2017; 21: 2901-2906

Systolic hypertension related single nucleotide polymorphism is associated with susceptibility of ischemic stroke

L.-L. ZHONG^{1,2,4}, L.-S. DING², W. HE³, X.-Y. TIAN⁴, H. CAO⁴, Y.-Q. SONG⁵, L. YU¹, X.-Y. SUN²

Abstract. – **OBJECTIVE**: Isolated systolic hypertension (ISH) is the most important risk factor for ischemic stroke. Genetic variants influencing hypertension can also be risk factors for ischemic stroke. Here, we examined the how single nucleotide polymorphisms (SNPs) associated with blood pressure impact the risk for ischemic stroke.

PATIENTS AND METHODS: We selected 300 ischemic stroke patients and 300 controls. Then, we genotyped three single nucleotide polymorphisms associated with systolic hypertension in both groups.

RESULTS: Logistic regression analysis showed that the rs11099098 genotype was associated with a significantly decreased risk of IS (Dominant model: OR = 0.55, 95% CI = 0.37-0.82, p = 0.003). Two other SNPs, rs880315 and rs11072518, showed a trend towards association with stroke risk, but did not reach statistical significance.

CONCLUSIONS: Our study suggests that genetic variants in systolic pressure-related genotypes may contribute to the etiology of ischemic stroke.

Key Words

Ischemic stroke, SNPs, Systolic pressure, Susceptibility.

Introduction

Stroke is a common cause of death and morbidity worldwide¹. In China, it is the leading cause of death and adult disability². About eighty percent

of stroke cases are caused by ischemia. Ischemic stroke (IS) is a multifactorial disease, which can be influenced by genetic factors, environmental factors, and their interactions¹. Using genome-wide association study (GWAS) and candidate case-control association methods, a number of genes have been found to associate with ischemic stroke. These genes include MTHFR, PAL-1, TNF, APOA, APOE, ACE, Factor V Leiden, ALOX5AP, Angiopoietin-1, CRP, CYP4AII, CYP4F2, CYPIIB2, DDAH1, NOS3, PCSK9, GP1BA, GPIIIa, IL-6, LTC4S2, NPY, PDE4D, SGK1, VKORC1, NINJ2, PRKCH, PITX2, ZFHX3, and the prothrombin gene³. However, the identified genes only explain a small portion of the heritability in ischemic stroke, suggesting that additional genetic variants still need to be identified.

Hypertension is the most important risk factor for ischemic stroke. Antihypertensive drug treatment in older persons with isolated systolic hypertension can reduce the incidence of ischemic stroke⁴. Based on this rationale, we hypothesized that genetic variants influencing hypertension could also be risk factors for ischemic stroke. In 2014, a genome-wide association study identified several single nucleotide polymorphisms (SNPs) associated with blood pressure⁵. Ischemic stroke is mainly associated with systolic hypertension⁴. Therefore, we selected the novel SNPs affecting systolic pressure as risk factors for the develop-

¹Department of Hematology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, P.R. China

²Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, P.R. China

³Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, P.R. China

⁴Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, P.R. China

⁵Department of Radiation Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, P.R. China

ment of stroke, including rs880315, rs11099098, and rs11072518.

Patients and Methods

Patients

We identified 300 ischemic stroke patients and 300 healthy controls at the Department of Neurology, Jiangyin People's Hospital and Huai'an People's Hospital, China. All patients were diagnosed as ischemic stroke according to the World Health Organization criteria. After admission to the hospital, all patients received computed tomography (CT) or magnetic resonance imaging (MRI) within 48 hours. Neck vascular ultrasound, magnetic resonance angiography, or CT angiography were used to evaluate blood vessels. The Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria were used to determine the subtype of ischemic stroke⁶. Patients with brain tumors, brain trauma, intracranial hemorrhage, and post-seizure palsy were excluded. This study was approved by the Ethics Committee of Huai'an People's Hospital. Signed written informed consents were obtained from all participants before the study.

Data Collection

Risk factors for ischemic stroke among stroke and control groups were assessed using a questionnaire. The questionnaire collected information on demographics, medical history (hypertension, diabetes mellitus), history of alcoholism, daily cigarette smoking, obesity, and hypercholesterolemia. Hypertension was defined as blood pressu $re \ge 140/90 \text{ mmHg}$ (average of three independent measures) or the use of antihypertensive drugs. Diabetes mellitus was defined as fasting glucose level \geq 7 mmol/L and/or level \geq 11.1 mmol/L 2 h after oral glucose challenge, or receiving antidiabetic drugs. Subjects who smoked more than 10 cigarettes per day for 5 years were considered as smokers. Subjects who drank more than 50 ml alcohol per day for 5 years were considered as drinkers. Subjects with body mass index (BMI) oho5 kg/m² were considered as obese. The National Institutes of Health Stroke Scale (NIHSS) score was used to quantify stroke severity of patients at the time of presentation and discharge.

