LncRNA SNHG14 promotes the development of cervical cancer and predicts poor prognosis

Y.-Y. ZHANG¹, M. LI², Y.-D. XU³, J. SHANG³

Yanyun Zhang and Min Li contributed equally to this work

Abstract. – OBJECTIVE: The aim of this study was to explore the role of long non-coding RNA (LncRNA) small nucleolar RNA host gene 14 (SNHG14) in cervical cancer, and to further understand the possible underlying mechanism.

PATIENTS AND METHODS: Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) was performed to detect the expression of SNHG14 in cervical cancer. The relationship between SNHG14 expression with clinic-pathological features and pro ati aly ounting Kit-(CCK-8), 5-Ethyn 2'-deox ıridine (E**L**J) and ed to ev flov cytometry were u uate the olifer ume, th atic ana apo<mark>ptosis o</mark> ells. At cha ges in the expre sion of popto -relat n were d pro ins after SNHG14 nockdo tect d.

source with normal cervicularssues, the expression of SNHG14 was significantly higher in cervical cancer tissues. The prognosis of patients with higher expression of SNHG14 was worse than those with a lower level. The relationship between the expression of SNHG14 and clinicopathological features of patients with cervical cancer was further analyzed. The results demonstrated that a higher expression level of SNHG14 indicated later tumor stage and higher incidence of lymph node metastasis. Compared with normal cervical epithelial cell line End1/E6E7, the level of SNHG14 in cervical cancer cell lines (including SW756, SiHa and HeLa) was markedly up-regulated. Among them, SW756 and SiHa cells exhibited the highest level of SNHG14. After knocking down SNHG14, the viability and proliferation ability of SW756 and SiHa cells were remarkably decreased, while cell apoptosis was increased. Subsequently, we investigated the possible underlying mechanism. The results found that the knockdown of SNHG14 enhanced the activation of caspases-3, and increased the protein expression of Bax, JAK2 and STAT3, whereas decreased the expression of Bal-2 and Bid.

CONCLUSIONS: LncRNA SNHG14 was highly expressed in cervical tumor tissues or cells, which could promote the progression of cervical cancer. Furthermore, SNHG14 might be associated with the activation of the JAK-STAT pathway.

Key Words

Cervical cancer, LncRNA SNHG14, JAK-STAT, Cell apoptosis.

Introduction

Cervical cancer (CC) is one of the most comne ca vers wo mon fer According to in omplete statistics of e Wold Health Organization, the out 0,00 new cervical can r patien every year th world, ith a younger t dence^{4,5}. At the same time, nearly 270,000 people die from cervical cancer annually, ranking third among all cancers^{6,7}. The main risk factors for clinically induced cervical cancer include persistent infection of high-risk human papillomavirus (HPV)8,9, such as HPV 16, 18, 31 and 33. However, increasing evidence has indicated that HPV infection alone is not sufficient to induce malignant transformation of normal cervical cells^{4,10}. Therefore, the molecular mechanism of cervical cancer remains to be elucidated. Furthermore, more tumor-specific molecular markers are needed to be confirmed.

Long non-coding RNAs (LncRNAs) are a type of ncRNAs with more than 200 nucleotides in length. They are involved in the regulation of gene expression by affecting transcriptional regulation, post-transcriptional regulation, chromatin modification and gene imprinting¹¹⁻¹³. Researchers¹⁴⁻¹⁷ have demonstrated that lncRNAs are closely related to the occurrence and progression of malignant tumors, especially non-small cell lung cancer, colorectal cancer and breast cancer. Gibb et al¹⁸ have shown that lncRNAs participate in various processes of cellular life activities, including cell growth, proliferation, cell cycle regulation,

¹Physical Examination Center, Yantai Yuhuangding Hospital, Yantai, China

²Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, China

³Sterilized Supplying Center, Yantai Yuhuangding Hospital, Yantai, China

differentiation and apoptosis. It is hypothesized¹⁹ that lncRNAs may become important molecules for accurate pre-diagnosis and targeted specific treatment of cancer. Therefore, the biological function and clinical significance of lncRNAs may play a critical role in genetic and phenotypic regulation of diseases including cancer.

