding optimal debulking.

CT is the diagnostic tool of choice for the assessment of OC with an accuracy of 70%-90% for the detection of lesion at all disease stages. Moreover, it has been showed to be an accurate technique for predicting surgical cytoreduction outcome. The most important weakness of CT is its incapability to detect lesions with a maximal diameter of less than 5 mm on the bowel serosa and mesentery specially in absence of ascites.

Gastrointestinal Cancers

Gastric cancer (Figure 2) and CRC usually spread into the peritoneal cavity. In CRC, the risk features associated with PC are right-sided tumor, mucinous type, patients younger than 70-75 years, emergency surgery at diagnosis, and partial primary tumor resection.

The Krukenberg tumor is the involvement of ovaries in GC. It is much more usual to appreciate implants involving free peritoneal surfaces, omen-
Radiological assessment of peritoneal carcinomatosis: a primer for resident
tum and upper abdominal peritoneal reflections. Advanced GC should cause small bowel obstruction due to disseminated peritoneal tumor. Alike, Stage IV CRC should present with peritoneal lesions involving the pelvis, free peritoneal surfaces, omentum, mesentery and bowel serosa. Recurrence of gastrointestinal tumor often affects the peritoneum. It is assessed that 20%-50% of recurrences by CRC affects peritoneal cavity [1,2].

Pseudomyxoma peritonei (PMP) is an uncommon tumor in which gelatinous ascites spreads in the peritoneal cavity. The main cause of PMP is perforation of an appendicular mucinous tumour. In the past, PMP was treated with frequent drainage of mucinous ascites; today, CRS plus HIPEC has been recognised as the standard of care[1,2]. The typical imaging findings[74,75] include a cystic and solid mass in abdominal cavity, peritoneum and omentum thickening, calcification foci in the abdominal cavity, enlarged abdominal lymph nodes, small bowel displacement.

In pancreatic cancer patients, peritoneal metastases are present in 22%-48% of cases without detectable lesions on CT[76-80]. Microscopic tumor could be established by cytologic assessment of peritoneal fluid[76,82]. The detection of peritoneal lesions on contrast studies can change patient treatment by precluding surgery in a patient with resectable lesions (Figure 5 and Figure 6). Peritoneal implants are also frequently found in cholangiocarcinoma (Figure 7 and Figure 8)[83,84], endometrial cancer (Figure 9) and gastrointestinal car-

Figure 3. Patient with Right Colon Cancer assessed on contrast CT study. In A, the arrow shows the primary lesion and in B disseminate peritoneal involvement.

Figure 4. Patient subjected to mesorectal cancer excision with recurrence in peritoneal (in A, the arrow shows PC) and in pelvis side (in B, the arrow shows recurrence), assessed on contrast CT study.
cinoid tumours84-89. Extra abdominal tumors with widespread spreading can also comprise peritoneal cavity90-93.

Qualitative Assessment

Peritoneal implants are solid with heterogeneous enhancement and may have the shape of nodules, plaques or masses. Sporadically, multiple tiny lesions may be shown as fat stranding. Widespread tiny lesions covering the parietal peritoneum may be seen as thickening and enhancement of parietal peritoneum. Peritoneal implants may infrequently be cystic, when the primary tumor is a mucinous carcinoma. In this case, the lesions could mimic a loculated fluid. Calcifications of peritoneal lesions could be found when the primary lesion is either serous ovarian cystadenocarcinoma or GC92,94,95.

When lesions cover the peritoneal surface of the liver and spleen, they may indent the parenchyma generating a “scalloping” appearance93.

The presence of ascites could help in detecting peritoneal tumors, even if small peritoneal implants, lesser than 1 cm, could be not assessed on unenhanced imaging studies42.

On contrast studies, lesions on collapsed or partially distended intestinal loops may be challenging to be detected. Adequate small bowel (SB) loop distention is required for the detection of small lesions on the intestinal wall. Implants located on SB wall may be nodules or masses between and should cause bowel obstruction. Multiple tiny implants covering the surface of the SB loops may be

Figure 5. Patient with pancreatic cancer assessed on contrast CT study. In A and B, the arrow shows PC.

Figure 6. The same patient of Figure 5, assessed on MRI (in A T2-W sequence in coronal plane and in B T2-W FAT Suppressed sequence in axial plane). The PC is not as well evident as in CT study.
Radiological assessment of peritoneal carcinomatosis: a primer for resident

seen as wall enhanced thickening, so as restricted distensibility and distortion of SB segments with intestinal stenosis. The terminal ileum and the first jejunal loop are critical parts to evaluate: mesenteric enhancement is a valuable sign of peritoneal involvement. Peritoneal implants usually enhance slowly with contrast medium. Small peritoneal tumors and peritoneal carcinomatosis are clearly detected on images obtained 5-10 min following injection of contrast medium.

