Comparison of formulation characteristics of drugs and dietary supplements containing alpha-lipoic acid relevant to therapeutic efficacy

M.N. LALIĆ-POPOVIĆ1,2, M.M. VUKOVIĆ1, J.N. JOVIČIĆ-BATA1, J.M. ĆANJI-PANIĆ1, N.B. TODOROVIĆ1

1Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Republic of Serbia
2Centre for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine, University of Novi Sad, Novi Sad, Republic of Serbia

Abstract. – OBJECTIVE: Healthcare professionals lack the knowledge about the impact of formulations on treatment effectiveness. This is further complicated by the existence of dietary supplements containing the same active pharmaceutical ingredients (API) as drug formulations [e.g., alpha-lipoic acid (ALA)], to which the strict formulation testing requirements do not apply. This research aimed to compare ALA-containing drugs and dietary supplements through the determination of uniformity of content, disintegration time and dissolution rates.

MATERIALS AND METHODS: A total of seven different ALA formulations (5 dietary supplements, 2 drugs) were tested for uniformity of content, disintegration time and dissolution rates. All tests were performed in accordance with the 10th European Pharmacopoeia. ALA was determined spectrophotometrically.

RESULTS: Uniformity of content testing revealed larger variations of ALA content in three formulations of dietary supplements. Dissolution curves generated at 50 and 100 rpm differed significantly. Testing requirements were met only by one dietary supplement at 50 rpm, and one drug and two dietary supplements at 100 rpm. Disintegration testing showed limited impact on the release kinetic of ALA, as opposed to formulation type.

CONCLUSIONS: Considering the lack of regulation on dietary supplement formulations and the variable success of them conforming to pharmacopoeial requirements, it is an imperative for stricter regulations on the dietary supplements' formulations to be imposed globally.

Key Words:
Alpha-lipoic acid, Dietary supplements, Dietary supplements regulation, Formulation characterization.

Introduction

The availability of multiple products of drugs and dietary supplements with similar ingredients, different formulations and lack of health care professionals' understanding of the formulation impact on treatment efficacy is a problem in many countries worldwide1,2. Dietary supplement formulations are more diverse in comparison to drugs. In addition, supplements are available without prescription, but some contain active pharmaceutical ingredients (API) which are also present in existing drugs. There are regulatory requirements that allow for the same active substance in the same dose to be registered as a medicine and as a dietary supplement3. As there are no equal quality control requirements for these two product groups, the choice of appropriate product for or by patients/consumers may be wrong. In vitro methods like disintegration and dissolution testing in some pharmacopoeias, e.g., USP4, are adapted for dietary supplement products. However, in order to compare the quality of products with the same API that are registered as dietary supplements as well as medicines in the same dose, equal in vitro tests should be conducted.

Alpha-lipoic acid (ALA, synonym: thioctic acid, ATC code: A16AX01) is formulated both, as a medicine and a supplement, with no evident difference in dosage form. ALA is a potent natural antioxidant that is synthesized by lipoic acid synthase from octanoic acid and a sulphur source5. It acts as a cofactor for mitochondrial respiratory enzymes6,7, a powerful antioxidant8, and an anti-inflammatory agent9-11. ALA has a strong negative redox potential, and it can recycle other
antioxidants. ALA reduces oxidative stress, a pathogenic element in a variety of diseases, thus the use of ALA-containing dietary supplements has considerably grown in the past 2 years. ALA is particularly suitable for the prevention and/or treatment of diabetes complications. It is synthesized by the human body but in insufficient amount to fulfill the energy requirements of the cell. Thus, it is mostly obtained from the diet, especially from meat and vegetables. Fruits are also a source of this acid.

