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Abstract. The outbreak of Sars-CoV-2 (COVID-19) 
poses serious challenges to people ś health world-
wide. The management of the disease is mostly 
supportive, and respiratory failure from acute re-
spiratory distress syndrome is the leading cause 
of death in a significant proportion of affected pa-
tients. Preliminary data point out that dramatic in-
crease in IL-6 and subsequent cytokine release 
syndrome may account for the development of fatal 
interstitial pneumonia. Inhibition of IL-6 by block-
ing its specific receptor with monoclonal antibod-
ies has been advocated as a promising attempt. 
Here we assess the potential utility of myo-Inosi-
tol, a polyol already in use for treating the newborn 
Respiratory Distress Syndrome, in downregulating 
the inflammatory response upon Sars-CoV-2 infec-
tion. Myo-Inositol proved to reduce IL-6 levels in a 
number of conditions and to mitigate the inflamma-
tory cascade, while being devoid of any significant 
side effects. It is tempting to speculate that inositol 
could be beneficial in managing the most dreadful 
effects of Sars-CoV-2 infection.
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Sars-CoV-2 (Covid-19) Epidemics

A coronavirus-based disease – Sars-CoV-2, pre-
viously known as COVID-19 - is currently spread-
ing worldwide1. Current management of COVID-19 
is mostly supportive, and respiratory failure from 
acute respiratory distress syndrome is the leading 
cause of death. Despite corticosteroids should be 
avoided as they might worsen lung damage (as 
demonstrated by previous pandemics), down-reg-
ulation of immune function is deemed beneficial 

given that patients with severe COVID-19 might 
display a cytokine storm syndrome. Thereby, new 
treatment options are urgently warranted.

Inositol and Pulmonary Function

Inositol and Respiratory Distress Syndrome 
in the newborn. In 1955, Pattle et al2 described 
the pulmonary surfactant (PS) and provided the 
first evidence about the involvement of PS in 
several lung diseases. Pulmonary surfactant is a 
surface-active lipoprotein complex (phospho-li-
poprotein) formed by type II alveolar cells3,4. 
Secondary alveolarization, begins at about 32 
weeks’ gestation. During this phase, alveoli form 
and mature, and alveolar walls thin. All cell types 
proliferate during this phase, including type II 
pneumocytes. The overall result is a maturing 
lung with a larger surface area and a minimal dif-
fusion distance for gas exchange2. Abnormalities 
in surfactant composition and/or reduced surfac-
tant synthesis have been described in Respirato-
ry Distress Syndrome5 (RDS, formerly known 
as hyaline membrane disease) in the infants, as 
well as in many similar illnesses6. Indeed, the ab-
sence or the inadequacy of surfactant in the liquid 
film lining of alveoli cause an increase in surface 
tension and alveolar collapse7. Furthermore, RDS 
may lead to very severe forms of Chronic Lung 
Disease (CLD)8, even if after the introduction of 
RDS therapy those clinical pictures have been 
less frequently recorded. Actually, current CLD 
form comprises incomplete growth and devel-
opment of alveoli and vasculature, sustained in-
flammatory cell activation, akin to that of chronic 
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obstructive disease. A prominent feature of CLD 
is a persistent/recurrent inflammatory reaction, 
due to several factors: hyperoxia, baro/volu-trau-
mas, toxin stimulation, intrauterine infections9. 
Accordingly, anti-inflammatory drugs proved to 
ameliorate clinical symptoms, even if glucocor-
ticoid should be avoided. Researchers have re-
cently focused interest on the use of myo-inosi-
tol (myo-Ins) supplementation in preterm infants 
for the prevention of bronchopulmonary disease 
(BPD) and retinopathy of prematurity (ROP)10-12. 
Myo-Ins is a naturally occurring polyol, widely 
represented in foods and actively synthesized by 
living organisms, that is involved in a number 
of critical physiological processes13. In the lung, 
myo-Ins promotes maturation of the surfactant 
phospholipids, phosphatidylcholine and phospha-
tidyl-inositol. Namely, the synthesis of phospha-
tidylinositol in type II pneumocytes appears to 
be dependent on extracellular inositol concentra-
tions14,15. Compositional changes in fetal rat lung 
surfactant correlate with changes in plasma ino-
sitol levels, and supplementation restores normal 
phospholipid levels in the deprived rat pup16,17.

