Effects of dezocine combined with dexmedetomidine on adverse reactions and inflammatory factors in patients undergoing HIPEC after intestinal surgery and its protective effect on the heart in the perioperative period

Z.-H. YANG¹, R. SHEN², F.-F. ZHAN³, J.-L. SHAO⁴, Y.-J. LU¹, L. WANG⁵

¹Department of Anesthesiology, Sanmen Hospital of Traditional Chinese Medicine, Taizhou, China
²Department of Anesthesiology, Qingdao Women and Children’s Hospital, Qingdao, China
³Department of Endocrinology, ⁴Department of Gastrointestinal Surgery, Sanmen Hospital of Traditional Chinese Medicine, Taizhou, China
⁵Department of Anesthesiology, Qingdao Central Hospital, Qingdao, China

Zhenhua Yang and Rong Shen contributed equally to this work

Abstract. - OBJECTIVE: The aim of this study was to explore the effects of dezocine combined with dexmedetomidine on adverse reactions and inflammatory factors in patients undergoing hyperthermic intraperitoneal chemotherapy (HIPEC) after intestinal surgery and its protective effect on the heart in the perioperative period.

PATIENTS AND METHODS: A total of 80 patients treated with HIPEC after intestinal surgery in our hospital from September 2018 to December 2019 were enrolled as research subjects. All patients were evenly divided into two groups using a random number table. As to analgesia and sedation during treatment, dezocine was injected intramuscularly at 30 min before treatment in the control group. Meanwhile, dezocine combined with dexmedetomidine was given in the same way in the observation group. Adverse reactions and changes in numeric rating scale (NRS) pain score during intervention were compared between the two groups. The changes in the levels of inflammatory and myocardial injury-related factors, and vascular endothelial function and regeneration ability among cardiovascular indicators at 12 h after intervention were compared as well. Additionally, the correlations of left ventricular mass index (LVMI) with the changes in the levels of inflammatory factor high-sensitivity C-reactive protein (hs-CRP), myocardial injury-related factor lactic dehydrogenase (LDH), vascular endothelial function indicator endothelin-1 (ET-1) and cardiovascular regeneration ability index vascular endothelial growth factor (VEGF) were analyzed.

RESULTS: Compared with control group, the total prevalence rate of severe pain, respiratory depression, nausea and vomiting, diarrhea, and muscle rigidity during intervention was significantly reduced in the observation group (p<0.05). NRS pain score at 1, 4, 8 and 12 h after intervention decreased remarkably in the observation group compared with the control group (p<0.05). Meanwhile, the levels of inflammatory factors tumor necrosis factor-α (TNF-α) and hs-CRP, and myocardial injury-related factors LDH and creatine kinase MB (CKMB) as well as ET-1 at 12 h after intervention declined remarkably in observation group compared with control group (p<0.05). However, the levels of nitric oxide (NO), VEGF and basic fibroblast growth factor (bFGF) rose significantly in the observation group (p<0.05). Besides, LVMI was positively correlated with hs-CRP and LDH, whereas was negatively associated with ET-1 and VEGF (p<0.05).

CONCLUSIONS: In HIPEC, dezocine combined with dexmedetomidine used for sedation and analgesia is able to effectively reduce adverse reactions and relieve inflammatory responses in vivo, exerting a cardio-protective effect.

Key Words: Dexmedetomidine, Hyperthermic intraperitoneal chemotherapy (HIPEC), Intestinal surgery, Dezocine, Adverse reactions, Inflammatory responses, Cardioprotection.

Introduction

Hyperthermic intraperitoneal chemotherapy (HIPEC) refers to the infusion of chemotherapeutic drugs heated to 43°C into the abdominal cavity through the abdominal catheter¹ to prevent
and treat malignant tumors of abdominal organs. Currently, it is one of the most important adjuvant treatment approaches for abdominal malignant tumors. Meanwhile, HIPEC is of great significance for the prevention and treatment of transcoelomic spread of malignant tumors. During HIPEC, adverse reactions, such as pain, nausea, vomiting, and diarrhea often occur due to multiple stimuli, including high temperature (43°C) and chemotherapy drugs. Besides, large doses of normal saline perfused during HIPEC leads to abdominal cavity expansion, diaphragm elevation and catheter traction, eventually resulting in aggravated pain in patients. For this reason, strengthening sedative and analgesic interventions is necessary for patients during treatment.