Research has indicated that lncRNA is closely associated with the occurrence of cervical cancer. The technique of long-segment gene expression relationship sequence was used to detect 16 cases of different grades of intraepithelial neoplasia. A total of 1056 lncRNAs have been found to express in human cervical tissues. Meanwhile, the differential expression of lncRNAs has been determined in CIN to explore whether they contribute to the development of cervical cancer²⁰. Sun et al²¹ have found that the down-regulation of MALAT1 by shRNA in cervical tumor cells inhibits cell invasiveness and metastasis. However, the absence of H19 gene imprinting function to increased H rievel i lea cervica issues. Th may eventually omote PV infec on and ancer²². ı our w .vestiga eve e role of LncRN NA h ed small n leolai ger 14 (SNHG14) in ervical (ncer and niti**ll**ly explored the underlying mechanism.

Patients and Methods

Sample Collection

30 tumor tissues and adjacent normal tissues were collected from patients with cervical cancer in the Yantai Yuhuangding Hospital between October 2015 and October 2017. Collected tissue specimens were quickly placed in sterile and non-enzymatic cryopreservation tubes, which were then transferred to liquid nitrogen for storage. All tissues were confirmed by pathology. None of the patients received anti-tumor treatment such as chemotherapy or radiotherapy before surgery. There were no significant differences in age, tumor location and pathological tissue classification of subjects. The investigation was approved by the Ethics Committee of the Yantai Yuhuangding Hospital. The informed consent was obtained from each subject before the study.

Cell Culture and Transfection

Normal endo-cervical epithelial cell line (End1/E6E7) and cervical cancer cell lines (SW756, SiHa, HeLa) were cultured in high glucose Dulbecco's Modified Eagle's Medium

(DMEM) medium (Gibco, Grand Island, NY, USA) containing 10% fetal bovine serum (FBS; Gibco, Grand Island, NY, USA) in an incubator at 37°C. The culture medium was changed every other day. SNHG14-siRNA and NC dry powder were centrifuged and dissolved in the corresponding amount of diethyl pyrocarbonate (DEPC) water (Beyotime, Shanghai, China) according to the synthesis report of Shanghai Jima Pharmaceutical Technology Co., Ltd. (Shanghai, China). Subsequently, they were mixed, prepared into a working solution with a final concentration of 20 µmol/L and stored at -20°C. 24 hours after inoculation, cell transfection was carried out according to the instructions of Lipofectamine TM2000 (Invitrogen, Carlsbad, CA, USA) when the adherent cells reached about 50%. After 6 hours, the medium was changed. The cells were incubated for another 48 h for subsequent experiments.

RNA Extraction and Quantitative Real Time-Pois nerase main I action (qRT- CR)

L of TRIzol (Inv ogen, ((A) as added to exact tal RN/ in tissues or s. R A was hen care ally extracted according to the experimental procedures. The concentration of RNA was determined by ultra-micro UV spectrophotometer. When the A260/A280 of RNA solution was 1.8 to 2.1, the purity was acceptable. 1 µg of total RNA was taken, and Reverse Transcription was performed according to the instructions of the reverse transcription kit to obtain complementary deoxyribose nucleic acid (cDNA). Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) reaction solution was prepared according to the instructions of SYBR fluorescence quantitative premixing kit (TaKa-Ra, Otsu, Shiga, Japan), with a total system of 10 μL. Specific PCR reaction conditions were: pre-denaturation at 95°C for 30 s, 95°C for 5 s, and 60°C for 31 s, for a total of 40 cycles. The experiment was repeated three times. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was taken as an internal reference. Primer sequences used in this study were as follows: SNHG14: F: GGGTGTTTACGTAGACCAGAACC, CTTCCAAAAGCCTTCTGCCTTAG GAPDH F: CGCTCTCTGCTCCTGTTC, R: ATC-CGTTGACTCCGACCTTCAC.

