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Introduction

Colorectal cancer (CRC) is the third most 
common type of cancer, accounting for 10% of 
all cases. Rectal adenocarcinoma (READ) is a 
common type of CRC. Risk factors for CRC 
include lifestyle, older age, and inherited genetic 
disorders. Much attention has been paid in identi-
fication of markers with diagnostic or prognostic 
value. For instance, the expression alterations of 
CXCR5 and CXCL13 are associated with poor 
prognosis of advanced CRC1.

At present, various biomarkers have been iden-
tified in READ. Reportedly, caudal-related home-
obox 2 (CDX2) is a sensitive marker for READ2. 
Moussata et al3 find that X chromosome-linked 
inhibitor of apoptosis (XIAP) is a radioresistance 
factor and prognostic marker for radiotherapy in 
READ. Hypoxia-inducible factor-1α is also iden-
tified as a prognostic marker4. Moreover, carci-
noembryonic antigen (CEA) is considered as a 
serum biomarker of disease activity in metastatic 
READ5. Lam et al6 report that p16 is a marker indi-
cating the aggressiveness and morphological type 
of colorectal adenocarcinoma. Besides, other bio-
markers such as human telomerase reverse tran-
scriptase (HTERT)7, N-myc downstream regulated 
1 (NDRG1)8 and CD739 are also reported. mi-
croRNAs (miRNAs) are small non-conding RNAs 
that have significant roles in gene regulations at 
transcriptional and post-transcriptional levels. Se-
veral miRNAs have been proposed as biomarkers 
for the prognosis of CRC such as hsa-miR-339-5p, 
hsa-miR-19a and hsa-miR-29b10. 

Gene expression profiling has been used to 
identify novel biomarkers11,12 in READ. Petty et 
al13 identify APRIL as a clinical chemo-resistan-
ce biomarker in READ through gene expression 
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profiling. Gene expression profiling was also 
used to investigate the response of READ to 
radiochemotherapy14 and recurrence15. Liu et al16 
reveal abnormalities in signaling transduction via 
RNA sequencing. A considerable number of gene 
expression data have been obtained; however, 
these data are not fully exploited and need to be 
re-analyzed, which might provide new insight 
into READ progression and prognosis.

In the present study, RNA-seq data of READ 
were collected and analyzed with bioinformatics 
tools. Differentially expressed genes (DEGs) were 
identified and then a gene coexpression network 
was constructed, from which hub genes were reve-
aled. Besides, relevant transcription factors (TFs), 
microRNAs (miRNAs) and small molecule drugs 
were also investigated. These findings could advan-
ce the knowledge about the pathogenesis of READ 
and thus benefit therapy development.

Materials and Methods

Gene Expression Data
RNASeqV2 data of READ were downloaded 

from The Cancer Genome Atlas (TCGA) with TC-
GA-Aseembler. Data normalization was performed 
with package TCC17. A total of 163 READ samples 
and 9 normal controls were contained in the dataset.

Screening of DEGs
Differential analysis was performed with 

package edgeR18 of R. False discovery rate (FDR) 
correction19 was done with package multtest20. 
FDR < 0.05 and |log2(fold change)| > 1 were set as 
the cut-off values to screen out DEGs.

Cluster Analysis
Bidirectional hierarchical clustering21 with Eu-

clidean distance was performed using package 
pheatmap22 for the detection of DEGs’ expression 
level. The result was indicated by the heat map.

Construction of Gene Coexpression 
Network

Correlation between DEGs were calculated wi-
th EBcoexpress package23 of R. Interacted genes 
with correlation coefficient > 0.6 were retained in 
the gene coexpression network, which was visua-
lized by Cytoscape software24.

Functional Enrichment Analysis
Gene Ontology (GO)25 enrichment analysis was 

performed for the DEGs in the gene coexpression 

network using DAVID (Database for Annota-
tion, Visualization and Integration Discovery, 
http://david.abcc.ncifcrf.gov/) database26. p-value 
< 0.05 was set as the threshold.

Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis was also 
performed for the genes with KOBASS 2.027. 
p-value < 0.05 was set as the threshold.

Module Analysis
Modules were identified with Mcode28 of Cyto-

scape24, with the criteria of degree cutoff ≥ 2 and 
k-core ≥ 2. Functional annotations were conducted 
for each module with Bingo29 based on hypergeo-
metric distribution (adjusted p-value < 0.01).

Screening of Relevant Small Molecule 
drugs, miRNAs and TFs

Relevant small molecule drugs were predicted 
by the Connectivity map (cmap) tool30, and those 
with |score| > 0.8 were retained.

Relevant miRNAs and TFs were searched 
using WebGestalt webserver31, 32. Adjusted p-va-
lue < 0.05 was set as the threshold.

Results

DEGs Between READ Samples 
and Controls

A total of 9,979 genes were identified from 
172 samples, including 163 READ samples and 
9 controls. Differential analysis unveiled 620 
DEGs, including 389 up-regulated genes and 231 
down-regulated genes.

Figure 1 is the result of bidirectional hierarchi-
cal clustering for the 620 DEGs and 172 samples. 
Different gene expression patterns were observed 
between READ samples and controls, suggesting 
the DEGs could well distinguish the two kinds of 
samples.

GO Annotations of the DEGs
GO annotations of the DEGs are shown in Fi-

gure 2. Cancer-related biological processes were 
included, such as death, biological adhesion, im-
mune system process and growth.

Gene Coexpression Network
Interplayed genes with correlation coefficient 

> 0.6 were retained in the gene coexpression 
network (Figure 3). A total of 71 DEGs (i.e. no-
des) and 253 edges (lines between these nodes) 
were included, involving 45 up-regulated genes 
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and 26 down-regulated genes. The numbers of 
interacted genes of a node is defined as the degree 
of this node. Hub genes (the nodes with degrees 
≥ 8) were highlighted, such as ribosomal protein 
S2 (RPS2), myosin light chain kinase (MYLK), 

thrombospondin 2 (THBS2), tensin 1 (TNS1), 
glutamate receptor ionotropic N-methyl D-aspar-
tate-associated protein 1 (GRINA) and carcino-
embryonic antigen-related cell adhesion molecule 
7 (CEACAM7).

Figure 1. Bidirectional hierarchical clustering result for the 620 differentially expressed genes and 172 samples. Red line 
indicates disease samples.

Figure 2.  Gene Ontology annotations for the differentially expressed genes. Up-regulated genes are in orange while down-re-
gulated genes are in green. Left vertical axis indicates percentage of genes while right vertical axis indicates number of genes.
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Functional Enrichment Analysis of the 
Coexpressed Genes

GO enrichment analysis revealed 10 signifi-
cantly over-represented terms for genes in the 
coexpression network (Figure 4), such as tran-
slational elongation, response to oxidative stress, 

response to cAMP and multicellular organismal 
metabolic process.

KEGG pathway enrichment analysis showed 
that pathways like vascular smooth muscle con-
traction, ribosome and focal adhesion were signi-
ficantly over-represented (Table I).

Figure 3. The gene coexpression network of differentially expressed genes. Up-regulated genes in red while down-regulated 
genes are in green.

Figure 4. Gene Ontology terms significantly over-represented in the genes from the gene coexpression network.
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Modules and Functions
Three modules were identified from the ge-

ne coexpression network (Figure 5). Module A 
included 12 down-regulated genes, which were 
implicated in muscle contraction and cytoskele-
ton organization (Table II). Module B contained 
11 up-regulated genes, which were involved in 
regulation of glial cell proliferation (Table II). 
Module C consisted of 2 up-regulated genes and 
2 down-regulated genes, which were related to 
extracellular matrix organization (Table II).

Relevant Small Molecule Drugs, 
miRNAs and TFs

Thirteen relevant small molecule drugs were iden-
tified (Table III). Scriptaid had the maximum nega-
tive correlation coefficient while spaglumic acid had 
the maximum positive correlation coefficient.