In clinical practice, large-volume ascites is often detected in patients undergoing HIPEC. This may lead to diaphragm elevation and inhibit the respiratory and circulatory functions of patients to some extent. During treatment, keeping spontaneous breathing and maintaining stable circulatory function are extremely important. Previous studies have reported that opioid analgesics have a satisfactory analgesic effect. However, they are easy to result in respiratory depression and can affect circulatory function. In recent years, Dezocine is considered as an opioid receptor agonist/antagonist able to be injected intramuscularly or intravenously. It shows a good analgesic effect, with few adverse reactions. However, its simple application achieves an ineffectively sedative effect. Dexmedetomidine, a highly-selective α2-adrenergic receptor agonist, has good analgesic and sedative effects. Dezocine, a synthesized bridged aminotetralin, is used for pain management. Dezocine is becoming dominated in China for relieving moderate to severe pain.

In this study, we aimed to explored the effects of dezocine combined with dexmedetomidine on adverse reactions and inflammatory factors in patients undergoing HIPEC after intestinal surgery and its protective effect on the heart in the perioperative period.

Patients and Methods

General Data

A total of 80 patients treated with HIPEC after intestinal surgery in our hospital from September 2018 to December 2019 were enrolled as research subjects. Before enrollment, all patients signed the informed consent. This study was approved by the Ethics Committee of Sanmen Hospital of Traditional Chinese Medicine. Inclusion criteria were as follows: patients aged 18-65 years old, those without abnormal mental status, those with good nutritional status, those with normal intestinal function in the past, and those with American Society of Anesthesiologists (ASA) class II-III. Exclusion criteria were as follows: patients with mental disorder, those with severe arrhythmia, those with systemic infection, those with severe liver and renal dysfunction, those who were allergic to drugs used in this study, or those with intestinal obstruction, heart failure or myocardial infarction in the past. All enrolled patients were divided into two groups using a random number table, namely observation group (n=40) and control group (n=40). In observation group, there were 23 males and 17 females aged 19-65 years old, with an average of (53.3±3.7) years old. This group included 28 cases of colon cancer and 12 cases of rectal cancer, 24 cases of ASA class II and 16 cases of ASA class III, and 21 cases of hypertension, 18 cases of coronary heart disease, 16 cases of hyperlipidemia, 19 cases of chronic obstructive pulmonary disease, and 20 cases of diabetes. In control group, there were 24 males and 16 females aged 18-65 years old, with an average age of (53.2±3.7) years old. As to primary disease, there were 27 cases of colon cancer and 13 cases of rectal cancer. In terms of ASA classification, there were 25 cases of ASA class II and 15 cases of ASA class III. Based on common medical diseases, there were 20 patients with hypertension, 17 patients with coronary heart disease, 15 patients with hyperlipidemia, 18 patients with chronic obstructive pulmonary disease, and 20 patients with diabetes. There were no statistically significant differences in gender, age, primary disease, ASA classification and common medical diseases between the two groups (p>0.05).

HIPEC

All enrolled patients received HIPEC. With an intracavity hyperthermia instrument (BRTRG II, Guangzhou Bright Medical Technology Co., Ltd., Guangzhou, China, temperature: 43°C), the prepared chemotherapeutic drug was diluted with 0.9% normal saline. Subsequently, it was continuously perfused into the abdominal cavity with a pressure pump via two inlet tubes under the diaphragm and two outlet tubes in left and right iliac fossa. Each treatment lasted for 90 min.

Analgesia and Sedation During Treatment

In control group, 5 mg of dezocine (Yangtze River Pharmaceutical Group, Taizhou, China, lot...
Dezocine combined with dexametomidine in patients undergoing HIPEC after intestinal surgery

number: 1808113) was intramuscularly injected at 30 min before treatment. Subsequently, 20 mg of dezocine was dissolved in 0.9% normal saline to prepare 50 mL solution that was continuously and intravenously pumped. The rate was adjusted according to the degree of pain using intravenous infusion pumps. In the observation group, dezocine was given in the same way. Combined with dexametomidine (4 μg/mL, Jiangsu Chenxin Pharmaceutical, Jining, China, lot number: 1807023), dezocine was continuously and intravenously pumped at 1 μg/kg. After about 10 min, the dosage was adjusted to 0.02-0.04 μg/kg, and the intravenous pumping was continued.

Observation Indexes

Adverse reactions and changes in numeric rating scale (NRS) pain score during intervention were compared between the two groups. The changes in the levels of inflammatory and myocardial injury-related factors, and vascular endothelial function and regeneration ability among cardiovascular indicators at 12 h after intervention were compared as well. Additionally, the correlations of left ventricular mass index (LVMI) with the changes in the levels of inflammatory factor high-sensitivity C-reactive protein (hs-CRP), myocardial injury-related factor lactic dehydrogenase (LDH), vascular endothelial function indicator endothelin-1 (ET-1) and cardiovascular regeneration ability index vascular endothelial growth factor (VEGF) were analyzed.