Cell Counting Kit-8 (CCK-8) Assay

48 hours after transfection, the cells were seeded into 96-well plates at a density of $2 \times 10^3/100$

 μ L. Cell Counting Kit-8 detection (CCK-8; Dojindo, Kumamoto, Japan) was performed at 0 h, 24 h, 48 h, and 72 h, respectively. The serum-free medium was added to replace the complete medium, and 10 μ L of CCK-8 solution was added to each well. Subsequently, the cells were incubated at 37°C in a 5% CO₂ incubator for another 2 h. Finally, optical density (OD) value at the wavelength of 450 nm was detected by a microplate reader.

5-Ethynyl-2'- Deoxyuridine (EdU) Assay

48 h after transfection, EdU staining was performed according to the instructions of Guangdong Ruibo EdU reagent (Guangzhou, China). Briefly, 300 µL of EdU (50 µl/L) was added to each well, followed by incubation for 2 h. Afterward, 300 µL of 1 x Apollo staining reaction was added and incubated for 30 min. Then, 300 µL of 1 x Hoechst 33342 reaction solution was used to decolorize at room temperature in the dark. Subsequently, the cells were observed and photographed using CX23 fluorescence microscopy (40x). 4 different fields of view were randomly selected for each sample Edil cell proliferation rate = rmber of cells wit new pro terating NA lal with EdU/total bel umber (cells wi nucle 3342 x lab Hoechst

Flow Cytometry

48 h atter transfection, cell apoptosis was observed by Annexin V-FITC (fluorescein isothiocyanate)/Propidium Iodide (PI) double staining (Thermo Fisher Scientific, Waltham, MA, USA). Cells in each group were collected, adjusted to the density of 5×10^5 cells/mL and washed with Phosphate-Buffered Saline (PBS; Gibco, Grand Island, NY, USA). After the cells were re-suspended in 500 μ L of binding buffer, 5 μ L of Annexin V-FITC and 10 μ L of PI were added at 18-28°C in the dark. Subsequently, the mixture was centrifuged for 15 min and analyzed using a flow cytometer. The experiment was repeated three times.

Western Blot Assay

The cells were washed twice with PBS 48 h after transfection, followed by lysis with protein lysate. Then, the cells were fully lysed by ultrasound on the ice and the supernatant was centrifuged. The concentration of extracted protein was determined by the bicinchoninic acid (BCA) method (Pierce, Rockford, IL, USA). After being separated by sodium dodecyl sulphate (SDS)

gel electrophoresis, the proteins were transferred onto polyvinylidene difluoride (PVDF) membranes (Roche, Basel, Switzerland) *via* wet transfer method. After blocking with 5% skim milk for 1 hour, the membranes were incubated with primary antibodies at 4°C overnight. On the next day, the membranes were washed with Tris-Buffered Saline and Tween 20 (TBST) 3 times and incubated with the corresponding secondary antibody at room temperature for 2 h. Finally, immunoreactive proteins were developed with the enhanced chemiluminescence (ECL) method (Thermo Fisher Scientific, Waltham, MA, USA).

Statistical Analysis

Statistical Product and Service Solutions (SPSS) 17.0 software (SPSS Inc., Chicago, IL, USA) was used for all statistical analysis. Measurement data were expressed as mean \pm standard deviation ($\overline{x}\pm s$) and analyzed using the *t*-test. The χ^2 -test was used for count data. The Kaplan Meier method was applied for survival analysis, and the difference was evaluated by time series test (Logrank test). p<0.05 was considered statistically significant.