A total of 8 TFs were also revealed (Table IV), 
such as signal transducer and activator of tran-
scription 5A (STAT5A), nuclear transcription fac-
tor Y (NFY) and v-myc avian myelocytomatosis 
viral oncogene homolog (MYC).

Table I. KEGG pathways significantly over-represented in the genes from the gene coexpression network.

Term Count p-value
    
hsa04270:Vascular smooth muscle contraction 6 5.94E-04
hsa03010:Ribosome 5 0.0019944
hsa04510:Focal adhesion 6 0.0077388

KEGG: Kyoto Encyclopedia of Genes and Genomes.

Table II. Functional terms of the three modules.

  Corr  No. 
GO-ID p-value p-value of gene Description

Module A
32501 1.69E-04 6.69E-03 9 multicellular organismal process
6936 6.64E-15 1.55E-12 8 muscle contraction
3012 1.35E-14 1.58E-12 8 muscle system process
3008 5.49E-07 4.28E-05 8 system process
7010 1.71E-04 6.69E-03 4 cytoskeleton organization
30036 4.82E-04 1.61E-02 3 actin cytoskeleton organization
30029 5.78E-04 1.69E-02 3 actin filament-based process
6939 1.65E-04 6.69E-03 2 smooth muscle contraction
7015 1.25E-03 2.93E-02 2 actin filament organization

Module B
60253 1.26E-03 4.56E-02 1 negative regulation of glial cell proliferation
60251 1.26E-03 4.56E-02 1 regulation of glial cell proliferation
10624 1.26E-03 4.56E-02 1 regulation of Schwann cell proliferation
10626 1.26E-03 4.56E-02 1 negative regulation of Schwann cell proliferation

Module C
32963 2.54E-05 2.38E-03 2 collagen metabolic process
44259 3.09E-05 2.38E-03 2 multicellular organismal macromolecule metabolic process
44236 4.33E-05 2.38E-03 2 multicellular organismal metabolic process
9612 1.03E-04 4.26E-03 2 response to mechanical stimulus
30198 3.05E-04 1.01E-02 2 extracellular matrix organization
43062 7.35E-04 1.73E-02 2 extracellular structure organization
9628 4.60E-03 3.40E-02 2 response to abiotic stimulus
9605 8.44E-03 3.66E-02 2 response to external stimulus
9887 1.11E-02 4.27E-02 2 organ morphogenesis

GO: Gene Ontology.
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Besides, 5 miRNAs were selected (Table V), 
including miR-29, miR-200 and miR-19.

Discussion

In the present study, a total of 620 DEGs were 
identified from 163 READ samples and 9 normal 
controls. A gene coexpression network consisting 
of 71 DEGs and 253 edges were constructed. 
Functional enrichment analysis showed that they 
were associated with vascular smooth muscle 
contraction, ribosome and focal adhesion. Three 
modules were extracted from the network, whi-
ch was associated with muscle contraction and 
cytoskeleton organization, regulation of glial cell 
proliferation, and extracellular matrix organiza-
tion, respectively.

Some DEGs have been implicated in CRC or 
READ. Ribosomal protein S2 (RPS2) is found to 
be up-regulated in READ and have been sugge-
sted as a potential biomarker33. Reportedly, actin 

gamma 2 (ACTG2) is positively correlated wi-
th chemotherapy sensitivity of READ34. Myosin 
expression in CRC is associated with tumor pro-
gression and metastasis development35. Further-

Table IV. Eight relevant transcription factors.

Transcription factor ID Parameters

hsa_CACGTG_V$MYC_Q2 DB_ID:2434 O=37;rawp=3.11e-11;adjp=2.86e-10
hsa_V$TATA_01 DB_ID:2025 O=18;rawp=1.82e-10;adjp=1.59e-09
hsa_GATTGGY_V$NFY_Q6_01 DB_ID:2440 O=38;rawp=2.20e-10;adjp=1.84e-09
hsa_V$ATF_01 DB_ID:1856 O=17;rawp=1.48e-09;adjp=1.05e-08
hsa_V$CDC5_01 DB_ID:2132 O=15;rawp=4.26e-08;adjp=2.18e-07
hsa_TAATTA_V$CHX10_01 DB_ID:2408 O=27;rawp=6.92e-08;adjp=3.44e-07
hsa_CTAWWWATA_V$RSRFC4_Q2 DB_ID:2448 O=17;rawp=2.03e-07;adjp=9.07e-07
hsa_V$STAT5A_02 DB_ID:2114 O=11;rawp=2.19e-07;adjp=9.37e-07