Evaluation Criteria

Inflammatory factors tumor necrosis factor-α (TNF-α, normal value: 5–100 ng/L) and hs-CRP (normal value: ≤10 mg/L) were detected via double antibody sandwich in one step method and latex-enhanced turbidimetric immunoassay, respectively. As to cardiovascular function, vascular endothelial function and vascular regeneration ability were observed. Vascular endothelial function indexes included ET-1 (normal value: 43.5–58.4 ng/L) and nitric oxide (NO, normal value: 13.8–34.6 μmol/L). Regeneration ability indicators VEGF (normal value: 55.0-90.0 ng/L) and basic fibroblast growth factor (bFGF, normal value: 36.9-58.8 ng/L) were determined in strict accordance with ELISA. Myocardial injury-related indicators included LDH (normal value: 100-240 U/L), creatine kinase MB (CKMB, normal value: 0-25 IU/L and troponin I (cTnI, normal value: <0.1 μg/L). LVMI (normal value: 120-125 g/m²) was assessed by a physician with a title of associate senior or above based on relevant indicators obtained through a color Doppler diagnostic apparatus (Mindray ATL5000, Shenzhen, China).

Statistical Analysis

Statistical Product and Service Solutions (SPSS) 20.0 (IBM Corp., Armonk, NY, USA) was used for statistical analysis. Measurement data were expressed as mean ± standard deviation (X±s). The t-test was used for comparison of the mean between two groups. Percentage (%) was used to express the enumeration data and chi-square test was used for data analysis. p<0.05 was considered statistically significant.

Results

Comparison of Prevalence of Adverse Reactions During Intervention Between the Two Groups

The total rate of severe pain, respiratory depression, nausea and vomiting, diarrhea, and muscle rigidity was significantly lower in the observation group than that in the control group (p<0.05) (Table I).

Changes in NRS Pain Score During Intervention

NRS pain score before intervention was (5.5±0.2) points in observation group and (5.6±0.2) points in control group, respectively. The results showed that NRS pain score was significantly lower in observation group than control group at 1 h, 4 h, 8 h and 12 h after intervention [(2.3±0.2) points vs. (3.8±0.4) points,

<p>| Table I. Comparison of incidence of adverse reactions during intervention between the two groups (n). |
|--|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th></th>
<th>Severe pain</th>
<th>Respiratory depression</th>
<th>Nausea and vomiting</th>
<th>Diarrhea</th>
<th>Muscle rigidity</th>
<th>Total incidence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation group</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4 (10.0%)</td>
</tr>
<tr>
<td>Control group</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>16 (40.0%)</td>
</tr>
<tr>
<td>χ²</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.067</td>
</tr>
<tr>
<td>ρ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.005</td>
</tr>
</tbody>
</table>

3439
Comparison of Inflammatory Factor Level at 12 h after Intervention Between the Two Groups

The levels of inflammatory factors TNF-α and hs-CRP in observation group were notably lower than those in control group at 12 h after intervention \((p<0.05) \) (Table II, Figure 2).

Comparison of Myocardial Injury-Related Factor Content at 12 h After Intervention Between the Two Groups

At 12 h after intervention, the levels of myocardial injury-related factors LDH and CKMB were notably lower in the observation group than those in the control group \((p<0.05) \). However, no statistically significant difference was observed in the level of cTnI between the two groups \((p>0.05) \) (Table III, Figure 3).

Table II. Comparison of inflammatory factor level at 12 h after intervention between the two groups \((\bar{x} \pm s) \).

<table>
<thead>
<tr>
<th></th>
<th>TNF-α (ng/L)</th>
<th>Hs-CRP (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation group</td>
<td>53.1±2.3</td>
<td>50.2±3.7</td>
</tr>
<tr>
<td>Control group</td>
<td>118.2±37.4</td>
<td>166.4±13.7</td>
</tr>
<tr>
<td>(t)</td>
<td>93.774</td>
<td>51.788</td>
</tr>
<tr>
<td>(p)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Comparisons of Vascular Endothelial Function and Regeneration Ability Among Cardiovascular Indexes at 12 h After Intervention Between the Two Groups

In comparison with control group, observation group exhibited significantly elevated levels of NO, VEGF and bFGF \((p<0.05) \) and reduced level of ET-1 \((p<0.05) \) at 12 h after intervention (Table IV, Figure 4).