Resu

in Cervical Tumor Tissues

In this experiment, the expression of SNHG14 in cervical cancer tissues was significantly higher than that of normal tissues (Figure 1A). Based on the expression level of SNHG14 in 30 cases of cervical tumor tissues, the patients were divided into high expression group and low expression group (Figure 1B). Survival analysis of the two groups indicated that the survival rate of patients in the high SNHG14 expression group was significantly lower than that of the low expression group. This suggested that the higher expression of SNHG14 indicated worse prognosis of patients (Figure 1C). We then analyzed the relationship between the expression of SNHG14 and clinic-pathological features. The results found that the expression of SNHG14 in patients with tumor size ≥ 4 cm was markedly higher than those with tumor size <4 cm (Figure 1D). Meanwhile, the expression of SNHG14 in patients with FiGO III-IV was remarkably higher than those with FIGO I-II (Figure 1E). The expression of SNHG14 in the LM (lymphatic metastasis) group was higher than that of the NLM (lymph metastasis) group

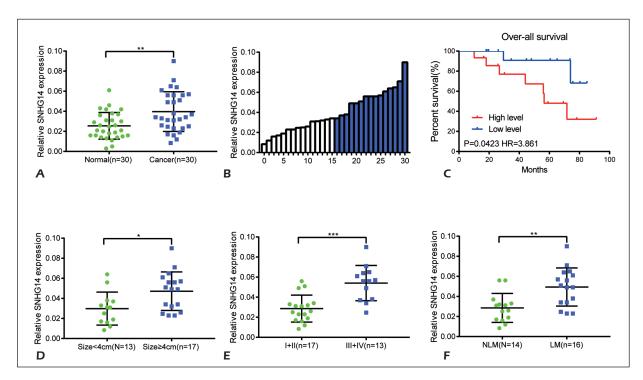
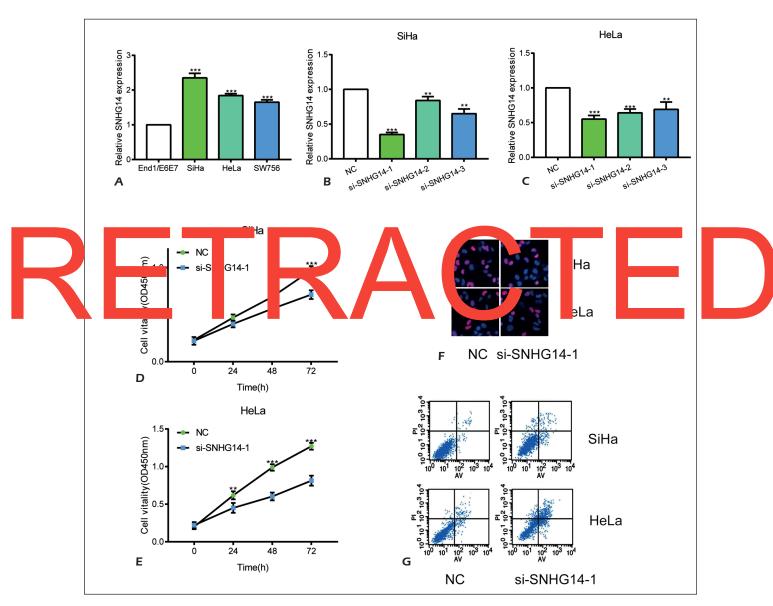


Figure 1. LncRNA SNHG14 was highly expressed in cervical cancer. A, The expression of SNHG14 in 30 normal cervical ies. B, Acc tis ...an al cancer e m n 30 alysis should that the cal cancer tissues, ded into t urvival survival e of patients in cei y were d group NHG14 high expre han the as mark y lower at of t low expression group D, The e ression level of on group SN - m padients with mor size s remarka y high than ose with tumor size < m. **E**, Th Apression level in patients with of VHG14 in FIGO I-II ver thai at of F F, The expression leve f SNHG rou oup was LN lymphatic metastas was high than tho vith LM (lym oid m estasis)

(Figure 1F). However, the SNHG14 level was not associated with age and presence/absence of stromal metastasis (Table I). The above results sug-

gested that the higher SNHG14 level predicted larger tumor size, later stage and a higher incidence of lymph node metastasis.

