Cardiac allograft vasculopathy after heart transplantation: current prevention and treatment strategies

M. SPARTALIS¹, E. SPARTALIS², E. TZATZAKI¹, D.I. TSILIMIGRAS², D. MORIS³, C. KONTOGIANNIS¹, D.C. ILOPOULOS², V. VOUDRIS¹, G. SIASOS⁵

¹Division of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
²Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
³Department of Surgery, Duke University, Durham, NC, USA
⁴Department of Clinical Therapeutics, “Alexandra” Hospital, University of Athens, Athens, Greece
⁵¹:² Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece

Abstract. – OBJECTIVE: Cardiac allograft vasculopathy (CAV) is a leading cause of mortality in heart transplantation patients. Despite optimal immunosuppression therapy, the rate of CAV post-transplantation remains high. In this review, we gathered all recent studies as well as experimental evidence focusing on the prevention and treatment strategies regarding CAV after heart transplantation.

MATERIALS AND METHODS: A complete literature survey was performed using the PubMed database search to gather available information regarding prevention and treatment strategies of CAV after heart transplantation.

RESULTS: Several non-immune and immune factors have been linked to CAV such as ischemic reperfusion injury, metabolic disorders, cytomegalovirus infection, coronary endothelial dysfunction, injury and inflammation respectively. Serial coronary angiography combined with intravascular ultrasound is currently the method of choice for detecting early disease. Biomarkers and noninvasive imaging can also assist in the early identification of CAV. Treatment strategies such as mammalian target of rapamycin inhibitors proceed to grow, but prevention remains the objective.

CONCLUSIONS: Early detection is the key to therapy management. It enables early identification and diagnosis of patients with CAV, who would gain the most from prompt treatment. Further investigation is needed to elucidate the multifactorial pathophysiological process of CAV, develop detection methods and find treatments that prevent or slow disease progression.

Key Words: Cardiac allograft vasculopathy, Graft dysfunction, Heart transplantation, Immunosuppression, Coronary.

Introduction

Heart transplantation has become a mainstay treatment choice for end-stage heart failure¹,². Cardiac allograft vasculopathy (CAV) has been a critical drawback to strong long-term results and a leading cause of morbidity and mortality post-transplantation³,⁴. Despite advancements in immunosuppression therapy, CAV still affects 50% of heart transplant recipients³,⁴. Several immune and non-immune factors have been associated with CAV³,⁴. Hypertension, diabetes mellitus, hyperlipidemia, cytomegalovirus (CMV) and donor brain death are key factors in the development of CAV⁴. The denervated transplanted heart prevents recipients from experiencing pain. Therefore, the early detection of CAV is of utmost importance. Biomarkers and different imaging modalities (dobutamine stress echocardiography, computed tomography angiography, cardiac magnetic resonance) have been proposed, but serial
coronary angiography and intravascular ultrasound remain the best option. The introduction of statins and mammalian target of rapamycin inhibitors (mTOR) in clinical practice changed the course of the history of CAV. In this review, we present current clinical and experimental studies regarding prevention and treatment strategies of CAV after heart transplantation.

Materials and Methods

We have gathered all experimental and clinical studies focused on current prevention and treatment strategies regarding CAV after heart transplantation. The MEDLINE/PubMed database was searched for publications with the medical subject heading “transplantation” and keywords “vasculopathy”, “coronary” or “endothelial”. We restricted our search to the English literature.

Pathophysiology

CAV is a fibroproliferative disorder involving the vasculature (epicardial and intramural) of the transplanted heart. Intimal proliferation, inflammation and lipid accumulation lead to circumferential intimal thickening. CAV is a diffuse, multifactorial and complex disease initiated by different factors, that ultimately cause inflammation and endothelial injury. The endothelium regulates the vessel tone, inhibits platelet activation, thrombosis, leukocyte adhesion and vascular smooth muscle cell proliferation. As a result, endothelial damage commences a cascade of an extensional cell healing process that leads to vascular cell proliferation, fibrosis and remodeling. Intravascular ultrasound has demonstrated that this intimal thickening occurs during the first year after heart transplantation, showing a biphasic response of early expansion and late constriction.