ALA is a relatively small, amphiphilic molecule with a dithiolane ring and carboxyl group in its structure. It is a weak acid with pKa reported in different sources to be between 4.52 and 5.3. ALA is sparingly soluble in water, but soluble in organic solvents. It has two enantiomeric forms, S and R. The R isomer is present naturally, while the S isomer is prepared through chemical processes. Various studies suggested that ALA is rapidly absorbed in the gut, taken up into various tissues in which it is metabolized, and then excreted. The acidic pH of the stomach favors the gastric absorption of a weak acid such as ALA. However, instability of ALA in the stomach, its low solubility, and hepatic degradation lead to small bioavailability of ALA, of about 30%. Transporter-mediated transport is the major mechanism for intestinal absorption of ALA, but it is still not clear which transporter is involved in the absorption process. Based on current research, monocarboxylic acid transporter (MCT) and sodium-dependent multivitamin transporter (SMVT) are proposed. These characteristics of ALA resulted in a vast variety of pharmaceutical formulations. ALA is commonly formulated in various solid dosage forms such as immediate-release tablets, soft and hard capsules and delayed-release gastro-resistant tablets. Dissolution and disintegration testing are used in the development, optimization and quality control in drug products, however in many countries these tests are not required for dietary supplements as the latter are often regulated as foods and not pharmaceutical products. Thus, many quality control tests for dietary supplements are not legally required during the registration process.

In the case of ALA, impact of formulation on release kinetic could affect the efficacy of supplementation, since ALA is considered to be class II substance in the biopharmaceutical system of classification, thus formulation of solid dosage form has a great impact on its dissolution profile. Limited and/or decreased rate of ALA release from its formulations in correlation with its pharmacokinetic characteristics might affect its efficacy.

Considering the ongoing research on ALA’s potential uses in a variety of different fields, from obesity to gynecology, it can be expected for the interest in ALA supplements to rise in the following years. Therefore, the aim of this study was to compare dietary supplements and formulations of medicines that contain ALA through determination of uniformity of content, disintegration time and dissolutions rate. Additionally, all dosage forms were tested under lower and higher hydrodynamic conditions to determine the stability of release rate of ALA from various formulations. This study aimed to underline the importance of knowledge about similarities and differences among different solid dosage forms of drug and dietary supplements among health care professionals.

Materials and Methods

ALA powder was purchased from Farmalabor, Canosa di Puglia, Italy. Methanol (Lachner, Neratovice, Czechia). Dissolution medium was 0.5% water solution of sodium lauryl sulphate (Lachner, Neratovice, Czechia). This medium was chosen to increase the solubility of ALA so that dissolution profiles are dependent only on the formulation factors.

Study was conducted in 2021. At that time, seven different ALA formulations were available at the Serbian market. Samples of each formulation were obtained from local pharmacies in Novi Sad, Serbia. Two formulations were registered as medicines (A, B) and the other five were ALA dietary supplements (C, D, E, F and G). The compositions of all seven formulations are shown in the Table I. Formulation C had the same dose of ALA as drug formulations. Formulations B, C and D are tablets, formulations A and F are soft gelatin capsules, and formulations E and G are hard hypromellose capsules.

Ultraviolet and Visible (UV-Vis) Spectrophotometry

Concentration of ALA was determined using previously published UV-Vis spectrophotometric method. The absorbance of ALA was measured at 333 nm using Agilent Technologies UV-Vis spectrophotometer (model 8453, Santa Clara, CA,
Formulation comparison of drugs and dietary supplements of alpha-lipoic acid