SNP Selection and Genotyping

Based on information in the NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP), the In-

ternational HapMap project data for the Han Chinese population (http://hapmap.ncbi.nlm.nih.gov/), and previous studies on hypertension-related genes^{5,7}, we selected the polymorphisms of rs880315, rs11099098, and rs11072518. Fasting venous blood (10 ml, EDTA anticoagulant) was harvested from patients and controls. Total DNA from leukocytes was extracted using the salt fractionation method in accordance with a standard protocol8. TaqMan allelic discrimination assay on ABI PRISM 7900HT Sequence Detection system (Applied Biosystems, San Diego, CA, USA) was used to genotype single nucleotide polymorphism. Each genotyping assay contained one pair of primers and one pair of probes (sequences provided in Supplementary Table S1). The allelic discrimination mode of the SDS 2.3 software package (Applied Biosystems, Foster City, CA, USA) was used to calculate the genotyping results, and a 100% concordant was achieved.

Statistical Analysis

All statistical analyses were performed using Stata/SE (V.12.0 for Windows; StataCorp LP, College Station, TX, USA). Demographic data were compared using two-sample t-tests, chi-square (χ^2) test. The association of genotypes with ischemic stroke susceptibility, severity, and short-term recovery were estimated by odds ratio (OR) and 95% CI using multivariate logistic regression analysis, with adjustment for age, sex, smoking, drinking, diabetes mellitus, hypertension, total cholesterol. All statistical tests were two-sided and a p < 0.05 was considered as statistically significant.

Results

Clinical Data of Participants

The detailed clinical data for IS patients and controls are presented in Table I. Although the age of subjects in the two groups was similar, the stroke group had more males compared with the control group. Also, the IS group had significantly more smokers and drinkers, and more patients suffered hypertension and diabetes (Table I). However, we found no significant differences in serum triglycerides, HDL-C, LDL-C concentration, and BMI between the stroke and control groups (Table I). These observations confirm the higher incidence of stroke in males and the role of smoking, drinking, diabetes mellitus, and hypertension as risk factors.

Table I. Demographic characteristics of patients and control subjects.

Characteristics	Stroke (n=300)	Control (n=300)	<i>p</i> -value
Age (years)	65.49 ±10.91	67.12 ± 9.31	0.061
Sex (male) (%)	176 (58.7)	139 (46.3)	0.002
Smoker (%)	113 (37.7)	74 (24.7)	0.001
Drinker (%)	138 (46.0)	62 (20.7)	< 0.001
Diabetes mellitus (%)	63 (21.0)	38 (12.7)	0.006
Hypertension (%)	184 (61.3)	118 (39.3)	< 0.001
$BMI \ge 25 \text{ kg/m}^2 \text{ (%)}$	110 (36.7)	99 (33.0)	0.563
Total cholesterol (mmol/L)	4.40 ± 1.12	5.18 ± 0.95	< 0.001
Triglycerides (mmol/l)	1.76 ± 1.49	1.57± 1.27	0.084
HDL-C (mmol/L)	1.24 ± 0.53	1.18 ± 0.27	0.070
LDL-C (mmol/L)	2.45 ± 0.96	2.66 ± 0.60	0.249

Abbreviation: SD, standard deviation.

Table II. Association of SNP genotypes with IS susceptibility.

Genotype	Control (n=303)	Stroke (n=320)	OR (95% CI)	<i>p</i> -value
rs11099098				
GG	93 (31.0 %)	116 (38.7%)	1.00	
GT	141 (47.0%)	139 (46.3%)	0.59 (0.39-0.90)	0.015
TT	66 (22.0%)	45 (15%)	0.46 (0.26-0.80)	0.006
Dominant	, ,	, ,	0.55 (0.37-0.82)	0.003
Additive			0.66 (0.51-0.87)	0.003
rs880315			,	
AA	119 (39.7%)	121 (40.3%)	1.00	
AG	130 (43.3%)	143 (47.7%)	1.09 (0.73-1.65)	0.653
GG	51 (17.0%)	36 (12.0%)	0.75 (0.42-1.36)	0.345
Dominant	,	,	1.01 (0.69-1.49)	0.960
Additive			0.92 (0.70-1.21)	0.555
rs11072518			,	
TT	63 (21.0%)	70 (23.3%)	1.00	
TC	159 (53.0%)	146 (48.7%)	0.78 (0.49-1.25)	0.308
CC	78 (26.0%)	84 (28.0%)	0.86 (0.50-1.46)	0.581
Dominant	` /	` ,	0.81 (0.52-1.26)	0.350
Additive			0.93 (0.71-1.22)	0.619