Table I. Summary of the risk factors for cardiac allograft vasculopathy after heart transplantation.

<table>
<thead>
<tr>
<th>Classical risk factors</th>
<th>Transplant-related risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>Cytomegalovirus infection</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Brain donor death</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>Organ preservation</td>
</tr>
<tr>
<td>Old age (both donors and recipients)</td>
<td>Ischemia-reperfusion injury</td>
</tr>
<tr>
<td>Smoking</td>
<td>HLA mismatch</td>
</tr>
<tr>
<td>Male sex</td>
<td>Cellular rejection</td>
</tr>
<tr>
<td>Obesity</td>
<td>Imunosuppression</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>Number of rejection episodes</td>
</tr>
</tbody>
</table>
Diagnosis and Surveillance

Detection is crucial for early CAV diagnosis because the denervated transplanted heart prevents recipients from experiencing pain1,2. As a result, there is no typical symptomatology of ischemic disease due to denervation, and recipients usually manifest atypical symptomatology or late after the presence of CAV with reduced ejection fraction, arrhythmia or sudden cardiac arrest1,2. Different noninvasive and invasive imaging modalities are utilized for CAV diagnosis. Noninvasive modalities include stress echocardiography, cardiac magnetic resonance, myocardial perfusion imaging, computed tomography coronary angiography and invasive are coronary angiogram, intravascular ultrasound and optical coherence tomography, fractional flow reserve and index of microcirculatory resistance1,2,16.

Noninvasive

Stress Echocardiography

Dobutamine stress echocardiography (DSE) can identify patients at risk and facilitates surveillance of CAV17. Stress echocardiography has a high (92 to 100%) negative predictive value for subsequent cardiovascular episodes, and a prognostic value comparable to that of coronary angiography and intravascular ultrasound17,18. However, a recent study of 1,243 heart transplantation patients who underwent DSE at a nine-year post-transplantation period showed a very small number of positive DSE and a poor sensitivity for early detection of CAV19. Sade et al20, in a total of 90 studies of DSE combined with coronary flow reserve (CFR), reported that CFR increased the diagnostic accuracy of DSE. Tona et al21 validated these results, showing that a CFR ≤ 2.5 was independently associated with a higher probability of new-onset CAV and a higher probability of death.

Myocardial Perfusion Imaging

Myocardial perfusion imaging (MPI) has prognostic value but moderate diagnostic accuracy22,23. Manrique et al23 showed that a normal gated single photon emission computed tomography is associated with a low risk of cardiac events and can alleviate the necessity for coronary angiography. Positron emission tomography MPI has superior diagnostic precision in comparison to single photon emission computed tomography for the detection of ischemic heart disease24,25. Murthy et al26 in a study of 2,783 patients concluded that quantitative assessment of coronary vasodilator function with positron emission tomography is an independent predictor of mortality in patients with known or suspected ischemic heart disease and provides incremental risk stratification over clinical and gated MPI. Flow quantification assessment is the best tool for early CAV diagnosis because it can detect homogenous declines in flow that are compatible with diffuse disorder26. Two surveys of nineteen and twenty-seven heart transplant recipients respectively have reported a poor inverse association between positron emission tomography flow reserve and intravascular ultrasound findings of CAV27,28. Mc Ardle et al29 also showed that abnormalities in rubidium-82 positron emission tomography are predictors of adverse episodes in heart transplantation patients.

Cardiac Magnetic Resonance

Muehling et al30 showed a good association between magnetic perfusion imaging reserve and CFR, and also an increased precision for screening CAV. In a single-center survey of 47 patients, cardiac magnetic resonance (CMR) was an independent prognosticator of CAV with increased diagnostic accuracy31. Braggion-Santos et al32 evaluated late gadolinium enhancement patterns in 132 heart transplantation patients. Late gadolinium enhancement was useful to detect myocardial scar related to early CAV in a great number of heart transplantation patients32. CMR has certain limitations in these patients, such as increased resting heart rates, contraindicated implantable devices, risk of renal insufficiency30,31.