Table I. Characteristics of the analyzed ALA formulations.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Pharmaceutical form</th>
<th>Labelled content of ALA [mg/dosage unit]</th>
<th>Excipients: Fill/Core</th>
<th>Excipients: Shell/Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Capsule, soft</td>
<td>600</td>
<td>Solid fats, medium chain length triglycerides (Vehicle/Diluent)</td>
<td>Gelatin (Coating agent/ Vehicle); Sorbitol, liquid (non-crystallizing), Glycerol (Moisturizing agent/Plasticizer); Carmine lacquer (E 120), Titanium dioxide (E 171) (Coloring and opacifying agent)</td>
</tr>
<tr>
<td>B</td>
<td>Film-coated tablet</td>
<td>600</td>
<td>Microcrystalline cellulose, Lactose monohydrate (Vehicle/Diluent); Hypromellose (binder); Colloidal anhydrous silica, Talc, Magnesium stearate, Dimethicone (Gildant/Lubricant/Antiadhesive agent); Cross-linked sodium carboxymethylcellulose (Disintegrant)</td>
<td>Macrogol 6,000, Hypromellose, Talc (Coating agent/Vehicle); Sodium lauryl sulphate (Surfactant)</td>
</tr>
<tr>
<td>C</td>
<td>Tablet (double-layered)</td>
<td>600</td>
<td>Microcrystalline cellulose (Vehicle/Diluent); Hypromellose (binder); Magnesium stearate (Gildant/Lubricant/Antiadhesive agent)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Film-coated tablet</td>
<td>300</td>
<td>Microcrystalline cellulose, Dicalcium phosphate (Vehicle/Diluent); Magnesium salts of fatty, Silicon dioxide (Gildant/Lubricant/Antiadhesive agent); Cross-linked sodium carboxymethylcellulose (Disintegrant)</td>
<td>Hypromellose (Coating agent/Vehicle); Polyethylene glycol (Moisturizing agent/Plasticizer); Titanium dioxide (E 171) (Coloring and opacifying agent)</td>
</tr>
<tr>
<td>E</td>
<td>Capsule, hard</td>
<td>300</td>
<td>Microcrystalline cellulose (Vehicle/Diluent); Hypromellose (binder); Magnesium stearate, Silicon dioxide, Talc (Gildant/Lubricant/Antiadhesive agent)</td>
<td>Hypromellose (Coating agent/Vehicle)</td>
</tr>
<tr>
<td>F</td>
<td>Capsule, soft</td>
<td>300</td>
<td>Fatty acid triglycerides, Magnesium stearate, polyglyceryl oleate, soy lecithin in soybean oil (Vehicle/Diluent)</td>
<td>Yellow iron oxide (E 172), Titanium oxide (E 171) (Coloring and opacifying agent)</td>
</tr>
<tr>
<td>G</td>
<td>Gastro-resistant capsule, hard</td>
<td>300</td>
<td>Gellam gum (Vehicle/Diluent)</td>
<td>Hypromellose (Coating agent/Vehicle)</td>
</tr>
</tbody>
</table>

Uniformity of Content

Uniformity of content of single-dose preparations was tested in accordance with the requirements of 10th European Pharmacopoeia (2.9.6)\(^3\). The individual content of ALA in 10 dosage units, randomly chosen from each product, was determined. Hard-shell and soft-shell capsules were opened, and capsule fill was transferred into 100 ml volumetric flask, tablets were crashed and homogenized then transferred to 100 ml volumetric flask. Extraction was performed using HPLC grade methanol (J.T. Baker, Radnor, PA, USA).
The content of ALA substance was determined spectrophotometrically. The dosage form was considered to comply with the test if not more than one individual content is outside the limits of 85% to 115% of the average content and none is outside the limits of 75% to 125% of the average content.

Disintegration Test
Disintegration of tablets and capsules was performed in accordance with the 10th European Pharmacopoeia (2.9.1.), using a disk and 0.5% sodium lauryl sulphate water solution as immersion fluid and an apparatus with six cylinders (Erweka ZTS4, Langen, Germany). Test A was performed using six randomly selected dosage units (tablets or capsules). Test was performed until all six dosage forms disintegrated.

Dissolution Test
Dissolution protocol was designed in accordance with the requirements of 10th European Pharmacopoeia (2.9.3.) for solid dosage forms using a dissolution tester (Erweka DT 600, Langen, Germany). Apparatus 1 was used for capsules, and Apparatus 2 for tablets. For every product tested, dissolution was performed using two rotation speeds (50 and 100 rpm) and 900 mL of 0.5% sodium lauryl sulphate water solution as a dissolution medium. This medium and two rotation speeds (low and high hydrodynamic conditions) were chosen as conditions suitable to determine the effect of formulation on dissolution rate. Sampling of 5 mL of dissolution medium was performed at 5th, 15th, 25th, 35th, 45th and 60th minute, with compensation of the taken volume. The content of the released substance was determined spectrophotometrically. The measurements were taken for six dosage units of each formulation.

