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Abstract. – OBJECTIVE: Observe the expres-
sion and distribution of HMGB1 in Sombati’s cell
model and kainic acid-induced epileptic rats’
model.

MATERIALS AND METHODS: Dissociated hip-
pocampal neurons from neonatal SD rats and cul-
tured those for 9 days, then changed medium to
Mg2+-free medium for 3 hours to induce Sombati’s
cell model. The expression level of HMGB1 in the
neurons was detected at 24h and 72h by Western
Blotting. Appropriate kainic acid was injected into
the lateral ventricles to induced epileptic rats’
model in vivo trial, the expression level and distri-
bution of HMGB1 at 24h and 72h were established
by immunohistochemistry.

RESULTS: The expression level of HMGB1
showed significantly different between model
group and control group both in vitro and in vivo
trials. At 24h, the expression level of HMGB1 in
the model group was lower than the control
group (p < 0.05), and became higher than the
control group at 72h (p < 0.05). From the in vivo-
trial, a nucleus-to-cytoplasm translocation was
also discovered.

CONCLUSIONS: This investigation indicates
that HMGB1 plays a crucial role in the patho-
physiology of epilepsy, by altering its quantity
and distribution.

Key Words:
HMGB1, Sombati’s cell model, Kainic acid-induced

epilepsy animal model, Hippocampal neurons.

Introduction

Inflammation is considered to be a key factor
in pathophysiology of epilepsy, the interaction
between epilepsy and the immune system attract-
ed public attention in past decades1-4. Some stud-
ies maintained that inflammation might induce
epilepsy5,6, while others suggested that epilepsy
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was the cause of inflammation7,8. Moreover,
more and more inflammatory factors were dis-
covered in the epileptic model brain tissue, such
as tumor necrosis factor (TNF)9, interleukin-1
(IL-1)10, and so on.

Growing evidence demonstrated that brain in-
flammation played a crucial role in the patho-
physiology of epilepsy1. High-mobility group
box 1 (HMGB1), which is secreted by neurons,
arouses scientists’ attention because its crucial
function during epilepsy11,12. Previous study sug-
gested that HMGB1 might be a key mediator in
inflammation11; however, the mechanism re-
mained unclear.In this study, we tried to detect
the expression level and distribution altering of
HMGB1 in the Sombati’s cell model and rat
kainic acid-induced epileptic rats’ model of in-
tractable epilepsy and discussed the relationship
between HMGB1 and epilepsy.

Materials and Methods

Ethic Statement
All rats were disposed according to the Na-

tional Institutes of Health Guidelines (China) for
the Care and Use of Laboratory Animals. This
protocol was ratified by the Bioethics Committee
of Guangxi Medical University.

Neural Cell Cultures and
Sombati’s Cell Production

Pure neuronal cultures were prepared by seed-
ing hippocampal cells obtained from 1-day-old
postnatal rats as precious discription13. Neurons
were cultured in Neurobasal medium (2%B-27
supplement, 0.2 mol/L L-glutamate, and 98%
neurobasal medium, all materials from GIBCO,
Carlsbad, CA, USA) for 9 days before product-
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ing Sombati’s Cell. The neurons were divided in-
to model group (n=5) and control group (n=5).
The model group were exposed to media without
added Mg2+ for 3h as the standard treatment pro-
cedure and then returned to Mg2+ containing me-
dia, while the control group were culture by Mg2+

containing media overall the procedure14.

Western Blotting
The protein levels of HMGB1 in these two

groups were determined at 24h and 72h respec-
tively. Cells were collected in Eppendorf tubes,
centrifuged (1000 g for 5 min at 4°C), and resus-
pended in lysis buffer (50 mmol/L Tris, pH 7.4, 1
mmol/L EDTA, 1 mmol/L phenylmethylsulfonyl
fluoride, 4 lg/mL aprotinin and leupeptin, 1%
sodium dodecyl sulfate). Fifty-to-Sixty micro-
grams of protein per lane were loaded. After elec-
trophoresising in 12% SDS-polyacrylamide gels,
protein was transferred onto polyvinylidene diflu-
oride (PVDF) membranes (Hybond ECL; Amer-
sham Biosciences, Buckinghamshire, UK). Mem-
branes were blocked with 5% skimmed milk and
then probed overnight with primary rabbit anti-
HMGB1 monoclonal antibody 1:10000 (Abgent,
Media, PA, USA) overnight at 4°C. After hatch-
ing in fluorescent goat anti Rabbit IgG 1:9000
(Lincoln, NE, USA) in 25°C for 90 min, the
PVDF membranes were scanned by Licor
Odyssey Infrared Imaging System (from Li-Cor
Bioscience, Lincoln, NE, USA). Data are ex-
pressed as mean ± standard errors, values were
considered significantly difference when p < 0.05.