Logistic regression analyses adjusted for age, sex, smoking, drinking, diabetes mellitus, hypertension, total cholesterol.

Association of SNP Genotypes with IS Susceptibility

The frequencies of the three selected SNPs in the stroke and control groups are shown in Table II. Our statistical analysis confirmed that the three SNPs were in Hardy–Weinberg equilibrium distribution in the controls. We found no significant differences in the distribution of the rs880315 and rs11072518 SNPs between the stroke and control groups (Table II). However, we observed a significantly different distribution of the rs11099098 SNP between the stroke and healthy control groups. Logistic regression analysis showed that the variant genotypes were associated with a significantly decreased risk of IS (Dominant model: OR = 0.55, 95% CI = 0.37-0.82, p = 0.003).

Association of rs11099098 SNP with IS Severity and Short-Term Recovery

After finding an association of the rs11099098 polymorphism with stroke, we next investigated its relationship to IS severity and short-term recovery. Since the NIHSS score was skewed and could not be transformed to a normal distribution, we decided to dichotomize it for logistic regression analysis. We set the cut-off for mild and severe IS between 6 and 7 according to previous studies^{9,10}. Short-term recovery was measured as a change in NIHSS from presentation to discharge (ΔNIHSS). The cut-off for short-term recovery was set at 0, where < 0 means clinical improvement and on to discharge (ΔNIHSS). The cut-off 212 stroke patients were classified as

Table III. Association of rs11099098 polymorphism with IS severity and short-term recovery.

a) SNPs associated with IS severity						
Genotype	Mild (n=212)	Severe (n=88)	OR (95% CI)	<i>p</i> -value		
rs11099098						
GG	78 (36.8%)	38 (43.2%)	1.00			
GT	99 (46.7%)	40 (45.5%)	0.76 (0.42-1.34)	0.340		
TT	35 (16.5%)	10 (11.3%)	0.49 (0.21-1.16)	0.104		
Dominant	,	,	0.68 (0.39-1.18)	0.172		
Additive			0.72 (0.48-1.06)	0.096		
b) SNPs associat	ed with IS short-term	recovery				
Genotype	Improvement (n=168)	No change/ deterioration (n=132)	OR (95% CI)	<i>p</i> -value		
Genotype rs11099098	•		OR (95% CI)	<i>p</i> -value		
	•		OR (95% CI)	<i>p</i> -value		
rs11099098	(n=168)	deterioration (n=132)	· , ,	<i>p</i> -value		
rs11099098 GG	(n=168) 62 (60.3%)	deterioration (n=132) 54 (73.3%)	1.00	<u> </u>		
rs11099098 GG GT	62 (60.3%) 82 (37.4%)	deterioration (n=132) 54 (73.3%) 57 (25.3%)	1.00 0.79 (0.47-1.34)	0.387		

Logistic regression analyses adjusted for age, sex

mild IS and 88 as severe IS. Table III shows the distribution of the rs11099098 genotypes according to IS severity. After adjusted for age and sex, logistic regression analysis showed that the minor alleles of rs11099098 had a trend towards milder IS. However, we found no significant association between rs11099098 variants and IS severity. The relationship of was next analyzed. We also found no significant association between rs11099098 SNP and IS short-term recovery, only a trend towards improvement in minor alleles (Table III).

Discussion

Hypertension is one of the most important risk factors for ischemic stroke. Studies have described a strong genetic component for hypertension, with a heritability for blood pressure had of 30-50%¹¹. Thus, the heritability of hypertension is likely to affect the risk of ischemic stroke. A GWAS study found that the risk score of 29 SNPs was related to both stroke and hypertension (ISH) is particularly associated with stroke. The Systolic Hypertension in the Elderly Program (SHEP), the Systolic Hypertension in Europe study (Syst-Eur), and the Systolic Hypertension in China study (Syst-China) de-

monstrated that antihypertensive drug therapy for elderly patients with ISH reduces the risk of stroke¹³. A previous study also showed that ISH was associated with increased mortality, in addition to the increased risk of stroke^{14,15}. Therefore, it is important to explore the contribution of the genetic factors of systolic pressure to IS susceptibility. To the best of our knowledge, limited evidence is available for the association of systolic pressure-related SNPs and IS.