In human infants with RDS, a premature drop 
in serum inositol levels predicts a more severe 
course18. Inositol supplementation increases the 
saturated phosphatidylcholine/sphingomyelin ra-
tio in surfactant in newborns, and produces a rise 
in serum inositol concentration. In humans, free 
inositol levels in sera from preterm neonates are 
2-20 times higher than maternal or adult sera19,20. 
Human milk has a high concentration of inositol, 
with preterm milk being the richest source, and 
studies in newborns suggest an endogenous syn-
thesis of inositol during fetal life. Infants who are 
breast fed have higher serum inositol levels com-
pared to those that are not at 1-2 weeks of life21,22. 
These facts suggest a critical role for inositol in 
fetal and early neonatal life. Several studies have 
been published assessing serum inositol levels in 
the preterm human infant23,24, as well as the ef-
fects of inositol supplementation. However, only 
few published RCTs of inositol supplementation 
have been subjected to systematic review25. Yet, 
while the number of studies available for anal-
ysis was small, the quality of the reports was 
considered appropriate, as recently stated by a 
Cochrane study26. A statistically significant re-
duction in death or BPD in infants with inositol 
supplementation was indeed demonstrated, and a 
striking reduction was found in ROP stage 4 or in 
that needing treatment. When a secondary anal-
ysis was carried out, a significant reduction was 

observed in ROP (any stage) as well26. A further 
survey released in 201227 recorded five random-
ized clinical trials, reaching similar conclusions: 
myo-Ins supplementation results in statistically 
significant and clinically important reductions in 
short-term adverse neonatal outcomes, decreases 
the incidence of broncho-pulmonary dysplasia 
and significantly reduces neonatal death. 

The effectiveness of myo-Ins in reducing the 
severity of RDS is consistent with experimental 
data indicating that it serves as a substrate to en-
hance the synthesis and the secretion of surfac-
tant phospholipid in immature lung tissue28. It is 
unclear whether the decrease in RDS severity in 
newborns treated with myo-Ins was due to the 
surfactant increase – as documented by the sig-
nificant increase in lecithin:sphingomyelin ratio 
during the first days of life – or to the effect on 
other lung structural and molecular components 
as well. Those data prompted clinicians to inves-
tigate the usefulness of myo-Ins in the combined 
treatment of other diseases of the upper and lower 
respiratory system (acute sinusitis, chronic ob-
structive bronchopneumopathy, bronchiolitis and 
eventually lung cancer).