Paracele-injection and
Animal-Model Establishing

Thirty-two of adult male SD rats (200-250 g of
body weight) were divided into model group and
control group randomly. Normal saline or kainic
acid (2 µg/kg) was injected (0.05 µL/min) in the
left paracele of anesthetized mice.The grade of
seizures were recorded using the standard of
Racine[15], the rats suffered from epileptic
seizure which reach IV-V level were considered
to be epileptic.

Rats were killed and 4 um hippocampal paraf-
fin sections were made at 24h and 72h after in-
jection.

Immunohistochemistry
Immunohistochemistry was performed in the

Histology And Embryology Research Laboratory
of the Guangxi Medical University using the fol-
lowing commercially available anti-HMGB1
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Figure 1. The Western blotting results of HMGB1 in Som-
bati’s cell model at 24h and 72h. Same amount of β-actin was
used as control. (MG: model group; CG: control group).

monoclonal antibody (1:400, from Abgent, USA)
at 4°C after dewaxing and blocking by 10%nor-
mal goat serum (Zhongshan Golden Bridge, Bei-
jing, China). Incubating with matching sec-
ondary antibodies of goat anti-rabbit IgG
(Zhongshan Golden Bridge, Beijing, China) at
37°C for 30 min the next day was done sub-
squently, then used 3, 3’-diaminobenzidine
(DAB) as selenium organic reagent. The positive
cells were yellowish-brown stained while the
negative cells were not using light microscope.
Six visual field images were obtained in every
section by the image acquisition system (Olym-
pus, Tokjo, Japan) randomly and analyzed by Im-
agepro-Plus 6.0 automatically. The averaged op-
tical density (mean OD) was obtained from the
immunohistochemical assay accounts, and the
average density was calculated.

Statistical Analysis
Data are expressed as mean ± standard errors,

values were considered significant difference
when p < 0.05.

Results

Expression Level of HMGB1 in
Sombati’s Cell’s Model

The protein expression level of HMGB1 in the
cell model was detected by Western blotting. The
optical density of the model group was lower than
the control group at 24h (ODmodel group = 0.3331 ±
0.21602, ODcontrol group = 0.5359 ± 0.22741; p =
0.021, p < 0.05). Moreover, the expression level of
HMGB1 in the model group turned higher than
the control group (ODmodel group = 0.8570 ± 0.2528,
ODcontrol group = 0.4846 ± 0.26209; p = 0.003, p <
0.05) at 72h (Figure 1A and B). In model group,
the OD value was much higher at 72h than 24h (p
< 0.05) (Figures 1 and 2).
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Figure 2. HMGB1 level at 24h and 48h in model cell and
control cell after establishing Sombati’s cell model. The op-
tical density of the model group was lower than the control
group at 24h (ODmodel group = 0.3331 ± 0.21602, ODcon-
trol group = 0.5359 ± 0.22741; p = 0.021, p < 0.05). The op-
tical density of the model group was higher than the control
group at 72h (ODmodel group = 0.8570 ± 0.2528, ODcon-
trol group = 0.4846±0.26209; p = 0.003, p < 0.05).