Compliance of the obtained results with the requirements of the 10th European Pharmacopoeia was observed in accordance with the guidelines given in Chapters 5.17.1 and 2.9.3. Specifically, the test requirements have been met if all six of the tested conventional-release forms released at least 80% of the content within 45 minutes of the test or less (level S1). All formulations were tested under the same conditions to obtain comparable data.

Statistical Analysis
The data were presented as mean value ± standard deviation, where suitable. Dissolution profiles were compared using ANOVA test (post-hoc Tukey HSD). Statistical comparison was used to detect differences between profiles within the same formulation after 50 rpm vs. 100 rpm. Differences were considered statistically significant if \(p < 0.05 \). Comparisons were performed within the same type of solid formulations (tablet with tablet and capsule with capsule).

Results
Content of ALA in all formulations was within 85-115% of average content. Uniformity of content is presented in Table II and III. Larger standard deviations of content were measured in

<table>
<thead>
<tr>
<th>Formulation</th>
<th>A (mg of ALA)</th>
<th>%</th>
<th>B (mg of ALA)</th>
<th>%</th>
<th>C (mg of ALA)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>610.33</td>
<td>100.7</td>
<td>589.37</td>
<td>100.2</td>
<td>661.35</td>
<td>113.5</td>
</tr>
<tr>
<td>2</td>
<td>602.11</td>
<td>99.3</td>
<td>590.20</td>
<td>100.3</td>
<td>565.61</td>
<td>97.1</td>
</tr>
<tr>
<td>3</td>
<td>606.32</td>
<td>100.0</td>
<td>591.80</td>
<td>100.6</td>
<td>523.51</td>
<td>89.9</td>
</tr>
<tr>
<td>4</td>
<td>607.96</td>
<td>100.3</td>
<td>580.14</td>
<td>98.6</td>
<td>665.35</td>
<td>114.2</td>
</tr>
<tr>
<td>5</td>
<td>603.87</td>
<td>99.6</td>
<td>579.14</td>
<td>98.5</td>
<td>572.79</td>
<td>98.3</td>
</tr>
<tr>
<td>6</td>
<td>604.53</td>
<td>99.7</td>
<td>589.08</td>
<td>100.1</td>
<td>528.51</td>
<td>90.7</td>
</tr>
<tr>
<td>7</td>
<td>609.01</td>
<td>100.5</td>
<td>592.72</td>
<td>100.8</td>
<td>610.36</td>
<td>104.8</td>
</tr>
<tr>
<td>8</td>
<td>607.58</td>
<td>100.2</td>
<td>593.37</td>
<td>100.9</td>
<td>662.64</td>
<td>113.7</td>
</tr>
<tr>
<td>9</td>
<td>608.32</td>
<td>100.4</td>
<td>590.59</td>
<td>100.4</td>
<td>531.91</td>
<td>91.3</td>
</tr>
<tr>
<td>10</td>
<td>601.93</td>
<td>99.3</td>
<td>586.12</td>
<td>99.6</td>
<td>571.64</td>
<td>98.1</td>
</tr>
<tr>
<td>Average</td>
<td>606.19</td>
<td>100.0</td>
<td>588.25</td>
<td>100.0</td>
<td>589.37</td>
<td>101.2</td>
</tr>
<tr>
<td>SD</td>
<td>2.94</td>
<td>0.5</td>
<td>4.98</td>
<td>0.8</td>
<td>57.02</td>
<td>9.8</td>
</tr>
</tbody>
</table>
formulations C, E and G, all three dietary supplements, though all had content variation in a range of pharmacopeial requirements.