Inositol and Lung Cancer

Dietary inositol has been shown to inhibit 
lung tumorigenesis in female A/J mice exposed 
to the carcinogen benzo(α)-pyrene or 4-(meth-
ylnitrosamino)-1-(3-pyridyl)-1-butanone in a 
number of studies29-33. With doses as low as 0.3% 
added to the diet, myo-Ins inhibited pulmonary 
tumor formation by 53% when given continu-
ously, starting one week before benzo(α)-pyrene 
administration34. Moreover, combination of 
myo-Ins with dexamethasone was the only che-
mopreventive regimen that attenuated the weak 
carcinogenicity of unfractionated environmental 
carcinogenic compounds35. Myo-Ins was also ef-
fective in the post-initiation phase and when giv-
en for short periods before, during, and imme-
diately post carcinogen exposure36. In humans, 
myo-Ins in a daily dose of 18 g per os showed to 
be safe and well tolerated, meanwhile inducing 
a significant regression of individual pulmonary 
dysplastic lesions (91% in the myo-Ins group ver-
sus 48% in the placebo group)37. Myo-Ins plays 
a relevant set of pleiotropic effects on several 
different pathways that can collectively exert 
many of anticancer activities (inhibition of cell 
proliferation, increased apoptosis, modulation 
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of cytoskeleton architecture and so forth)38,39. 
As PI3K activation represents a critical and ear-
ly step in lung carcinogenesis, its inhibition is 
likely to be a key factor in lung cancer chemo-
prevention. Indeed, a significant increase in a 
genomic signature of phosphatidylinositol 3-ki-
nase (PI3K) pathway activation in cells from 
the bronchial airway of both smokers with lung 
cancer and smokers with dysplastic lesions has 
been recorded, suggesting that PI3K is activated 
in the proximal airway before tumorigenesis. It is 
worth noting that PI3K activity decreases in the 
airway of high-risk smokers who had significant 
regression of dysplasia after treatment with the 
chemopreventive agent myo-Ins40. Moreover, fol-
lowing myo-Ins treatment, significant decreases 
in Akt and ERK phosphorylation were observed 
in dysplastic lung lesions (p<0.05) in vivo; in vi-
tro, inositol decreased endogenous and tobacco 
carcinogen-induced activation of Akt and ERK 
in immortalized human bronchial epithelial cells, 
ultimately leading to decreased cell proliferation 
and to G1-S cell cycle arrest41. Besides the inhib-
itory effect upon “canonical” pathways, myo-Ins 
demonstrated to modulate a number of other 
relevant biochemical cascades. In a transgenic 
mouse oncogenic Kras model (CC-LR), myo-Ins 
significantly reduces cancer development while 
reducing oncogenic KrasG12D and downstream 
effectors, cRaf and p-ERK in the lungs of CC-LR 
mice. Given that CC-LR mice exhibited a sub-
stantially higher inflammatory cytokines (IL-6 
and Leukaemia Inhibiting Factor, LIF), it was 
hypothesized that myo-Ins could interfere with 
the inflammatory pathway. As a result, it was 
showed that the activity of both IL-6 and LIF 
significantly decreases in lungs of CC-LR mice 
when they were fed with myo-inositol diet42. Ad-
ditionally, those animals displayed a concomitant 
suppression of pStat3 activity.

Those data further confirm the differentiating 
activity exerted by myo-Ins and provide mean-
ingful insights into new chemoprevention strate-
gies43. All of these findings support the ongoing 
phase 2 multicenter study sponsored by the NCI 
Mayo Clinic Cancer Prevention Network44. 

IL-6 release and Acute Respiratory 
Distress Syndrome

Pathogenic human coronavirus infections, 
such as the current CoVid-19 (Sars-CoV-2), is as-
sociated with high mortality in a fraction (5-10%) 

of patients in which the virus triggers an inter-
stitial pneumonia that quickly evolves into a se-
vere respiratory distress syndrome (pneumonia 
associated respiratory syndrome, PARS)45. Even 
though the mechanisms that orchestrate PARS are 
still unknown, preliminary data suggest that a de-
regulated cytokine response (akin to the Cytokine 
Release Syndrome) plays a critical role, as already 
shown in previous corona-virus infections46,47. 
Indeed, it has been shown that CD4 T lympho-
cytes are rapidly activated to become pathogenic 
T helper-1 cells, subsequently unleashing a “cy-
tokine storm” through increased expression of 
IL-6 and many other cytokines, thus promoting 
the recruitment of inflammatory CD14 and CD16 
monocytes48. Indeed, lungs of Sars-CoV-2 patients 
are infiltrated by a large amount of inflammato-
ry cells that disrupt the interstitium and alter the 
physiological cross-talk between cells and their 
microenvironment, thus hindering O2 exchange49. 
Moreover, inflammatory cells and cytokines can 
enter the blood and play a relevant role in initi-
ating a Multiple organ dysfunction syndrome50. 
It is remarkable that patients who develop PARS 
when infected by Sars-CoV-2 are mostly affect-
ed by a number of co-morbidities associated with 
persistent high levels of IL-651: hypertension 
(73.8%)52, cardiovascular diseases (52.1%)53, can-
cer (19.5) and chronic renal failure (20.2)54. We 
hypothesize that Sars-CoV-2 infection can further 
exacerbate IL-6 release in these patients in which 
IL-6 levels are already very high, thus fostering a 
true cytokine storm55.