Coronary Computed Tomography Angiography (CTCA)

Late-model multi-slice multi-detectors and dual-source high tech have enhanced the spatial and temporal resolution of CTCA33,34. An analysis of thirteen studies investigating 615 patients showed that CTTA using currently available technology is a reliable noninvasive imaging alternative to coronary angiography with excellent sensitivity, specificity, and negative predictive value for the screening of CAV33. Poor visualization of the distal coronary vessels and increased resting heart rates are the main limitations of this method33,34.
Invasive

Coronary Angiography

Current guidelines for the care of heart transplantation patients recommend coronary angiogram as the method of choice for CAV detection in accordance with clinical availability and prognostic significance. Constanzo et al. in a large study of 5963 heart transplantation patients found that the coronary artery disease occurred in almost 42% of the patients by 5 years. Severe angiographic allograft coronary artery disease occurred in 7% of the patients at 5 years (left main stenosis > 70% or 2 or more primary vessels stenoses > 70% or branch stenoses > 70% in all 3 vessels). The diffuse nature of CAV disease, however, leads to the absence or late luminal occlusions. Consequently, coronary angiography as a method to screen CAV is inadequate because it can only visualize the arterial lumen and large epicardial vessels.

Intravascular Ultrasound (IVUS)

The use of IVUS regarding CAV screening, as its prognostic value, is well established in the literature, providing exceptional imaging of the lumen and vessel wall. A multi-center study by Koshigawa et al. concluded that progression of intimal thickening ≥ 0.5 mm in the first year after heart transplantation seems to be a reliable surrogate marker for mortality, and nonfatal major adverse cardiac episodes. Furthermore, the authors reported that the development of CAV after five years from heart transplantation is correlated with a 50% probability of death or re-transplantation after 5-years. Rickenbacher et al. demonstrated that patients with maximal intimal thickness > 0.3 mm at one-year after transplantation were at high-risk of CAV development and poor 4-year survival. Potena et al. recently reported that an increase in maximal intimal thickness ≥ 0.35 mm was associated with an increase in major adverse cardiovascular events. Okada et al. in a study of 100 heart transplantation patients found that remodeling of the proximal left anterior descending artery segment at 1 year was the primary element of long-term mortality or re-transplantation.

Optical Coherence Tomography (OCT)

OCT has a ten-times better resolution in comparison to IVUS and as a result is an ideal imaging tool for the assessment of the vessel intima and plaque morphology. Ichibori et al. found that increased microchannels identified by OCT in patients more than a year post-transplantation were associated with intimal volume and coronary risk. Dong et al. also showed that high-grade cellular rejection was correlated with intimal volume and macrophage accumulation. OCT, however, is not a cost-effective method with contrast necessities, and lower tissue penetration that bounds the estimate of deep plaque characteristics.

Fractional Flow Reserve (FFR) and Index of Microcirculatory Resistance (IMR)

CAV is a disease of diffuse nature with complex changes in coronary physiology. FFR and IMR provide an independent assessment of the epicardial arteries and microvasculature respectively. Epicardial vessels and microvasculature are involved in CAV, and alterations in one could change the estimate in the other. Endothelial dysregulation, as evaluated by decreased CFR, enhanced IMR or irregular vasoconstrictor response to acetylcholine is associated with intimal thickening and CAV.

Biomarkers

Current literature does not support the use of biomarkers for CAV detection. MicroRNAs are small RNA molecules that negatively regulate gene expression and are measurable in peripheral blood. Neumann et al. recently found that microRNA 628-5p was able to predict CAV with a specificity of 83% and a sensitivity of 72%, suggesting a potential role for biomarkers in CAV screening.