In the present research, we investigated the association between three hypertension-related SNPs (rs880315, rs11099098, and rs11072518) and ischemic stroke. We observed that the minor allele of rs11099098 correlated with a decreased risk of IS in Chinese Han population and found not association with rs880315 and rs11072518. Overall, the rs11099098 GT or TT genotypes were protective factors for IS.

The limitations of this work include the relatively small sample size, which may lower our statistical power. Thus, although we found a trend for the polymorphisms of rs880315 and rs11072518 and IS risk, we could not conclude whether or not they influence IS. Since only survivors of ischemic stroke are examined, there may be a bias in the selection of subjects for mild or minor strokes. Finally, our findings also need to be further verified in different ethnic populations.

Conclusions

This is the first evaluation of the association between systolic pressure-related genotypes and susceptibility for IS. Our study suggests that individuals harboring GT or TT genotypes of rs11099098 may have a reduced risk of ischemic stroke.

Acknowledgements

The current study was supported by the Natural Science Foundation of Jiangsu Province (NO. BK20141254).

Conflict of interest

The authors declare no conflicts of interest.

References

- WANG LQ, WANG CL, Xu LN, Hua DF. The expression research of miR-210 in the elderly patients with COPD combined with ischemic stroke. Eur Rev Med Pharmacol Sci 2016; 20: 4756-4760.
- YANG G, WANG Y, ZENG Y, GAO GF, LIANG X, ZHOU M, WAN X, YU S, JIANG Y, NAGHAVI M, VOS T, WANG H, LOPEZ AD, MURRAY CJ. Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 2013; 381: 1987-2015.
- 3) XIONG X, XU C, ZHANG Y, LI X, WANG B, WANG F, YANG Q, WANG D, WANG X, LI S, CHEN S, ZHAO Y, YIN D, HUANG Y, ZHU X, WANG L, WANG L, CHANG L, XU C, LI H, KE T, REN X, WU Y, ZHANG R, WU T, XIA Y, YANG Y, MA X, TU X, WANG QK. BRG1 variant rs1122608 on chromosome 19p13.2 confers protection against stroke and regulates expression of pre-mR-NA-splicing factor SFRS3. Hum Genet 2014; 133: 499-508.
- 4) LI CH, CHEN Y, ZHANG CH, DONG Z, WANG Z, ZHAO SN, WANG YX, Lv ZY, ZHANG PL. Observation of clinical efficacy of rt-PA intravenous thrombolytic treatment for patients combined with grade 0-1 diabetic foot by Wagner classification and acute ischemic stroke. Eur Rev Med Pharmacol Sci 2016; 20: 5168-5173.
- 5) Simino J, Shi G, Bis JC, Chasman DI, Ehret GB, Gu X, Guo X, Hwang SJ, Sijbrands E, Smith AV, Verwoert GC, Bragg-Gresham JL, Cadby G, Chen P, Cheng CY, Corre T, de Boer RA, Goel A, Johnson T, Khor CC; LifeLines Cohort Study, Lluís-Ganella C, Luan J, Lyytikäinen LP, Nolte IM, Sim X, Söber S, van der Most PJ, Verweij N, Zhao JH, Amin N, Boerwinkle E, Bouchard C, Dehghan A, Eiriksdottir G, Elosua R, Franco OH, Gieger C, Harris TB, Hercberg S, Hofman A, James AL, Johnson AD, Kähönen M, Khaw KT, Kutalik Z, Larson MG, Launer LJ, Li G, Liu J,