MRI should be chosen for lesions in the right subphrenic space. Any enhancing tumors between the face of the liver and the adjacent right hemidiaphragm are clearly detected. These tumors may present as nodules or masses, or as abnormal enhancement of the non-thickened or thickened right hemidiaphragm. These features should be found in left subphrenic tumors. Also, implants should be adjacent to the spleen or stomach. On diffusion weighted images (DWI) using a b value of 300–500 s/mm², peritoneal implants show restricted diffusion.

Peritoneal implants on the gallbladder and on the peritoneum lining the gallbladder fossa should be detected as mural enhanced thickening.

Semiquantitative Assessment

Peritoneal cancer index (PCI) is a quantitative index suggested by Harman and Sugarbaker to define the extent of PC. It reveals the lesions site and size. This value reproduces the Gilly’s cancer stage, SPCI stage in the Netherlands, and P stage for peritoneal lesions of GC in Japan. The outcomes of PC are largely related to the tumor spread, localization, and size. Accurate evaluation of these factors is very critical for determining prognosis and therapeutic approach. Patients with a PCI over 20 are considered not to be qualified for cytoreductive surgery.

![Figure 7](image1)

Figure 7. Patient with Mass Forming Intrahepatic Cholangiocarcinoma assessed on contrast CT study. The arrow (in A-C) shows peritoneal involvement.

![Figure 8](image2)

Figure 8. Patient with Periductal Cholangiocarcinoma assessed on contrast CT study. In A, the arrow shows the primary lesion and in B the ovarian involvement.
To assess the PCI, the entire abdominal and intestinal area is divided into 13 areas:
- R0: Middle abdomen, including the greater omentum and transverse colon;
- R1: Right upper, including the right upper liver, right inferior diaphragmatic surface, and upper posterior surface of the right liver;
- R2: Epigastrium, including the left hepatic lobe, lesser omentum, falciform ligament, and upper abdominal fat pad;
- R3: Left upper, including the spleen, tail of pancreas, stomach, and left inferior diaphragmatic surface;
- R4: Left flank, including the descending colon and left ventral groove;
- R5: Left lower, including the sigmoid colon and lateral wall of the left pelvis;
- R6: Pelvis, including the female internal genital organs, bladder, sigmoid colon, and Douglas bag;
- R7: Right lower, including the cecum, vermiform appendix, and lateral wall of the right pelvis;
- R8: Right flank, including the ascending colon and right abdominal cavity;
- R9: Upper jejunum;
- R10: Lower jejunum;
- R11: Upper ileum;
- R12: Lower ileum.

In each of the 13 areas the maximum visible lesion size is assessed and, according to it, it is assigned a score between LS = 0 and LS = 3 (LS = 0 means no tumor visible, LS = 1 means a tumor lesion size below 0.5 cm, LS = 2 means a tumor lesion size between 0.5 cm and 5 cm, and LS = 3 means a tumor lesion size larger than 5 cm or describes a confluent tumors).

Assessment of PCI score is correlated to the expertise of the radiologist. A study by Coakley et al²⁴, in which preoperative CT of ovarian carcinoma patients were assessed by three independent readers, showed that the detection of peritoneal lesions was good to excellent. This study showed an overall sensitivity of 94% and specificity of 80% which were in line with more recent studies: patients with a PCI score of less than or equal to 10 have a 5-year survival rate of 50%, while survival rates of 20% and 0% for scores between 11 and 20, and over 20, respectively.

CT is usually performed to assess the PCI. A limit of CT is a low diagnostic accuracy in discriminating the tumor scar tissue from the post-surgical scar tissue. Also, there are several weaknesses due to the known limits of PCI staging system. For example, the confines between the 13 areas are unclear, specifically for small bowel and more implants in a single area led to the same score for a single lesion of the same size. Moreover, diverse implants aspects improve the problems to detect PC and, therefore, the probability of imprecise tumor assessment. Also, the assessment of several critical structures, as the first jejunal loop, the falciform ligament or the hepatic hilum, should be evaluated with a different weight, as they can impact on the surgical choice.
Radiomics and PCI

Radiomics is a developing field, mainly in the oncological setting. Manual segmentation is one of the main critical moments of radiomics analysis. It could be time-consuming and could suffer from variability in tumor delineation. Radiomic features provide data on tumor phenotype as well as microenvironment. Radiomics-derived parameters, when correlated with clinical data and outcomes, could generate accurate robust evidence-based clinical-decision support systems (CDSS).