Table I. Relationship between expression of SNHG14 and clinicopathological features in cervical cancer patients (n=30).


Clinicopathologic features	Total	SNHG14 expression		<i>p</i> -value
		Low (n=15)	High (n=15)	
Age (years)				0.8203
<45	8	3	5	
≥45	22	12	10	
Tumor size				0.0106*
< 4 cm	15	11	4	
≥4 cm	15	4	11	
FIGO stage				0.0281*
I-II	14	10	4	
III-IV	16	5	11	
Stromal metastasis				0.7125
Yes	17	8	9	
No	13	7	6	
Lymph node metastasis				0.0253*
Yes	12	9	3	
No	18	6	12	

^{*}p<0.05

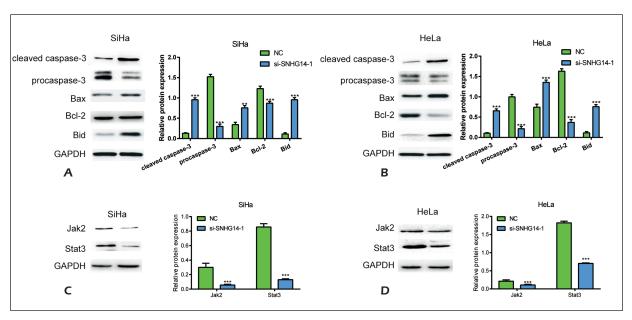
SNHG14 Promoted Proliferation of Cervical Cancer Cells

Similar to the population results, compared with normal cervical epithelial cells End1/E6E7, SNHG14 expression was significantly up-regulated in cervical cancer cell lines (including SW756, SiHa and HeLa). Among them, SW756 and SiHa exhibited the highest level of SW756. Therefore, they were selected for subsequent

experiments (Figure 2A). By transfecting interfering sequence si-SNHG14, we successfully knocked down SNHG14 in SiHa and HeLa cells (Figure 2B-2C). Among them, si-SNHG14-1 had the most significant inhibitory effect, which was then used in subsequent experiments. Cell function experiments found that the activity of SiHa and HeLa cells was markedly decreased after the knockdown of SNHG14 (Figure 2D-2E). EdU re-

Figure 2. LncRNA SNHG14 promoted proliferation of cervical cancer cells. **A**, Compared with normal endo-cervical epithelial cell line (End1/E6E7), the expression level of SNHG14 was significantly increased in cervical cancer cells (SW756, SiHa, HeLa). **B-C**, After transfecting SNHG14 interference sequence, the expression of SNHG14 in SiHa and HeLa cells was markedly decreased. **D-E**, After knocking down SNHG14, the viability of SiHa and HeLa cells was remarkably reduced. **F**, After knocking down SNHG14, EdU experiments showed that the proliferation ability of SiHa and HeLa cells was significantly decreased. **G**, After inhibition of SNHG14 expression, the apoptosis of SiHa, HeLa cells was increased.

sults also demonstrated the inhibitory effect of SNHG14 on cell proliferation (Figure 2F). Flow cytometry revealed that the apoptosis of SiHa and HeLa cells increased remarkably after SNHG14 down-regulation (Figure 2G). The above experimental results suggested that after knocking down SNHG14, the proliferation ability of cervical cancer cells was decreased, whereas the apoptosis was increased.


Mechanism of SNHG14 Inhibition in Promoting Apoptosis of Cervical Cancer Cells

The mitochondrial pathway is the regulatory center of apoptosis²³. Cytochrome C released into the cytoplasm activates Caspase-3, thereby inducing cell apoptosis. Proto-oncogenes or tumor suppressor genes, such as Bal-2 and Bax, regulate cell apoptosis by preventing or inducing the release of mitochondrial cytochromes²⁴. Next, we examined the changes of apoptotic proteins in cells after inhibiting SNHG14. Meanwhile, we explored the mechanism of SNHG14 inhibition in oung me apopu pro ce er cells. W€ ern blot results s wed that after knd kdowr -3 wa of the ac vation ficantly enhanc l. More prote d p-ST essions of Bax, JAK2 a exi mereas Bu-2 and Ed were markedly