Correlations of LVMI with Changes in Levels of hs-CRP, LDH, ET-1 and VEGF

LVMI was positively correlated with hs-CRP and LDH levels \((p<0.05) \) and was negatively associated with ET-1 and VEGF levels \((p<0.05) \) (Table V, Figure 5).

Discussion

HIPEC is an adjuvant therapy for malignancy tumors of the abdominal cavity, in which chemotherapeutic drugs are continuously and intraperitoneally infused together with warm saline\(^{13}\). Through peritoneal lavage with chemotherapy drugs and high temperature treatment, it can effectively kill cancer cells and prevent postoperative recurrence, especially transcoelomic spread\(^{14}\). Previous studies have shown that HIPEC increases body temperature, heart rate and blood pressure, and changes vital signs of patients\(^{15}\). To reduce HIPEC-induced stress on the body of patients, effective sedation and analgesia are fundamental. Meanwhile, it is essential to retain spontaneous breathing and maintain stable circulatory function of patients during sedation and analgesia\(^{16}\). As a highly-selective \(\alpha \)-adrenergic receptor ag-

![Figure 1](image1.png)

Figure 1. Changes in NRS pain score during intervention.

![Figure 2](image2.png)

Figure 2. Relationship between LVMI and hs-CRP level.
Dezocine combined with dexmedetomidine in patients undergoing HIPEC after intestinal surgery

Table III. Comparison of myocardial injury-related factor content at 12 h after intervention between the two groups (x±s).

<table>
<thead>
<tr>
<th></th>
<th>LDH (U/L)</th>
<th>CKMB (IU/L)</th>
<th>cTnl (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation group</td>
<td>237.4±37.4</td>
<td>21.2±1.5</td>
<td>0.03±0.01</td>
</tr>
<tr>
<td>Control group</td>
<td>384.4±43.7</td>
<td>56.6±5.1</td>
<td>0.03±0.02</td>
</tr>
<tr>
<td>t</td>
<td>16.165</td>
<td>42.116</td>
<td>0.000</td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td><0.001</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Figure 3. Relationship between LVMI and LDH level.
with hs-CRP and LDH levels and negatively associated with ET-1 and VEGF levels.

In HIPEC, dezocine combined with dexmedetomidine can effectively reduce the prevalence rate of adverse reactions, relieve inflammatory responses in vivo, and improve heart function compared with dezocine alone. Meanwhile, dexmedetomidine can induce physiological sleep, decrease the effect on respiratory function, slow down the heart rate to some extent, inhibit catecholamine secretion and reduce the impact on hemodynamics, thus protecting the cardiovascular system. Currently, it is widely applied for sedation during the perioperative period in the anesthesiology department and intensive care unit. Meanwhile, it is able to distinctly lower the dosage of opioid receptor agonists, exerting a remarkable complementary analgesic effect. In addition, the continuously intravenous pumping of dexmedetomidine can reduce nausea and vomiting, attenuate respiratory depression to a certain extent, and decrease the side effects like muscle rigidity caused by opioids. The application of dexmedetomidine in patients receiving HIPEC, combined with the condition of individuals, reduces psychological and physiological stress and improves overall treatment comfort.

Conclusions

The novelty of this study was that dezocine combined with dexmedetomidine used for sedation and analgesia is able to effectively reduce adverse reactions and relieve inflammatory responses in vivo, exerting a cardio-protective effect in HIPEC.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

Table IV. Comparisons of vascular endothelial function and regeneration ability among cardiovascular indexes at 12 h after intervention between the two groups (x±s).

<table>
<thead>
<tr>
<th></th>
<th>ET-1 (ng/L)</th>
<th>NO (μmol/L)</th>
<th>VEGF (ng/L)</th>
<th>bFGF (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>27.6±2.5</td>
<td>59.9±10.5</td>
<td>85.6±6.8</td>
<td>43.7±3.7</td>
</tr>
<tr>
<td>Control</td>
<td>60.1±5.3</td>
<td>37.4±1.4</td>
<td>49.7±3.7</td>
<td>25.6±1.7</td>
</tr>
</tbody>
</table>

Table V. Correlations of LVMI with changes in levels of hs-CRP, LDH, ET-1 and VEGF.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hs-CRP</td>
<td>0.8652</td>
<td><0.001</td>
</tr>
<tr>
<td>LDH</td>
<td>0.8542</td>
<td><0.001</td>
</tr>
<tr>
<td>ET-1</td>
<td>-0.8140</td>
<td><0.001</td>
</tr>
<tr>
<td>VEGF</td>
<td>-0.8382</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Dezocine combined with dexmedetomidine in patients undergoing HIPEC after intestinal surgery

Figure 5. Correlation between LVMI and VEGF level.