Dissolution rate curves of ALA are presented in Figure 1a and 1b. There was a significant difference in dissolution rate curves generated at 50 and 100 rpm of rotation speed. At the speed of 50 rpm, only formulation G released 80% of content after 45 minutes. At the rotation speed of 100 rpm, formulations B, D and F released more than 80% of their content. Also, formulation G had slower release rate at speed 100 rpm than 50 rpm, whereas all other formulations showed increased dissolution rates. Generally, dissolution kinetic was altered with the increase of rotation speed. Most significant difference in dissolution profiles at 50 and 100 rpm was noticed in formulation D (Figure 1a-1b).

Formulations B, C and D are tablet formulations, where formulation B is a medicine and formulation C is a dietary supplement, but it contains the same amount of ALA. Formulation B and D are film coated tablets, while formulation D is a double layered tablet. Formulation B is more complex than formulations D and C. In lower hydrodynamic conditions (at 50 rpm), formulations B and D had parallel dissolution profiles, but at 100 rpm there was no statistically significant differences between released ALA at investigated time points. Formulation C had parallel and different dissolution profile to formulation B and D (Table IV).

Table III. Content of ALA [mg] in formulations with dose of 300 mg per unit [average ± standard deviation (SD)] with percent to average content.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>D mg of ALA</th>
<th>%</th>
<th>E mg of ALA</th>
<th>%</th>
<th>F mg of ALA</th>
<th>%</th>
<th>G mg of ALA</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>303.21</td>
<td>99.3</td>
<td>286.17</td>
<td>97.3</td>
<td>308.42</td>
<td>104.8</td>
<td>338.46</td>
<td>105.9</td>
</tr>
<tr>
<td>2</td>
<td>306.65</td>
<td>100.4</td>
<td>306.66</td>
<td>104.2</td>
<td>312.95</td>
<td>106.4</td>
<td>322.58</td>
<td>100.9</td>
</tr>
<tr>
<td>3</td>
<td>308.01</td>
<td>100.8</td>
<td>288.21</td>
<td>98.0</td>
<td>311.81</td>
<td>106.0</td>
<td>299.94</td>
<td>93.8</td>
</tr>
<tr>
<td>4</td>
<td>299.99</td>
<td>98.2</td>
<td>292.54</td>
<td>99.4</td>
<td>304.23</td>
<td>103.4</td>
<td>333.64</td>
<td>104.4</td>
</tr>
<tr>
<td>5</td>
<td>305.45</td>
<td>100.0</td>
<td>297.81</td>
<td>101.2</td>
<td>310.41</td>
<td>105.5</td>
<td>314.58</td>
<td>98.4</td>
</tr>
<tr>
<td>6</td>
<td>307.25</td>
<td>100.6</td>
<td>291.07</td>
<td>98.9</td>
<td>307.48</td>
<td>104.5</td>
<td>343.93</td>
<td>107.6</td>
</tr>
<tr>
<td>7</td>
<td>301.64</td>
<td>98.7</td>
<td>295.81</td>
<td>100.6</td>
<td>305.47</td>
<td>103.8</td>
<td>331.93</td>
<td>103.8</td>
</tr>
<tr>
<td>8</td>
<td>308.54</td>
<td>101.0</td>
<td>300.56</td>
<td>102.2</td>
<td>315.00</td>
<td>107.1</td>
<td>289.67</td>
<td>90.6</td>
</tr>
<tr>
<td>9</td>
<td>304.75</td>
<td>99.8</td>
<td>304.78</td>
<td>103.6</td>
<td>313.95</td>
<td>106.7</td>
<td>303.72</td>
<td>95.0</td>
</tr>
<tr>
<td>10</td>
<td>309.06</td>
<td>101.2</td>
<td>283.40</td>
<td>96.3</td>
<td>309.25</td>
<td>105.1</td>
<td>318.93</td>
<td>99.8</td>
</tr>
<tr>
<td>Average</td>
<td>305.46</td>
<td>100.0</td>
<td>294.70</td>
<td>100.2</td>
<td>309.90</td>
<td>105.3</td>
<td>319.7</td>
<td>100.0</td>
</tr>
<tr>
<td>SD</td>
<td>3.05</td>
<td>1.0</td>
<td>7.82</td>
<td>2.7</td>
<td>3.59</td>
<td>1.2</td>
<td>17.8</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Figure 1. Dissolution rate curves of ALA formulations at 50 rpm (A) and 100 rpm (B).
Formulations A and F are both soft gelatin capsules, but they had completely different dissolution profiles in the same medium. Formulation E demonstrated better release of ALA at 100 rpm, whereas formulation G showed better release at 50 rpm. Formulation F and G had parallel profiles. At 100 rpm in the first 15 minutes, they had similar release and after this time point, the released amounts were statistically different (Table V).