decreased (Figure 3A-3D). **Discussion**

More and more studies have shown that IncRNA is involved in the development of malignant tumors. For example, it plays an important role in cervical cancer. Chen et al²⁵ have found that the level of BC200 is significantly up-regulated in cervical tumor tissues. This is the first lncRNA discovered to be associated with cervical cancer. Multiple studies have indicated that SNHG14 is abnormally expressed in tumors. Meanwhile, it plays a vital role in tumor-promoting genes in lung cancer²⁶ and gastric cancer²⁷ and acts as a tumor suppressor gene in gliomas²⁸. However, its role in cervical cancer remains unclear. In this work, we aimed to explore the exact role of SNHG14 in cervical cancer.

We first found that SNHG14 expression was significantly up-regulated in cervical cancer tissues. Meanwhile, a higher expression indicated a larger tumor size, later stage, the greater possibility of lymph node metastasis, and worse prognosis. Sub quen. Cemara Sper im ,⊸nirformed and the p tially r sible m hanism was xplord. The expression vel of Si cermor cells was fou l marke y increased. G14, th er k ocking wn SN ability of carried tumor cells dec

Figure 3. Mechanism of SNHG14 inhibition in promoting apoptosis of cervical cancer cells. **A-B**, After knockdown of SNHG14, Western blotting was used to detect the activation and division of caspases induced by SNHG14, and the expression of Bax, Bal-2 and Bid in SiHa and HeLa cells. **C-D**, After knocking down SNHG14, the JAK-STAT pathway was inhibited.

cell apoptosis increased. It was suggested that SNHG14 might promote the development of cervical cancer by promoting the JAK-STAT signaling pathway, inhibiting the activation of Caspases-3 and the expression of apoptotic proteins.

The JAK2/STAT3 signaling pathway is an important signal transduction pathway in cells. It is a common pathway for signal transduction of various cytokines and growth factors. Meanwhile, it plays a vital role in pathophysiological processes, such as embryonic development, hematopoietic cell formation, cell proliferation, differentiation, apoptosis, immunity and tumorigenesis. The expression of phosphorylated JAK2 (P-JAK2) and phosphorylated STAT3 (P-STAT3) is activated in tumor tissues of patients with cervical cancer. However, non-phosphorylated JAK2 and STAT3 are only expressed in normal tissues²⁹⁻³¹. The process of apoptosis involves a series of molecular regulatory mechanisms, which are mainly regulated by intracellular apoptotic proteins. Caspase-3, located downstream of the apoptoti apoptoerformers in the ispase f nily. Mor over, it sis most critical fac r in the poptotic ascade is t tosis is caused by Caspase med *ed signa Ap athway, which ma es it ess tial for e tra ing totic signals³². Bo 2 and Bay aging as apoptosis-related proteins, antagonize each other. If the proportion of bcl-2 is increased, it will inhibit cell apoptosis. On the contrary, if the proportion of Bax is increased, it will promote cell apoptosis³³. Bid is another pro-apoptotic protein in the Bcl-2 family of proteins³⁴. In our research, we found that after knocking down SNHG14, the expressions of pro-apoptotic proteins were significantly elevated, while the expression of the apoptosis-inhibiting protein was notably reduced.

Conclusions

We found that SNHG14 was highly expressed in cervical tumor tissues and cells. Furthermore, it promoted the progression of cervical cancer *via* activating the JAK-STAT signaling pathway.

Conflict of Interest

The authors declared no conflict of interest.

References

 Sun R, Zhang H, Liu K, Fan J, Li G, Song X, Li C. Clinicopathologic predictive factors of cervical lymph node metastasis in differentiated thyroid cancer.