IL-6 is a multifunctional cytokine that regu-
lates humoral and cellular responses, playing a 
pivotal function in inflammation and tissue dam-
age during infections and degenerative diseases 
(atherosclerosis, cancer). IL-6 acts through inter-
action with the receptor complex, IL-6Rb (also 
known as gp130), which transduces IL-6 effect 
into the cell. IL-6 levels are higher in patients 
affected by cardiovascular diseases56, hyperten-
sion57, in diabetes58, as well as in other relevant 
diseases like cancer59, deregulated inflammatory 
response60, sepsis61, and viral infections62. It is 
worth noting that patients with persistently ele-
vated IL-6 levels demonstrate a worse in-hospital 
outcome following admission63,64.

It is widely recognized that IL-6 can promote 
carcinogenesis, angiogenesis and metastasis in a 
number of experimental animal models65. More-
over, IL-6 mediated inflammatory pathway ren-
ders lung cancer cells resistant to cisplatin treat-
ment66, while higher systemic IL-6 levels are 
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associated with poor prognosis in non-small cell 
lung cancer67.  

New Therapeutic Perspectives 
in Counteracting IL-6 Storm Release

These preliminary data support the hypoth-
esis of a causative role of IL-6 in driving the in-
flammatory response that leads to morbidity and 
mortality in patients with COVID-19 who develop 
acute respiratory distress syndrome. Therefore, 
it has been proposed that monoclonal antibodies 
targeting IL-6 or drugs able to downregulate IL-6 
may be effective in blocking inflammatory storms, 
therefore representing a potential treatment for se-
vere COVID 19 patients. Some promising, albeit 
unconfirmed, clinical results have shown that to-
cilizumab, a specific inhibitor of IL-6 receptor68, 
can significantly improve oxygenation and clinical 
outcome of Sars-CoV-2 patients69. However, IL-6 
has a role in both the innate and adaptive immune 
responses that protect the host from a variety of 
infections. Clinical studies of IL-6 inhibitors, spe-
cifically tocilizumab, revealed that their use is as-
sociated with an increased rate of both serious and 
opportunistic infections generally observed with 
other non-IL-6-directed biologic therapies70. 

High concentrations of inositol (or its deriva-
tives) in surfactant preparations mitigate key in-
flammatory pathways in inflammatory lung dis-
ease71. Inositol and its metabolites also decrease 
pulmonary edema after lung injury72. In an ani-
mal model of Ovarian hyperstimulation syndrome 
(OHSS) – a condition that in some instances can 
be characterized by life-threatening events, like 
acute respiratory distress syndrome (ARDS), 
hypovolemia, ascites, edema, and thrombosis73 – 
myo-Ins was able to counteract the main clinical 
features, while significantly reducing a number of 
inflammatory signatures, including Vascular per-
meability, VEGF and COX-2 expressions74.

Moreover, inositol specifically down-regulates 
IL-6 levels42, PI3K75 (a key factor in the transduc-
tion of IL-6 signal), as well as many inflammatory 
parameters – like PGE and COX276 – downstream 
of PI3K activation in different diseases like cancer 
and polycystic Ovary Syndrome (PCOS). In this lat-
ter condition, myo-Ins supplementation significantly 
reduces pro-inflammatory cytokines like IL-6 and 
p-STAT377. A general model has been proposed in 
which the chemo-protective effect of myo-Ins on lung 
functionality was directly linked to downregulation 
of IL-6 and modulation of the microenvironment 

immune response78. Again, it should be stressed that 
myo-Ins administration – both through intravenous 
route and by oral supplementation – is almost com-
pletely devoid of any significant adverse effect.

Overall, these findings suggest that IL-6 is a 
major target of myo-Ins and raise the possibili-
ty that Sars-CoV-2 patients with IL-6-driven in-
flammation may benefit from myo-Ins treatment.

Our laboratory already showed familiarity 
with the IL-6 release and the underlying mech-
anisms that regulate it. Specifically, we showed 
that IL-6, as well as IL-1b, are epigenetically up-
regulated by the hypomethylation of the gene pro-
moter region in cell culture models and in human 
specimens from neurodegenerative disorders79-81. 
Unpublished preliminary results indicating that 
myo-Ins seems to exert epigenetic effects, suggest 
a possible mechanism of action in IL-6 regulation.

Overall, these findings indicate that IL-6 is a 
major target of myo-inositol and raise the possi-
bility that Sars-CoV-2 patients with a high level of 
IL-6-driven inflammation may show benefit from 
treatment with myo-inositol.
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