Note: number of genes in the gene set and also in the category (O), p value from hypergeometric test (rawp), and p value adjust-
ed by the multiple test adjustment (adjp).

Table III. Thirteen relevant small molecule drugs.

cmap name Correlation p-value

scriptaid -0.981 0.00004
rifabutin -0.935 0.00042
0297417-0002B -0.928 0.00062
vorinostat -0.917 0
mycophenolic acid -0.846 0.00727
meteneprost 0.8 0.003
betulin 0.81 0.01388
6-bromoindirubin-3’-oxime 0.834 0
AH-6809 0.861 0.03927
5248896 0.887 0.0263
xamoterol 0.918 0.00116
STOCK1N-35874 0.972 0.00125
spaglumic acid 0.977 0.00087

cmap: Connectivity map.

Figure 5. Three modules identified from the gene coexpression network. Up-regulated genes are in red while down-regulated 
genes are in green.
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more, the down-regulated myosin heavy polypep-
tide 11 (MYH11) expression is correlated with 
poor prognosis in stage II and III CRC36. Matrix 
metallopeptidase 1 (MMP1) polymorphism has 
been associated with CRC risk37-39. Additionally, 
MMP11, the target of let-7c, is involved in meta-
stasis of CRC40. Family with sequence similarity 
83, member H (FAM83H) plays an important role 
in the structural development. Kuga et al41 report 
that keratin cytoskeleton organization is regula-
ted by FAM83H-mediated recruitment of casein 
kinase Iα (CK-1α) to keratins in CRC, and that ke-
ratin filament disassembly caused by overexpres-
sion of FAM83H and aberrant localization of CK-
1α can contribute to the progression of CRC. Dual 
specificity phosphatase 1 (DUSP1) is a marker of 
MEK/Erk activation in primary CRC42.

In addition, relevant small molecule drugs, 
TFs and miRNAs were also implicated with 
CRC (or READ) development. Scriptaid com-
bined with proteasome inhibitors has been used 
to induce apoptosis and chemosensitization of 
human CRC cells43. MYC is overexpressed in 
CRC44,45. Overexpression of NFY-C, a subunit of 
the transcription factor NFY, is found in READ46. 
NFY-C mRNA levels are highly correlated with 
time to disease progression, while NFY-C protein 
expression is significantly higher in metastatic 
disease46. Du et al47 find that STAT5 isoforms 
regulate CRC cell apoptosis via reduction of mi-
tochondrial membrane potential and generation 
of reactive oxygen species. The study by Hong et 
al48 shows that inhibition of signal transducer and 
activator of transcription 5A (STAT5A) promotes 
apoptosis of CRC cells induced by chemotherapy 
drugs. Circulating miR-29 is regarded as a pro-
mising biomarker in stage III CRC49. It’s involved 
in suppression of CRC cell growth and meta-
stasis by repressing insulin-like growth factor 1 
(IGF1)50 and downregulating Tiam1 expression51. 
Moreover, miR-19-mediated inhibition of tran-

sglutaminase 2 leads to enhanced invasion and 
metastasis in CRC52; miR-200c inhibits invasion 
and migration in human CRC cells53. Serum miR-
200c is considered as a prognostic and metasta-
sis-predictive biomarker in patients with CRC54.

Conclusions

A number of DEGs were identified in READ 
and some of them have been implicated in the 
disease. Further researches on these genes might 
discover novel biomarkers for diagnosis or pro-
gnosis of READ. Besides, relevant small molecu-
le drugs, TFs and miRNAs were discussed. These 
findings could provide new clues for therapy 
development of READ.
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