- Acta Otorrinolaringol Esp 2018; 69: 149-155.
- ISMAIL E, KORNOVSKI Y, DIMITROV T. [A case of isolated massive pre-sacral lymph node metastasis in 1B1 stage cervical cancer - case report.]. Akush Ginekol (Sofiia) 2016; 55: 44-49.
- BECERRA-CULQUI TA, LONKY NM, CHEN O, CHAO CR. Patterns and correlates of cervical cancer screening initiation in a large integrated health care system. Am J Obstet Gynecol 2018; 218: 421-429.
- 4) Mazdziarz A, Wygledowski J, Osuch B, Jagielska B, Spiewankiewicz B. New directions in cervical cancer prophylaxis worldwide and in Poland - case study of the Polish rural female population. Ann Agric Environ Med 2017; 24: 592-595.
- RONCO G, FRANCESCHI S. Cervical cancer screening: the transformational role of routine human papillomavirus testing. Ann Intern Med 2018; 168: 75-76.
- MA C, ZHANG Y, LI R, MAO H, LIU P. Risk of parametrial invasion in women with early stage cervical cancer: a meta-analysis. Arch Gynecol Obstet 2018; 297: 573-580.
- 7) AVILES-JIMENEZ F, YU G, TORRES-POVEDA K, MADRID-MARINA V, TORRES J. On the search to elucidate the role of microbiota in the genesis of cancer: the cases of gastrointestinal and cervical cancer. Arch Med Res 2017: 48: 754-765
- 8) LIU SHARM III, TAN IV, KNABAS R HIV-positive we en have higher rist of huma papilloma virus infection, precancer is lesion and corvical career. AIDS 2018; 32: 95-808.
- ALL M, FAN TO KUERBAN II, YAO X PENG Y, DONG T, WING R. F. Quency of tribution in HI A alleles and haplotypes in Uyghur women with auvanced squamous cell cervical cancer and relation to HPV status and clinical outcome. Arch Gynecol Obstet 2018; 297: 757-766.
- 10) AL-HAMMADI FA, AL-TAHRI F, AL-ALI A, NAIR SC, ABDUL-RAHMAN M. Limited understanding of pap smear testing among women, a barrier to cervical cancer screening in the United Arab Emirates. Asian Pac J Cancer Prev 2017; 18: 3379-3387.
- Pan Y, Mao Y, Jin R, Jiang L. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers. Oncol Lett 2018; 15: 31-40.
- 12) Luo Q, Li X, Xu C, Zeng L, Ye J, Guo Y, Huang Z, Li J. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus. Mol Med Rep 2018; 17: 3489-3496.
- 13) MALHOTRA A, JAIN M, PRAKASH H, VASQUEZ KM, JAIN A. The regulatory roles of long non-coding RNAs in the development of chemoresistance in breast cancer. Oncotarget 2017; 8: 110671-110684.
- 14) SHANKARAIAH RC, VERONESE A, SABBIONI S, NEGRINI M. Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett 2018; 419: 167-174.
- Gu ZG, Shen GH, Lang JH, Huang WX, Qian ZH, Qiu J. Effects of long non-coding RNA URHC on proliferation, apoptosis and invasion of colorectal cancer cells. Eur Rev Med Pharmacol Sci 2018; 22: 1658-1664.
- 16) CHU YL, JIANG YQ, SUN SL, ZHENG BL, XIONG WS, LI WJ, CHEN XM, WANG MJ, HUANG QC, HUANG RY. The differential profiles of long non-coding RNAs between rheumatoid arthritis and gouty arthritis. Discov Med