The central idea of radiomics is that quantitative voxel-based variables are more significantly correlated with various clinical end points respect to the qualitative radiologic assessment. In fact, Radiomics data provide important benefits, since this analysis is not related to the subjected evaluation. An increase of radiomics could be due adding these data to others prognostic markers, as genomics. Radiogenomics is an evolving prognostic tool; in fact, these biomarkers have been found to relate with treatment response, metastatic spread, and prognosis.

Song et al validated MRI-based radiomics signature for the individualized preoperative prediction of PC in OC. They selected 6 features and showed a positive capacity to predict PC with an area under the curve (AUC) of 0.963 in the training cohort and an AUC of 0.928 in the validation cohort. The results by Song et al confirmed the thesis that radiomics signatures could predict PC through capture tumoral heterogeneity differences between ovarian cancers.

Conclusions

Imaging plays a critical role in the PC assessment. These data facilitate staging, guide management, and determine prognosis. Evaluating disease burden is crucial for treatment selection. A multimodality imaging approach, combining the strength of each imaging tools, should be considered, even if the preferred imaging tool is CT. The outcomes of PC are mainly associated with tumor spread, localization, and size. Accurate assessment of these data is therefore critical for determining therapeutic approach. These data can be described by PCI, a quantitative index suggested by Harman and Sugarbaker.

Accurate predictive biomarkers should be established to predict PC in patients at risk. Radiomics signatures could predict PC through capture tumoral heterogeneity differences between lesions with or without PC.

Acknowledgements

The authors are grateful to Alessandra Trocino, librarian at the National Cancer Institute of Naples, Italy. Moreover, for the collaboration, authors are grateful to Paolo Pariate, Martina Totaro and Andrea Esposito for the research support of Radiology Division, “Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli”, Naples, Italy.

Data Availability

Data are available at link https://zenodo.org/record/5931374#.

Conflict of Interest

The authors have no conflict of interest to be disclosed. The authors confirm that the article is not under consideration for publication elsewhere. Each author has participated sufficiently to take public responsibility for the manuscript content.

References

6) Elmohr MM, Elsayes KM, Pickhardt PJ. Non-neoplastic conditions mimicking peritoneal carci-
7) Vicens RA, Patmana M, Le O, Bhosale PR, Sagte-
biel TL, Menias CO, Balachandran A. Multimodal-
Salvagio L, Cutaia S, Lombardo FP, Dispensa N,
9) Diop AD, Fontarensky M, Montoilo PF, Da Ines D.
10) Pickhardt PJ, Perez AA, Elmothr MM, Elsayes KM.
11) Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Po-
12) Sánchez-Hidalgo JM, Rodríguez-Ortiz L, Arjo-
16) Oei TN, Jagannathan JP, Ramaiya N, Ros PR.
Peritoneal sarcomatosis versus peritoneal carcino-
20) Zhang A, Song J, Ma Z, Chen T. Combined dy-
21) Jayne D. Molecular biology of peritoneal carcino-
24) Granata V, Faggioni L, Grassi R, Fusco R, Reginel-
li A, Rega D, Maggiolietti N, Buccicardi D, Fritoli B, Rengo M, Bortolotto C, Prost R, Lacassella GV, Montel-
27) Raptopoulos V, Gourtsoyiannis N. Peritoneal carcino-
28) Bundrick TJ, Cho SR, Brewer WH, Beachley MC.
32) Russo L, Gui B, Miccò M, Panico C, De Vincenzo R, Fanfani F, Scambia G, Manfredi R. The role of MRI in cervical cancer>2 cm (FIGO stage IB2-IIA1) con-
33) Hussein MAM, Caffarelli FP, Paparella MT, Rennie WJ, Guglielmi G. Phosphaturic mesenchymal tumors:

Radiological assessment of peritoneal carcinomatosis: a primer for resident

117) Song XL, Ren JL, Yao TY, Zhao D, Niu J. Radiomics based on multisequence magnetic resonance imaging for the preoperative prediction of peritoneal metastasis in ovarian cancer. Eur Radiol 2021; 31: 8436-8446.

153) Liao JH, Qin Q. Identification of ATXN3 and UBE2S as prognostic markers for osteosarcoma by a regression model for integrating multiomics. WCRJ 2021; 8: e2051.