- LIU K, MORRISON AC, NAVIS G, ONG RT, PAPANICOLAU GJ, Penninx BW, Psaty BM, Raffel LJ, Raitakari OT, RICE K, RIVADENEIRA F, ROSE LM, SANNA S, SCOTT RA, SISCOVICK DS, STOLK RP, UITTERLINDEN AG, VAIDYA D, van der Klauw MM, Vasan RS, Vithana EN, Völker U, VÖLZKE H, WATKINS H, YOUNG TL, AUNG T, BOCHUD M, FARRALL M, HARTMAN CA, LAAN M, LAKATTA EG, LEHTIMÄKI T, LOOS RJ, LUCAS G, MENETON P, PALMER LJ, RETTIG R, SNIEDER H, TAI ES, TEO YY, VAN DER HARST P, Wareham NJ, Wijmenga C, Wong TY, Fornage M, GUDNASON V, LEVY D, PALMAS W, RIDKER PM, ROTTER JI, VAN DUIJN CM, WITTEMAN JC, CHAKRAVARTI A, RAO DC. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am J Hum Genet 2014; 95: 24-38.
- 6) ADAMS HP JR, BENDIXEN BH, KAPPELLE LJ, BILLER J, LOVE BB, GORDON DL, MARSH EE 3RD. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993; 24: 35-41.
- 7) LEVY D, EHRET GB, RICE K, VERWOERT GC, LAUNER LJ, DEHGHAN A, GLAZER NL, MORRISON AC, JOHNSON AD, ASPELUND T, AULCHENKO Y, LUMLEY T, KÖTTGEN A, VASAN RS, RIVADENEIRA F, EIRIKSDOTTIR G, GUO X, ARKING DE, MITCHELL GF, MATTACE-RASO FU, SMITH AV, TAYLOR K, SCHARPF RB, HWANG SJ, SIJBRANDS EJ, BIS J, HARRIS TB, GANESH SK, O'DONNELL CJ, HOFMAN A, ROTTER JI, CORESH J, BENJAMIN EJ, UITTERLINDEN AG, HEISS G, FOX CS, WITTEMAN JC, BOERWINKLE E, WANG TJ, GUDNASON V, LARSON MG, CHAKRAVARTI A, PSATY BM, VAN DUIJN CM. Genome-wide association study of blood pressure and hypertension. Nat Genet 2009; 41: 677-687.
- MILLER SA, DYKES DD, POLESKY HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.
- STANNE TM, TJÄRNLUND-WOLF A, OLSSON S, JOOD K, BLOMSTRAND C, JERN C. Genetic variation at the BDNF locus: evidence for association with longterm outcome after ischemic stroke. PLoS One 2014; 9: e114156.
- ZHAO J, WU H, ZHENG L, WENG Y, MO Y. Brain-derived neurotrophic factor G196A polymorphism predicts 90-day outcome of ischemic stroke in Chinese: a novel finding. Brain Res 2013; 1537: 312-318.
- EHRET GB, MJ CAULFIELD. Genes for blood pressure: an opportunity to understand hypertension. Eur Heart J 2013; 34: 951-961.
- 12) International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Söber S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, van der Harst P, Kao WH, Sjögren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup

 $PH,\; Liu\;Y,\; Shi\;G,\; Kuusisto\;J,\; Tayo\;B,\; Seielstad\;M,\; Sim$ X, NGUYEN KD, LEHTIMÄKI T, MATULLO G, WU Y, GAUNT TR, Onland-Moret NC, Cooper MN, Platou CG, Org E, HARDY R, DAHGAM S, PALMEN J, VITART V, BRAUND PS, Kuznetsova T, Uiterwaal CS, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, PALMER ND; CARDIOGRAM CONSORTIUM; CKDGEN CONSORTIUM; KIDNEYGEN CONSORTIUM; ECHOGEN CON-SORTIUM; CHARGE-HF CONSORTIUM, ASPELUND T, GARCIA M, CHANG YP, O'CONNELL JR, STEINLE NI, GROBBEE DE, ARKING DE, KARDIA SL, MORRISON AC, HERNANDEZ D, NAJJAR S, McARDLE WL, HADLEY D, BROWN MJ, CON-NELL JM, HINGORANI AD, DAY IN, LAWLOR DA, BEILBY JP, LAWRENCE RW, CLARKE R, HOPEWELL JC, ONGEN H, DREI-SBACH AW, LI Y, YOUNG JH, BIS JC, KÄHÖNEN M, VIIKARI J, Adair LS, Lee NR, Chen MH, Olden M, Pattaro C, BOLTON JA, KÖTTGEN A, BERGMANN S, MOOSER V, CHA-TURVEDI N, FRAYLING TM, ISLAM M, JAFAR TH, ERDMANN J, Kulkarni SR, Bornstein SR, Grässler J, Groop L, VOIGHT BF, KETTUNEN J, HOWARD P, TAYLOR A, GUARRERA S, RICCERI F, EMILSSON V, PLUMP A, BARROSO I, KHAW KT, WEDER AB, HUNT SC, SUN YV, BERGMAN RN, COLLINS FS, Bonnycastle LL, Scott LJ, Stringham HM, Pelto-NEN L, PEROLA M, VARTIAINEN E, BRAND SM, STAESSEN JA, Wang TJ, Burton PR, Soler Artigas M, Dong Y, SNIEDER H, WANG X, ZHU H, LOHMAN KK, RUDOCK ME, HECKBERT SR, SMITH NL, WIGGINS KL, DOUMATEY A, SHRI-NER D, VELDRE G, VIIGIMAA M, KINRA S, PRABHAKARAN D, TRIPATHY V, LANGEFELD CD, ROSENGREN A, THELLE DS, CORSI AM, SINGLETON A, FORRESTER T, HILTON G, MCKEN-ZIE CA, SALAKO T, IWAI N, KITA Y, OGIHARA T, OHKUBO T, OKAMURA T, UESHIMA H, UMEMURA S, EYHERAMENDY S, MEITINGER T, WICHMANN HE, CHO YS, KIM HL, LEE JY, SCOTT J, SEHMI JS, ZHANG W, HEDBLAD B, NILSSON P, Smith GD, Wong A, Narisu N, Stančáková A, Raffel LJ, YAO J, KATHIRESAN S, O'DONNELL CJ, SCHWARTZ SM, IKRAM MA, LONGSTRETH WT JR, MOSLEY TH, SESHADRI S, SHRINE NR, WAIN LV, MORKEN MA, SWIFT AJ, LAITINEN J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, BAKKER SJ, VAN GILST WH, JANIPALLI CS, MANI KR, Yajnik CS, Hofman A, Mattace-Raso FU, Oostra BA,