When tablets were tested, formulation B had the fastest disintegration time, whereas formulation C disintegrated after one hour and formulation D after more than half an hour. Soft capsules disintegrated faster than hard capsules. Soft capsule formulation A had the fastest disintegration time, while formulation F had the highest dissolution rate (Figure 2).

Discussion

Health care professionals like physicians and pharmacists often choose between drugs and dietary supplements that contain the same active ingredient, such as ALA formulations investigated in this research.

There is evidence that pharmacists are aware that formulation factors might affect the effects of drugs, but their knowledge of the subject is still unsatisfactory\(^{32}\). Such information on medical doctors is unavailable. However, implications that medical doctors consider formulations from a more simplistic point of view - when prescribing drugs or advising the use of dietary supplements, they consider the ease of use as well as comfort of their patients and therefore, often choose gelatin capsules (USA-based medical doctors) or solid forms such as tablets or dragées (Germany-based doctors)\(^{33}\).

Apart from API and formulation properties, physiological conditions in the gastrointestinal tract (e.g., hydrodynamics) can affect the drug/dietary supplement dissolution rates and absorption levels\(^{34}\). This is especially significant in certain diseases such as diabetes where delayed gastric emptying and gastroparesis have been repeatedly reported\(^{35-38}\). Consequently, dissolution rates and absorption from various formulations among diabetic patients can significantly differ from expected and result in unsatisfactory therapeutic/supplementation success. However, USP testing conditions do not reflect the myriad of factors altering the dissolution and absorption in vivo\(^{34}\).

Dissolution testing at different rotation speeds might prove to be a simple, yet effective method to test for differences in formulations response to high and low hydrodynamic conditions (as shown in the results section) which would be of great use, especially for diabetic patients, who are, indeed, frequent ALA users.

In recent years, the increase in demand for ALA products brought on the rise in the number of ALA products offered at the global market. Two drug formulations as well as five dietary supplement formulations available at the Serbian market were tested and no differences in content were found, but disintegration and dissolution properties were different between the same type of formulations.

Drug formulations (A and B) and dietary supplement formulations (C, D, E, F and G) had within 85-115% of the average content and were compliant to pharmacopoeial requirements. The larger standard deviations were observed in for-
Table V. Statistical comparison (p-values) between released cumulative percentage of ALA from capsule formulations in investigated time points for dissolution profiles at 50 and 100 rpm (p<0.05 statistical significance).