- 2017; 24: 133-146.
- 17) Guo Y, Yu H, Wang J, Sheng Q, Zhao S, Zhao YY, Lehmann BD. The landscape of small non-coding RNAs in triple-negative breast cancer. Genes (Basel) 2018; 9:
- CHEN L, DZAKAH EE, SHAN G. Targetable long non-coding RNAs in cancer treatments. Cancer Lett 2018; 418: 119-124.
- 19) ZHANG L, SONG X, WANG X, XIE Y, WANG Z, XU Y, YOU X, LIANG Z, CAO H. Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Res Treat 2015; 152: 199-208.
- 20) GIBB EA, BECKER-SANTOS DD, ENFIELD KS, GUILLAUD M, NIEKERK D, MATISIC JP, MACAULAY CE, LAM WL. Aberrant expression of long noncoding RNAs in cervical intraepithelial neoplasia. Int J Gynecol Cancer 2012; 22: 1557-1563.
- 21) Sun R, Qin C, Jiang B, Fang S, Pan X, Peng L, Liu Z, Li W, Li Y, Li G. Down-regulation of MALAT1 inhibits cervical cancer cell invasion and metastasis by inhibition of epithelial-mesenchymal transition. Mol Biosyst 2016; 12: 952-962.
- 22) VIDAL AC, HENRY NM, MURPHY SK, ONEKO O, NYE M, OBURE J, SMITH J, VOUEZ B, AI B, HEI NDEZ B, HOYO C. PEG1/ME and IG 2 DNA monylation d in cerval cancer 2014; 16: 266-272
- 23 ZOU H, HENZEL WJ, LA X, LUTSCH A, WANK X, April 1, a human protein hologous C. elegal CF -4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405-413.
- 24) Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998; 391: 496-499.
- 25) CHEN W, BOCKER W, BROSIUS J, TIEDGE H. Expression of neural BC200 RNA in human tumours. J Pathol 1997; 183: 345-351.
- 26) ZHANG Z, WANG Y, ZHANG W, LI J, LIU W, LU W. Long non-coding RNA SNHG14 exerts oncogenic functions in non-small cell lung cancer through acting as a miR-340 sponge. Biosci Rep 2018;

BSR20180941.

- 27) LIU Z, YAN Y, CAO S, CHEN Y. Long non-coding RNA SNHG14 contributes to gastric cancer development through targeting miR-145/SOX9 axis. J Cell Biochem 2018; 119: 6905-6913.
- 28) WANG Q, TENG Y, WANG R, DENG D, YOU Y, PENG Y, SHAO N, ZHI F. The long non-coding RNA SNHG14 inhibits cell proliferation and invasion and promotes apoptosis by sponging miR-92a-3p in glioma. Oncotarget 2018; 9: 12112-12124.
- 29) ABUBAKER K, LUWOR RB, ZHU H, McNALLY O, QUINN MA, BURNS CJ, THOMPSON EW, FINDLAY JK, AHMED N. Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden. BMC Cancer 2014; 14: 317.
- 30) ZHENG Q, HAN L, DONG Y, TIAN J, HUANG W, LIU Z, JIA X, JIANG T, ZHANG J, LI X, KANG C, REN H. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRVIII/JAK2/STAT3 axis and associated focal adhesion in EGFRVIII-expressing glioblastoma. Neuro Oncol 2014; 16:11029-1240
- 31) AB GHANI J, LLEN JE, icker DT Liu YY, Gold-RG D, SMITH CD, F afenib sensitizes : ИРНREYS EL-DEIRY WS. lid tum(p2L/ agonist anti-AIL and Apo2L/TRA recepto bd es by the ak2-Sta 3-Mcl1 a s. PLoS One 4. 201
- 32) CHO HM, SUN W. Control of mitochondrial dynamics by Fas-induced Caspase-8 activation in hippocampal neurons. Exp Neurobiol 2015; 24: 219-225.
- 33) Kvansakul M, Hinds MG. Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis 2013; 4: e909.
- 34) GRASL-KRAUPP B, ROSSMANITH W, RUTTKAY-NEDECKY B, MULLAUER L, KAMMERER B, BURSCH W, SCHULTE-HER-MANN R. Levels of transforming growth factor beta and transforming growth factor beta receptors in rat liver during growth, regression by apoptosis and neoplasia. Hepatology 1998; 28: 717-726.