DEMIRKAN A, ISAACS A, RIVADENEIRA F, LAKATTA EG, ORRU M, Scuteri A, Ala-Korpela M, Kangas AJ, Lyytikäinen LP, SOININEN P, TUKIAINEN T, WÜRTZ P, ONG RT, DÖRR M, Kroemer HK, Völker U, Völzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, SPECTOR TD, ZHAI G, MESCHIA JF, NALLS MA, SHARMA P, Terzic J, Kumar MV, Denniff M, Zukowska-Szcze-CHOWSKA E, WAGENKNECHT LE, FOWKES FG, CHARCHAR FJ, Schwarz PE, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O, Talmud PJ, Ny-BERG F, KUH D, LAAN M, HVEEM K, PALMER LJ, VAN DER Schouw YT, Casas JP, Mohlke KL, Vineis P, Raitakari O, GANESH SK, WONG TY, TAI ES, COOPER RS, LAAKSO M, RAO DC, HARRIS TB, MORRIS RW, DOMINICZAK AF, KIVIMAKI M, MARMOT MG, MIKI T, SALEHEEN D, CHANDAK GR, Coresh J, Navis G, Salomaa V, Han BG, Zhu X, KOONER JS, MELANDER O, RIDKER PM, BANDINELLI S, GYL-LENSTEN UB, WRIGHT AF, WILSON JF, FERRUCCI L, FARRALL M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler D, Loos RJ, Shuldiner AR, GIEGER C, MENETON P, UITTERLINDEN AG, WAREHAM NJ, GUDNASON V, ROTTER JI, RETTIG R, UDA M, STRACHAN DP, WITTEMAN JC, HARTIKAINEN AL, BECKMANN JS, BOE-RWINKLE E, VASAN RS, BOEHNKE M, LARSON MG, JÄRVELIN MR, PSATY BM, ABECASIS GR, CHAKRAVARTI A, ELLIOTT P, VAN DUIJN CM, NEWTON-CHEH C, LEVY D, CAULFIELD MJ, Johnson T. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478: 103-109.

- STAESSEN JA, WANG JG, THUS L, FAGARD R. Overview of the outcome trials in older patients with isolated systolic hypertension. J Hum Hypertens 1999; 13: 859-863.
- KOCEMBA J, KAWECKA-JASZCZ K, GRYGLEWSKA B, GROD-ZICKI T. Isolated systolic hypertension: pathophysiology, consequences and therapeutic benefits. J Hum Hypertens 1998; 12: 621-626.
- 15) PANNARALE G, LICITRA R, LEONETTI S, ARRIVI A, CORSI F, GIANTURCO L, MIRABELLI F, ACCONCIA MC, GAUDIO C. Evaluation of systolic blood pressure control in elderly patients with isolated systolic hypertension. Eur Rev Med Pharmacol Sci 2006; 10: 111-114.