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>5</th>
<th>15</th>
<th>25</th>
<th>35</th>
<th>45</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulation</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>A</td>
<td>.000</td>
<td>.140</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>E</td>
<td>/</td>
<td>.047</td>
<td>.971</td>
<td>/</td>
<td>.000</td>
<td>.040</td>
</tr>
<tr>
<td>F</td>
<td>/</td>
<td>/</td>
<td>.010</td>
<td>/</td>
<td>/</td>
<td>.000</td>
</tr>
<tr>
<td>100 rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulation</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>A</td>
<td>.996</td>
<td>.998</td>
<td>.963</td>
<td>.997</td>
<td>.998</td>
<td>.452</td>
</tr>
<tr>
<td>E</td>
<td>/</td>
<td>.997</td>
<td>.995</td>
<td>/</td>
<td>.988</td>
<td>.517</td>
</tr>
<tr>
<td>F</td>
<td>/</td>
<td>/</td>
<td>.979</td>
<td>/</td>
<td>/</td>
<td>.634</td>
</tr>
</tbody>
</table>
mulations C, E, F and G. This is in correlation with previous findings39-41 that showed high variability of the content of active pharmaceutical ingredient in dietary supplement products. Two different studies42,43 of dietary supplements of ALA also showed significant variability of content in relation to the labelled content of ALA - from 87\% to 110\%43, and from 53\% to 100\%, respectively43. As an extreme example, an analysis44 of vitamin D dietary supplements found that supplements contained 8-177\% of the declared vitamin D content.

In the Republic of Serbia, as in many different countries worldwide, regulatory requirements considering obligatory testing of dosage forms for dietary supplements is non-existent. The requirements which dietary supplements need to meet before being placed on the market in Serbia are rather administrative (entry in the database of the Ministry of Health) and are related to health safety (absence of chemical and microbiological contamination). Proof of effectiveness and specifics on the characteristics of the formulation are not required25,26. Dissolution rate testing is important for formulations where API has low solubility. ALA is very slightly soluble in water16 and has liposoluble molecular properties and belongs to Class II of the Biopharmaceutical Classification System (BCS).

Formulations B, C and D are tablet formulations with immediate release, thus similar profile of release is expected. Additionally, formulation C is a dietary supplement that has the same dose of ALA as drug formulation B. At lower speed of rotation all three formulations had different profiles, but at higher rotation speeds, formulations B and D had similar profiles. Differences between profiles of formulations B and D at lower speed rotation (or during mild hydrodynamic conditions) might be due to differences in coating, as formulation B contains sodium lauryl sulphate which improves solubility. Also, formulation B has a mixture of microcrystalline cellulose and lactose monohydrate in its core, whereas formulation D has a mixture of microcrystalline cellulose and dicalcium phosphate, which tends to create a less porous tablet and prevents water from entering the tablet core. The purpose of that is to decrease the dissolution rate. However, at 100 rpm formulation D had faster release rate probably due to dimethicon in formulation B, which prevents wetting and slows dissolution.

\textbf{Figure 2.} Disintegration times of ALA formulations in relation to the cumulative percent of ALA released at 45 min.
Rapid disintegration occurred in formulation B, but not in D where it would also be expected since both formulations contain croscarmellose sodium. Croscarmellose sodium is a cross-linked polymer of carboxymethylcellulose sodium. It is a super disintegrant with rapid swelling properties whose positive effects on disintegration and thus, the dissolution of drugs with low water solubility, have been confirmed in various studies. While formulation G is listed as gastroresistant has microcrystalline cellulose and hypromellose, capsules and have different fillers. Formulation E is expected of ALA at small intestine area where absorption conditions might affect the effective release in vivo, which is a paradoxical situation. However, dissolution of ALA was higher at 50 rpm compared to 100 rpm, which is a paradoxical situation. Increased hydrodynamic condition (100 rpm) led to complete release of ALA from formulation F, but not formulation A. The main difference in these two formulations is that formulation F has had glycerol in its shell as a moisturizing agent and formulation A had sorbitol.

Formulation F has soy lecithin listed as a filler ingredient which might contribute to its faster dissolution in comparison to formulation A. A study on human bioavailability and pharmacokinetic profile of formulation F was conducted in 2012. Scientists reported that ALA solubility may be increased by vehiculation in an amphiphilic matrix such as lecithin, a good emulsifier. After rapid dissolution there was a good solubilization by lecithin - an inexpensive method that was very simple to use. Formulation E and G are hard hypromellose capsules and have different fillers. Formulation E has microcrystalline cellulose and hypromellose, while formulation G is listed as gastroresistant and filled with gellan gum pellets. At lower rotation speed, pellets had time to completely disintegrate, release ALA and thus dissolution rate of ALA was higher at 50 rpm compared to 100 rpm, which is a paradoxical situation. However, in vivo conditions might affect the effective release of ALA at small intestine area where absorption is expected.