Prevention and Treatment

Drug Therapy

Increased platelet aggregation is a known factor for sudden cardiac death and myocardial infarction in heart transplantation recipients. Consequently, aspirin is used in the daily clinical practice in these patients. Statins are known lipid-lowering, anti-inflammatory agents, that inhibit the natural killer cell cytotoxicity. In a landmark study by Kobashigawa et al., pravastatin pretreatment improved cholesterol levels and reduced CAV, rejection, and mortality. Wenke et al. found the same beneficial results using simvastatin. A meta-analysis of three randomized controlled studies demonstrated the beneficial effects of statins in reducing rejection episodes.
and improving survival53. Based on the fact that endothelial dysfunction is associated with CAV, Fang et al54 investigated supplementation with antioxidants such as vitamins C and E. The authors reported that antioxidant therapy hindered an early progression of transplant-related coronary arteriosclerosis54. Small trials of calcium-channel blockers and angiotensin-converting enzyme inhibitors showed enhanced microvascular function and prevented the onset of CAV55,56. Schroeder et al55 administered diltiazem two to four weeks after transplantation and observed a decline in CAV.Erinc et al56 used a combination of an angiotensin-converting enzyme inhibitor and a calcium-channel blocker and found that this simultaneous approach was better than either drug only for diminishing the development of CAV. The mTOR sirolimus and everolimus hinder vascular smooth muscle and fibroblast proliferation57. mTOR changed the course of history for heart transplantation showing reduced CAV prevalence and progression57-59. Calcineurin inhibitors (CNI) have been traditionally the treatment of choice for maintenance immunosuppression59. A multi-center Scandinavian trial randomized 115 heart transplantation patients to everolimus without calcineurin inhibitor 7-11 weeks after the procedure or standard cyclosporine immunosuppression therapy59. The everolimus alone group demonstrated significantly reduced CAV progression59. Eisen et al60 also compared everolimus with azathioprine. Everolimus was more efficient than azathioprine in reducing the severity and incidence of CAV60. Several studies compared sirolimus with current immunosuppression therapy, highlighting the antiproliferative and anti-inflammatory effects of sirolimus to hinder CAV progression61,62. To muddy the waters, a randomized trial by Arora et al63 showed no effect on CAV progression in patients that received late everolimus than standard immunosuppression therapy. Matsuo et al64 validated this theory also using sirolimus. On the evidence of these trials, prompt switch to mTOR needs to be taken into consideration in the presence of CAV64,65.

Revascularization

Surgical intervention is associated with increased mortality1,2. Percutaneous coronary intervention is also an enigma due to the diffuse nature of the disease, and there is no sufficient evidence for any survival benefit over medical therapy66,67. Lee et al68 investigated 105 patients who underwent percutaneous coronary intervention (PCI) with bare-metal stents or drug-eluting stents. A high in-stent restenosis rate was associated with poorer outcomes at 7 years follow-up66. Dasari et al67 showed that drug-eluting stents lowered the long-term risk of in-stent restenosis in comparison to bare-metal stents without affecting survival.

Re-transplantation

Current guidelines recommend re-transplantation for certain patients with progressive CAV68,69. Re-transplantation is associated with lower survival and increased CAV incidence68,69.

Conclusions

CAV is a major cause of death post-transplantation and involves over 50% of the recipients within 10 years after the procedure. For patients with severe 3-vessel CAV disease, the one-year mortality could be as high as 90%. Initial intimal thickening shows the progress of the angiographic disorder, the adverse cardiovascular results and the reduced survival. Detection of early CAV is the key to treatment management. Prevention strategies should be initiated promptly, and diagnosing methods focusing on surveillance of early disorder are crucial. Several non-invasive modalities have been proposed to evaluate CAV, but coronary angiography combined with IVUS or OCT remains the accepted standard of care. The combination enables precise visualization of the arterial wall, plaque characterization, and estimate of coronary macrovasculature and microvasculature. The investigation in non-invasive imaging is promising and could assist in medium and long-term follow-up. The current treatment management is based on prevention strategies modifying immune and non-immune targets. The mTOR has been a vital step towards regression of CAV, but their optimal utilization requires further randomized trials.

Conflict of Interest

The Authors declare that they have no conflict of interests.

Acknowledgements

All authors equally contributed to this paper with conception and design of the study, literature review and analysis, drafting, critical revision, editing and final approval of the final version.
References

Cardiac allograft vasculopathy after heart transplantation

60. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-Von Kaepple HA, Starling RC, Sorensen K, Hummel M, Lind JM, Abeywickrama KH,
Cardiac allograft vasculopathy after heart transplantation