Discussion

HMGB1 was a kind of highly conserved pro-
tein that presented in nuclei of eukaryotic cells16.
HMGB1 played a crucial role of binding DNA to
make structure stable, like histone. Recent stud-
ies17 demonstrated that HMGB1 was over ex-
pressed and released to extracellular fluid when
cells were stimulated by endotoxin, stress, shock,
infection and so on. Other studies18,19 stated that
such release could also be found in most necrotic
cells. Wang et al17 found that HMGB1 over ex-
pressed 8 hours after exposing to endotoxin,
TNF, or IL-1 in cultured macrophages, indicating
that HMGB1 was a late cytokine when inflam-
mation occurs, which was different to early cy-
tokines, such as TNF and IL-1. Moreover, Yu et
al20 found that IL-8 and TNF released when
TLR2 or TLR4 on the surface had binded by
HMGB1, and correspond inhibitors of such re-
ceptors paused the processes, indicating HMGB1
induced further inflammation by binding to cell

Expression Level and Distribution of
HMGB1 in The Rats’ Model of Kainic
Acid-induced Epilepsy

The averaged optical density of the model
group was lower than the control group signifi-
cantly at 24h (ODmodel group = 0.1398 ± 0.01801,
ODcontrol group = 0.2154 ± 0.02873; p = 0.000, p <
0.01) and became higher than control group at
72h (ODmodel group = 0.3652 ± 0.08330, ODcontrol

group = 0.2354 ± 0.00836; p = 0.012, p < 0.05),
which accorded with the results of cell’s model
(Figure 3). Moreover, there were more yellowish-
brown staining in cytoplasm in the model group
at 72h than at 24h, and no changes in the control
group was found (Figure 4).

Figure 3. HMGB1 level at 24h and 48h in kainic acid-in-
duced epileptic rats’ group and normal rats’ group. The aver-
aged optical density of the model group was lower than the
control group significantly at 24h (OD model group =
0.1398 ± 0.01801, OD control group = 0.2154 ± 0.02873; p
= 0.000, p < 0.01). The averaged optical density of the mod-
el group was higher than the control group significantly at
72h (OD model group = 0.3652 ± 0.08330, OD control
group = 0.2354 ± 0.00836; p = 0.012, p < 0.05).
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Figure 4. The distribution of HMGB1 at 24h and 48h in kainic acid-induced epileptic rats’ group and normal rats’ group under opti-
cal microscope with magnification of X400, a positive result was yellowish-brown stained. In the model group, vast majority of
HMGB1 distributes in cytoplasm which are marked with dark arrowhead, while HMGB1 is confined to nucleus in control group.

ue was lower in model group than in control
group at 24h both in cell’s and animals’ model,
indicating epileptic cell release less HMGB1 in
the early stage of epilepsy. Combining with the
results at 72h, we can also conclude that excess
HMGB1 has been synthesized between 24h and
72h, and vast majority of cytokines was reserved
in cytoplasm rather than release outside, further
release might occur late.

Some precious studies also concluded that
classical cytokines were reasons of epilepsy, and
Toll-like receptor 4 (TLR4), receptor for Ad-
vanced Glycation Endproducts (RAGE) and IL-
1R were the receptors of HMGB120, as a result,
whether such receptor participate in epilepsy is
still unkown, and need more studies to focus on.

Conclusions

HMGB1 was a kind of late inflammatory cy-
tokine and over expressed both in vivo and vitro
epileptic model after cultivating for 72h. Our
study indicated HMGB1 was a epilepsy-associat-
ed cytokine, further studies should focus on it.

surface receptors, resulting in movement of
chemotactic cell and the releasing of pro-inflam-
matory cytokines21.

Epilepsy which was considered to be a kind of
chronic neurological disorders, was reported to
be associated with infection. Multiple evidences
supported that inflammation cause epilepsy,
which is like other common autoimmune or in-
fectious diseases22, on the contrary, Vezzani et
al23 stated that cytokines, such as TNF-α, IL-6
and IL-1β24,25, were significantly increase in ani-
mal brains after suffering from status epilep-
tics26,27, indicating epilepsy may also induce in-
flammation.

Level of early cytokines, like IL-18,28, TNF-α29

and COX229,30 increase in the epileptic brain tis-
sues of rats and patients, and these cytokines
were confirmed to be epilepsy-associated cy-
tokines by multiple studies. From our study,
HMGB1, the late inflammatory cytokine, also in-
creased at 72h in cultured neurons and rats’ hip-
pocampuses in epileptic model group, indicating
HMGB1 is also an epilepsy-associated cytokine
and be stirred under epileptic condition. More-
over, we also noticed that the optical density val-
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