Amenta et al evaluated pharmacokinetics of three formulations of ALA in healthy volunteers. Three formulations had different rates of absorption, two with a claimed high absorption rate and one with a claimed prolonged absorption rate. In view of the elapse of time taken by cells to regenerate cellular stores of glutathione after ALA uptake, the most rational approach for eliciting antioxidant activity at the cellular level seemed to be through the use of a formulation allowing the compound to reach its target at the highest concentrations and in the shortest time.

In accordance with these findings, the release of ALA from formulation B was superior in comparison to other formulations.

Different ways of increasing the solubility of ALA have been reported, including ALA complexation with cyclodextrins. Complexation with various cyclodextrins improved not only solubility, but also the stability of ALA. The pH value has a great influence on the solubility of weak acids in water. With the increase of the pH value of the solution, their solubility can be increased. The inclusion complex prepared by co-grinding ALA with hydroxypropyl-β-cyclodextrin and alkali to enhance the solubility and stability of ALA showed significant improvement in the solubility and stability of ALA. However, complexes and composites based on cyclodextrins, or other polymers require costly processes that are often difficult to carry out and do not ensure complete complexation of the active ingredient.

Conclusions

Tablet formulation of ALA registered as a drug had the best disintegration time and stable kinetic in both dissolution speed, whereas tablet formulations of dietary supplements (C and D) had slow disintegration time and variable dissolution kinetic depending on the dissolution speed. Soft capsules had better disintegration time but slower dissolution release rate while formulation A (drug formulation) had incomplete dissolution, which might be improved by altering the dissolution medium. Formulation F had high dissolution rate due to soy lecithin present in the formulation. Formulation E and G, hard hypromellose capsules, had unstable release kinetic, highly dependent on dissolution hydrodynamic conditions. Formulation G had lower dissolution rate at higher speed. All these differences could be correlated with patients’ differences such as the amount of gastric fluid, peristaltic motility and the amount of secreted bile. Formulations with unstable kinetic tend to have variable effects dependent on the status of human organism. Thus, knowledge about the impact of formulation on enhancing the API bioavailability, providing alternative routes of administration, and increasing patient convenience is important in maximizing the treatment efficiency. Stricter regulations on dietary supplements should be imposed worldwide, especially in the terms of formulation quality as this would lead to better efficacy of dietary supplementation.
Conflict of Interest
The Authors declare that they have no conflict of interests.

Acknowledgements
This study was supported by The Ministry of Education, Science and Technological Development, Republic of Serbia (project 451-03-68/2022-14/200114).

Informed Consent
Not applicable.

Ethics Approval
Not applicable.

Authors’ Contribution
Conceptualization: M.L.P. and J.J.B.; methodology: M.L.P. and J.J.B.; Data curation: J.C.P. and N.T.; investigation: M.V. and J.C.P.; formal analysis: N.T.; writing-original draft: M.L.P. and M.V; writing-review and editing: J.J.B. All authors have read and agreed to the published version of the manuscript.

Funding
This research received no external funding.

ORCID ID
Mladena Lalić-Popović: 0000-0001-8354-3868; Milana Vuković: 0000-0003-1829-8434; Jelena Jovičić-Bata: 0000-0002-0540-6654; Jelena Čanji-Panić: 0000-0002-9558-7902; Nemanja Todorović: 0000-0002-1519-5643.

References
21) Bruñaio M, Figliola R. (R)-α-lipoic acid oral liq- uid formulation: pharmacokinetic parameters and

26) Regulation on dietary supplements. Official Gazet... 45/2022.

